Bachelor of Science Maschinenbau
Modulhandbuch

Stand: 28. Februar 2022

Redaktion (Prüfungsamt Fachbereich Maschinenbau): pa15@uni-kassel.de
Der Bachelorstudiengang Maschinenbau richtet sich an Absolventinnen und Absolventen von Gymnasien und Fachoberschulen. Der Hochschulzugang für beruflich qualifizierte Bewerber ohne schulische Hochschulzugangsberechtigung wird in der Verordnung über den Zugang beruflich Qualifizierter zu den Hochschulen im Lande Hessen¹ geregelt. Es werden keine Vorkenntnisse im Bereich des Maschinenbaus erwartet.

Der Bachelorstudiengang ist grundlagen- und methodenorientiert und befähigt zur Ausübung eines ingenieurtechnischen Berufs, insbesondere im Maschinenbau, ohne ausgeprägten Forschungsbezug. Die Regelstudienzeit, einschließlich Bachelorarbeit, beträgt 3,5 Jahre. Es sind insgesamt 210 ECTS Punkte zu erwerben.

Absolventinnen und Absolventen des Bachelorstudiengangs Maschinenbau

... verfügen über fundierte mathematisch-naturwissenschaftliche Kenntnisse als Grundlage der Ingenieurwissenschaften, insbesondere in der Ingenieurmathematik, der Mechanik, der Thermodynamik, der Chemie und der Physik,

... sind in der Lage, ingenieurwissenschaftliches Spezialwissen durch Wahl von Schwerpunkten und Vertiefungsfächern (Angewandte Mechanik, Automatisierung und Systemdynamik, Energietechnik, Produktionstechnik und Arbeitswissenschaft, Werkstoffe und Konstruktion) anzuwenden,

... können konstruktions- und fertigungsbasierte Abläufe zu Maschinen, EDV-Programmen und Prozessen entsprechend ihres Wissensstandes erarbeiten,

... sind in der Lage, ihr fundiertes Verständnis für Entwurfsmethoden anzuwenden und weiterzuentwickeln,

... können Experimente auf Basis ihres Wissens planen, durchführen, die Ergebnisse interpretieren und geeignete Schlussfolgerungen formulieren,

... können Probleme mit technischem Bezug einordnen, erkennen, formulieren und lösen,

... erkennen und durchdringen komplexe Probleme und sind in der Lage, ingenieurwissenschaftliche Lösungsansätze grundlagenorientiert zu entwickeln und ganzheitliche Lösungen zu realisieren,

... erkennen die gesellschaftlichen, volkswirtschaftlichen, sicherheitsrelevanten und umweltwirksamen Folgen der Ingenieurtätigkeit, um auch über den engeren Aufgabenbereich hinaus als Ingenieure und Ingenieurinnen in der Gesellschaft verantwortlich zu handeln,

... sind grundlegend zu einer wissenschaftlichen Arbeitsweise befähigt,

... sind mit Methoden des Projektmanagements, entsprechend dem Stand ihres Wissens, vertraut,

... sind in der Lage, grundlegende Strategien des anwendungsbezogenen Methodentransfers anzuwenden,

... sind zur Kommunikation, möglichst auch in Englischer Sprache, befähigt und können ihre Arbeitsleistung in interdisziplinäre Arbeitsgruppen einbringen,

... sind in der Lage, ein technisches Masterstudium aufzunehmen. Musterstudienplan für die Studiengänge Bachelor und Master Maschinenbau

Inhaltsverzeichnis

Musterstudienplan 8

Übersicht über die Pflichtmodule der Schwerpunkte im Bachelor of Science Maschinenbau 9

Angewandte Mechanik ... 9
Automatisierung und Systemdynamik .. 11
Energietechnik ... 14
Produktionstechnik und Arbeitswissenschaft 16
Werkstoffe und Konstruktion ... 22

Übersicht über die Schlüsselkompetenzen 26

Pflichtmodule Grundstudienphase 34

CAD .. 34
Chemie für Ingenieure ... 36
Einführung in die Projektarbeit ... 38
Elektrotechnik und Elektronik für Maschinenbauer 40
Fertigungstechnik 1 ... 43
Fertigungstechnik 2 ... 45
Fertigungstechnik 3 ... 47
Höhere Mathematik 1 .. 49
Höhere Mathematik 2 .. 51
Höhere Mathematik 3 .. 53
Informationstechnik: Grundlagen der Programmierung 55
Konstruktionstechnik 1 ... 57
Konstruktionstechnik 2 ... 59
Konstruktionstechnik 3 ... 61
Strömungsmechanik 1 .. 63
Technische Mechanik 1 ... 65
Technische Mechanik 2 ... 67
Technische Mechanik 3 ... 69
Technische Schwingungslehre ... 71
Technische Thermodynamik 1 ... 73
Werkstofftechnik mit Praktikum .. 75

Pflichtmodule Hauptstudienphase 78

Berufspraktische Studien .. 78
Fortgeschrittenenpraktikum Maschinenbau 79
Mess- und Regelungstechnik mit Praktikum 81
Physik ... 84
Semesterarbeit ... 86
Technische Thermodynamik 2 ... 87

Schlüsselkompetenzen 89

Fabrikbetriebslehre (Pflicht) ... 90
Arbeits- und Organisationspsychologie 1
Arbeits- und Organisationspsychologie 2
Betriebliches Gesundheitsmanagement
Betriebswirtschaftslehre la
Buddy-Programm Bachelor
Der Ingenieur als Führungskraft 1
Der Ingenieur als Führungskraft 2
Formula Student Competition
Grundlagen des gewerblichen Rechtsschutzes (Patente – Marken – Design)
Hochschulbildung, Energie, Umwelt und Nachhaltigkeit in Lateinamerika und der Karibik
Hochschulbildung, Energie, Umwelt und Nachhaltigkeit in Lateinamerika und der Karibik
Ideenwerkstatt MACHEN!
Leitung von Tutorien
Matlab – Grundlagen und Anwendungen
Mensch–Maschine–Systeme 1
Mensch–Maschine–Systeme 1
Mitarbeit im Schülerforschungszentrum Nordhessen SFN
Mitarbeit in studentischen Gremien
Präsentation und Moderation
Projektmanagement 1 – Grundlagen des Projektmanagements, Teil 1
Projektmanagement 2 – Grundlagen des Projektmanagements, Teil 2
Projektmanagement 3 – Vertiefung
Projektmanagement 9 – Möglichkeiten und Grenzen von Projektmanagement–Software
Prozessmanagement
Prozessmanagement Übung
Qualitätsmanagement I – Grundlagen und Strategien
Qualitätsmanagement I – Übung
Qualitätsmanagement II – Konzepte und Methoden
Qualitätsmanagement II – Übung
Qualitätsmanagement Projektseminar – Anwendung des Qualitätsmanagements
Qualitätsmanagement Projektseminar – Grundlagen des Qualitätsmanagements
Qualitätsmanagement Projektseminar – Anwendung des Qualitätsmanagements
Speed Reading
Studienlotsen
Team- und Konfliktmanagement
Teamarbeit
Umweltwissenschaftliche Grundlagen für Ingenieure
Unternehmensgründung – ClimaTec!
Vektoranalysis
Vom Hörsaal in die Berufspraxis: Wissenschaftskommunikation für Ingenieur*innen
Wissenschaftliches Schreiben und Präsentieren
Workshop zur Leitung von Tutorien
<table>
<thead>
<tr>
<th>Modulhandbuch Bachelor of Science Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlpflichtmodule</td>
</tr>
<tr>
<td>Angewandte Mehrkörperrodynamik</td>
</tr>
<tr>
<td>Arbeitssystemgestaltung und Prozessergonomie 1</td>
</tr>
<tr>
<td>Arbeitssystemgestaltung und Prozessergonomie 2 – praktische Anwendung</td>
</tr>
<tr>
<td>Arbeitswissenschaft</td>
</tr>
<tr>
<td>Assistenzsysteme</td>
</tr>
<tr>
<td>Ausgewählte Kapitel der Höheren Mechanik</td>
</tr>
<tr>
<td>Ausgewählte Themen zur Digitalen Produktions- und Logistikplanung</td>
</tr>
<tr>
<td>Auszüge aus der Analytischen Strömungsmechanik</td>
</tr>
<tr>
<td>Autonome Mobile Roboter</td>
</tr>
<tr>
<td>Betriebliches Gesundheitsmanagement</td>
</tr>
<tr>
<td>Computational Intelligence in der Automatisierung</td>
</tr>
<tr>
<td>Data Mining für Technische Anwendungen</td>
</tr>
<tr>
<td>Digitale Logik</td>
</tr>
<tr>
<td>Einführung in die computergestützte Technische Mechanik</td>
</tr>
<tr>
<td>Einführung in die Mechatronik</td>
</tr>
<tr>
<td>Einführung in die Mehrkörperrodynamik</td>
</tr>
<tr>
<td>Energieeffiziente Produktion Grundlagen</td>
</tr>
<tr>
<td>Energiemanagementsysteme</td>
</tr>
<tr>
<td>Energiemonitoring in der Praxis (Messen, Verarbeiten, Überwachen)</td>
</tr>
<tr>
<td>Energiemonitoringsysteme</td>
</tr>
<tr>
<td>Energiewandlungsverfahren</td>
</tr>
<tr>
<td>Faserverbundwerkstoffe und deren Verarbeitungsverfahren</td>
</tr>
<tr>
<td>Festigkeit und Versagen von Konstruktionswerkstoffen</td>
</tr>
<tr>
<td>Formgedächtniswerkstoffe</td>
</tr>
<tr>
<td>Formula Student Competition</td>
</tr>
<tr>
<td>Fortgeschrittenenpraktikum Mess- und Automatisierungstechnik</td>
</tr>
<tr>
<td>Funktionale Oberflächentechnik in der Praxis</td>
</tr>
<tr>
<td>Gefüge und Eigenschaften metallischer Werkstoffe</td>
</tr>
<tr>
<td>Getriebetechnik</td>
</tr>
<tr>
<td>Gießereitechnik I – Automobil- und Fahrzeugguss (Gussleichtbau)</td>
</tr>
<tr>
<td>Gießereitechnik II – Maschinen- und Anlagenguss</td>
</tr>
<tr>
<td>Grundlagen Antriebsaggregate im Kraftfahrzeug</td>
</tr>
<tr>
<td>Gussgerechtes Konstruieren und virtuelle Produkt- u. Prozessentwicklung</td>
</tr>
<tr>
<td>Hochtemperaturwerkstoffe</td>
</tr>
<tr>
<td>Höhere Mathematik 4 – Numerische Mathematik für Ingenieure</td>
</tr>
<tr>
<td>Klebetechnische Fertigungsverfahren</td>
</tr>
<tr>
<td>Kontinuumsmechanik</td>
</tr>
<tr>
<td>Kunststoffprüfung</td>
</tr>
<tr>
<td>Kunststoffverarbeitungsprozesse 1</td>
</tr>
<tr>
<td>LabVIEW – Grundlagen und Anwendung</td>
</tr>
<tr>
<td>Life Cycle Engineering</td>
</tr>
</tbody>
</table>

Seite 5

> Fehler! Verweisquelle konnte nicht gefunden werden.
Life Cycle Engineering – Praktikum ... 262
Lineare Schwingungen .. 264
Maschinen- und Rotordynamik .. 266
Materialermüdung und Randschichtegenschaften .. 268
Materialflusssysteme ... 270
Materialien unter komplexen Belastungsbedingungen 272
Matlab – Grundlagen und Anwendungen ... 274
Mechatronische Systeme ... 276
Menschliche Zuverlässigkeit 1 – Analyse und Bewertung 278
Menschliche Zuverlässigkeit 2 – Resiliente Systemgestaltung 281
Mensch-Maschine-Systeme 1 ... 284
Mensch-Maschine-Systeme 1 (mit Seminarteil) ... 286
Mensch-Maschine-Systeme 2 ... 288
Mensch-Maschine-Systeme 2 (mit Seminarteil) ... 290
Modellbildung von Systemen ... 292
Modellierung von Fertigungsprozessen ... 294
Moderne Stahlwerkstoffe ... 296
Moderne thermo-mechanische Behandlungsverfahren 298
Modernes Druckgießen im Kontext von Industrie 4.0, Smart Technologies und praktischer Anwendung ... 300
Nutzung der Windenergie .. 302
Optimale Versuchsplanung ... 304
Praktikum FIRST .. 306
Praktikum Gießereitechnik I: Automobil- und Fahrzeugguss (Gussleichtbau) ... 307
Praktikum Gießereitechnik II: Maschinen- und Anlagenguss 309
Praktikum Numerische Simulation gießtechnologischer Prozesse für Leichtbauanwendungen ... 311
Praktikum Mensch-Maschine-Interaktion ... 313
Präsentation und Moderation ... 315
Produktions-/Innovationscontrolling ... 317
Produktionstechnik für Wirtschaftsingenieure – Teilmodul 1 319
Produktionstechnik für Wirtschaftsingenieure – Teilmodul 2 321
Programmiermethodik .. 323
Projektarbeit Mess- und Automatisierungstechnik (Bachelor) 324
Projektmanagement 3 – Vertiefung .. 326
Projektmanagement 5 – Projektmanagement von Infrastrukturprojekten 328
Projektmanagement 6 – Internationales Projektmanagement 330
Projektmanagement 7 – Teammanagement in interdisziplinären Projektteams ... 332
Prozessmanagement .. 334
Prozessmanagement Übung .. 336
Psychische Belastung und Beanspruchung .. 338
Regelungstechnik: Zustandsraummethoden und Mehrgrößensysteme 341
Schweißtechnik 1 .. 343
Schweißtechnik 2 ... 345
Seminar für mehrphasige Systeme und Transportprozesse 347
Seminar Human Factors Engineering .. 349
Seminar Mess- und Automatisierungstechnik 351
Seminar Umformtechniklabor .. 353
Sensorapplikationen – Messen nichtelektrischer Größen 355
Sensoren und Messsysteme .. 357
Sensorik für die Werkstoffwissenschaft ... 359
Signal- und Bildverarbeitung ... 361
Simulation und Machine Learning im Energiemanagement 363
Simulationsgestützte Steuerung vernetzter Systeme 365
Solarthermie und Thermische Messtechnik 367
SPS Programmierung nach IEC 61131–3 .. 370
Strömungsmechanik 2 ... 372
Strömungsmesstechnik ... 374
Strukturmechanik – Theorie und Berechnung 376
Systemzuverlässigkeit im Maschinenbau ... 378
Tensoranalysis .. 380
Theoretische und experimentelle Betriebsfestigkeit 382
Tribologie ... 384
Tribologie Praktikum .. 386
Versuchsplanung und Zuverlässigkeit .. 387
Wärmeübertragung 1 .. 389
Wärmeübertragung 1 – Praktikum .. 391
Werkstoffanalytik mit Röntgenstrahlen .. 393
Werkstoffkunde der Kunststoffe – Praktikum 395
Werkstoffkunde der Kunststoffe 1 .. 397
Werkstoffkunde der Kunststoffe 2 .. 399
Werkzeugmaschinen der Zerspanung .. 401
Wirbeldynamik .. 403
Musterstudienplan

<table>
<thead>
<tr>
<th>Semester</th>
<th>Modul</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SoSe 1</td>
<td>Mastermodul 30 CP Masterarbeit (3/4) und Kolloquium (1/4)</td>
<td></td>
</tr>
<tr>
<td>WSe 2</td>
<td>Modellierung und Simulation [*] 6 CP</td>
<td>21 CP</td>
</tr>
<tr>
<td>SoSe 1</td>
<td>Höhere Mathematik 4 [*] 6 CP</td>
<td>9 CP</td>
</tr>
<tr>
<td>WSe 3</td>
<td>Berufspraktische Studien (BPS) [*] 15 CP</td>
<td></td>
</tr>
<tr>
<td>SoSe 6</td>
<td>Hochere Mathematik 3 6 CP</td>
<td>7 CP</td>
</tr>
<tr>
<td>WSe 5</td>
<td>Technische Mechanik 3 7 CP</td>
<td>6 CP</td>
</tr>
<tr>
<td>SoSe 4</td>
<td>Konstruktionstechnik 2 6 CP</td>
<td>3 CP</td>
</tr>
<tr>
<td>WSe 3</td>
<td>Technische Mechanik 2 6 CP</td>
<td>3 CP</td>
</tr>
<tr>
<td>SoSe 2</td>
<td>Konstruktionstechnik 1 6 CP</td>
<td>1 CP</td>
</tr>
<tr>
<td>WSe 1</td>
<td>Technische Mechanik 1 6 CP</td>
<td>1 CP</td>
</tr>
<tr>
<td>SoSe 1</td>
<td>CAD 6 CP</td>
<td></td>
</tr>
<tr>
<td>WSe 2</td>
<td>Informationstechnik: Grundlagen der Programmierung 6 CP</td>
<td></td>
</tr>
<tr>
<td>SoSe 3</td>
<td>EIPA + Mentorengespräch</td>
<td></td>
</tr>
<tr>
<td>WSe 4</td>
<td>FPMB - Fortgeschrittenenpraktikum Maschinenbau 3 CP</td>
<td></td>
</tr>
<tr>
<td>SoSe 5</td>
<td>FT 1 3 CP</td>
<td></td>
</tr>
<tr>
<td>WSe 5</td>
<td>Werkstofftechnik mit Praktikum 6 CP</td>
<td></td>
</tr>
<tr>
<td>SoSe 4</td>
<td>FT 3 3 CP</td>
<td></td>
</tr>
<tr>
<td>WSe 3</td>
<td>Seminararbeit [*] 7 CP</td>
<td></td>
</tr>
<tr>
<td>SoSe 2</td>
<td>Semesterarbeit [*] 7 CP</td>
<td></td>
</tr>
</tbody>
</table>

Nachweis eines Grundpraktikums, Mindestdauer 6 Wochen, empfohlen vor Studienbeginn (keine CP)

Abkürzungen:
- EIPA - Einführung in die Projektarbeit + Mentorengespräch
- FPMB - Fortgeschrittenenpraktikum Maschinenbau
- FT - Fertigungstechnik

Übersicht über die Wahlpflichtmodule der Schwerpunkte im Bachelor of Science Maschinenbau

<table>
<thead>
<tr>
<th>Angewandte Mechanik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitte überprüfen Sie im jeweils aktuellen Vorlesungsverzeichnis, ob die Veranstaltung angeboten wird</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vorlesung</th>
<th>Modulverantwortlich/Dozentin</th>
<th>HIS Prüfungs-Nr.</th>
<th>Bachelor/Master</th>
<th>Credits</th>
<th>Semester</th>
<th>Basisveranstaltung</th>
<th>Umfang</th>
<th>Studienschwerpunkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angewandte Mehrkörperdynamik (im Wechsel mit Einführung in die Mehrkörperdynamik – es darf nur eine der Veranstaltungen belegt werden)</td>
<td>Hetzler/Boy</td>
<td>125006</td>
<td>B/M</td>
<td>6</td>
<td>SoSe</td>
<td>nein</td>
<td>2V/2Ü</td>
<td>Angewandte Mechanik</td>
</tr>
<tr>
<td>Ausgewählte Kapitel der Höheren Mechanik</td>
<td>Ricoeur</td>
<td>121014</td>
<td>B/M</td>
<td>6</td>
<td>SoSe</td>
<td>nein</td>
<td>3V/1Ü</td>
<td>Angewandte Mechanik</td>
</tr>
<tr>
<td>Auszüge aus der Analytischen Strömungsmechanik</td>
<td>Rütten</td>
<td>124020</td>
<td>B/M</td>
<td>3</td>
<td>WiSe (alle 2 Jahre)</td>
<td>nein</td>
<td>1V/1Ü</td>
<td>Angewandte Mechanik</td>
</tr>
<tr>
<td>Einführung in die computergestützte Technische Mechanik</td>
<td>Lange</td>
<td>121030</td>
<td>B</td>
<td>6</td>
<td>WiSe</td>
<td>nein</td>
<td>2V/1Ü/1Pr</td>
<td>Angewandte Mechanik</td>
</tr>
<tr>
<td>Einführung in die Mehrkörperdynamik (im Wechsel mit Angewandte Mehrkörperdynamik – es darf nur eine der Veranstaltungen belegt werden)</td>
<td>Hetzler</td>
<td>125002</td>
<td>B/M</td>
<td>6</td>
<td>SoSe</td>
<td>nein</td>
<td>3V/1Ü/1P</td>
<td>Angewandte Mechanik</td>
</tr>
<tr>
<td>Festigkeit und Versagen von Konstruktionswerkstoffen</td>
<td>Niendorf</td>
<td>151002</td>
<td>B/M</td>
<td>6</td>
<td>SoSe</td>
<td>nein</td>
<td>3V/1Ü</td>
<td>Angewandte Mechanik</td>
</tr>
<tr>
<td>Grundlagen und numerische Anwendungen der Bruchmechanik</td>
<td>Ricoeur</td>
<td>121016</td>
<td>B/M</td>
<td>6</td>
<td>SoSe</td>
<td>nein</td>
<td>3V/1P</td>
<td>Angewandte Mechanik</td>
</tr>
<tr>
<td>Kontinuumsmechanik</td>
<td>Ricoeur</td>
<td>121009</td>
<td>B/M</td>
<td>6</td>
<td>WiSe</td>
<td>ja</td>
<td>3V/1Ü</td>
<td>Angewandte Mechanik</td>
</tr>
<tr>
<td>Lineare Schwingungen (vorher: Lineare Schwingungen diskreter und kontinuierlicher Systeme)</td>
<td>Hetzler</td>
<td>122020</td>
<td>B/M</td>
<td>6</td>
<td>WiSe</td>
<td>nein</td>
<td>3V/1Ü</td>
<td>Angewandte Mechanik</td>
</tr>
<tr>
<td>Maschinen- und Rotordynamik</td>
<td>Hetzler</td>
<td>122002</td>
<td>B/M</td>
<td>6</td>
<td>WiSe</td>
<td>ja</td>
<td>3V/1Ü</td>
<td>Angewandte Mechanik</td>
</tr>
<tr>
<td>Strömungsmechanik 2</td>
<td>Wünsch</td>
<td>124003</td>
<td>B</td>
<td>6</td>
<td>WiSe</td>
<td>ja</td>
<td>3V/1Ü</td>
<td>Angewandte Mechanik</td>
</tr>
<tr>
<td>Strömungsmesstechnik</td>
<td>Wünsch</td>
<td>124004</td>
<td>B/M</td>
<td>6</td>
<td>WiSe</td>
<td>nein</td>
<td>3V/1Ü</td>
<td>Angewandte Mechanik</td>
</tr>
<tr>
<td>Modulhandbuch Bachelor of Science Maschinenbau</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulhandbuch Bachelor of Science Maschinenbau</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Strukturmechanik – Theorie und Berechnung</th>
<th>Matzenmiller</th>
<th>123005</th>
<th>B/M</th>
<th>6</th>
<th>WiSe (alle 2 Jahre)</th>
<th>nein</th>
<th>3V/1Ü</th>
<th>Angewandte Mechanik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensoranalyse</td>
<td>Wallenta</td>
<td>121104</td>
<td>B/M</td>
<td>6</td>
<td>WiSe</td>
<td>nein</td>
<td>3V/1Ü</td>
<td>Angewandte Mechanik</td>
</tr>
<tr>
<td>Theoretische und experimentelle</td>
<td>Oxe</td>
<td>121018</td>
<td>B/M</td>
<td>6</td>
<td>WiSe</td>
<td>nein</td>
<td>2V/2Ü</td>
<td>Angewandte Mechanik</td>
</tr>
<tr>
<td>Betriebsfestigkeit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wirbeldynamik</td>
<td>Rütten</td>
<td>124014</td>
<td>B/M</td>
<td>3</td>
<td>WiSe (alle 2 Jahre)</td>
<td>nein</td>
<td>1V/1Ü</td>
<td>Angewandte Mechanik</td>
</tr>
</tbody>
</table>

Fehler! Verweisquelle konnte nicht gefunden werden.
Automatisierung und Systemdynamik

Bitte überprüfen Sie im jeweils aktuellen Vorlesungsverzeichnis, ob die Veranstaltung angeboten wird.

<table>
<thead>
<tr>
<th>Vorlesung</th>
<th>Modulverantwortlich/Dozentin</th>
<th>HIS Prüfungs-Nr.</th>
<th>Bachelor/Master</th>
<th>Credits</th>
<th>Semester</th>
<th>Basisveranstaltung</th>
<th>Umfang</th>
<th>Studienschwerpunkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angewandte Mehrkörperdynamik (im Wechsel mit Einführung in die Mehrkörperdynamik – es darf nur eine der Veranstaltungen belegt werden)</td>
<td>Hetzler/Boy</td>
<td>125006</td>
<td>B/M</td>
<td>6</td>
<td>SoSe</td>
<td>nein</td>
<td>2V/2Ü</td>
<td>Automatisierung und Systemdynamik</td>
</tr>
<tr>
<td>Assistentensysteme</td>
<td>Schmidt</td>
<td>102020</td>
<td>B/M</td>
<td>4</td>
<td>SoSe</td>
<td>nein</td>
<td>2V/1Ü</td>
<td>Automatisierung und Systemdynamik</td>
</tr>
<tr>
<td>Autonome mobile Roboter</td>
<td>Geihs (FB16)</td>
<td>124005</td>
<td>B/M</td>
<td>6</td>
<td>SoSe</td>
<td>nein</td>
<td>2V/2Ü</td>
<td>Automatisierung und Systemdynamik</td>
</tr>
<tr>
<td>Computational Intelligence in der Automatisierung</td>
<td>Kroll</td>
<td>112008</td>
<td>B/M</td>
<td>6</td>
<td>SoSe</td>
<td>ja</td>
<td>3V/1Ü</td>
<td>Automatisierung und Systemdynamik</td>
</tr>
<tr>
<td>Data Mining für Technische Anwendungen</td>
<td>Sick</td>
<td>104001</td>
<td>B</td>
<td>6</td>
<td>WiSe</td>
<td>nein</td>
<td>3V/1Ü</td>
<td>Automatisierung und Systemdynamik</td>
</tr>
<tr>
<td>Digitale Logik</td>
<td>Zipf (FB16)</td>
<td>103001</td>
<td>B</td>
<td>4</td>
<td>WiSe</td>
<td>nein</td>
<td>2V/1Ü</td>
<td>Automatisierung und Systemdynamik</td>
</tr>
<tr>
<td>Einführung in die Mechatronik (alt: Mehrkörperdynamik 1: Einführung in die Mechatronik)</td>
<td>Fister</td>
<td>114003</td>
<td>B/M</td>
<td>6</td>
<td>WiSe</td>
<td>nein</td>
<td>2V/2Ü</td>
<td>Automatisierung und Systemdynamik</td>
</tr>
<tr>
<td>Einführung in die Mehrkörperdynamik (im Wechsel mit Angewandte Mehrkörperdynamik – es darf nur eine der Veranstaltungen belegt werden)</td>
<td>Hetzler</td>
<td>125002</td>
<td>B/M</td>
<td>6</td>
<td>SoSe</td>
<td>nein</td>
<td>3V/1Ü/1P</td>
<td>Automatisierung und Systemdynamik</td>
</tr>
<tr>
<td>Fortgeschrittenenpraktikum Mess- und Automatisierungstechnik</td>
<td>Kroll</td>
<td>112021</td>
<td>B/M</td>
<td>3</td>
<td>SoSe/WiSe</td>
<td>nein</td>
<td>2P</td>
<td>Automatisierung und Systemdynamik</td>
</tr>
<tr>
<td>LabVIEW – Grundlagen und Anwendung</td>
<td>Kroll/ Schmoll</td>
<td>112004</td>
<td>B</td>
<td>3</td>
<td>WiSe</td>
<td>nein</td>
<td>1V/1Ü</td>
<td>Automatisierung und Systemdynamik</td>
</tr>
<tr>
<td>Modultitel</td>
<td>Autor/Innehmen</td>
<td>Semester</td>
<td>Semester</td>
<td>Modulform</td>
<td>Prüfungen</td>
<td>Lehrveranstaltungseinheit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATLAB – Grundlagen und Anwendungen</td>
<td>Kroll/ Dürrbaum</td>
<td>112005</td>
<td>B</td>
<td>3</td>
<td>SoSe</td>
<td>nein</td>
<td>2P</td>
<td>Automatisierung und Systemdynamik</td>
</tr>
<tr>
<td>Mechatronische Systeme (Einführung in die Aktorik und Antriebstechnik)</td>
<td>Fister</td>
<td>112014</td>
<td>B/M</td>
<td>4</td>
<td>SoSe</td>
<td>nein</td>
<td>2V</td>
<td>Automatisierung und Systemdynamik</td>
</tr>
<tr>
<td>Mensch–Maschine–Systeme 1</td>
<td>Schmidt</td>
<td>102008</td>
<td>B/M</td>
<td>3</td>
<td>WiSe</td>
<td>nein</td>
<td>2V</td>
<td>Automatisierung und Systemdynamik</td>
</tr>
<tr>
<td>Mensch–Maschine–Systeme 1 (mit Seminarteil)</td>
<td>Schmidt</td>
<td>102017</td>
<td>B/M</td>
<td>6</td>
<td>WiSe</td>
<td>ja</td>
<td>2V/2S</td>
<td>Automatisierung und Systemdynamik</td>
</tr>
<tr>
<td>Mensch–Maschine–Systeme 2</td>
<td>Schmidt</td>
<td>102009</td>
<td>B/M</td>
<td>3</td>
<td>SoSe</td>
<td>nein</td>
<td>2V</td>
<td>Automatisierung und Systemdynamik</td>
</tr>
<tr>
<td>Mensch–Maschine–Systeme 2 (mit Seminarteil)</td>
<td>Schmidt</td>
<td>102002</td>
<td>B/M</td>
<td>6</td>
<td>SoSe</td>
<td>ja</td>
<td>2V/2S</td>
<td>Automatisierung und Systemdynamik</td>
</tr>
<tr>
<td>Modellbildung von Systemen</td>
<td>Kroll/ Sommer</td>
<td>112011</td>
<td>B</td>
<td>4</td>
<td>WiSe</td>
<td>nein</td>
<td>2V/1Ü</td>
<td>Automatisierung und Systemdynamik</td>
</tr>
<tr>
<td>Praktikum Mensch–Maschine–Interaktion</td>
<td>Schmidt</td>
<td>102003</td>
<td>B/M</td>
<td>3</td>
<td>SoSe</td>
<td>nein</td>
<td>2P</td>
<td>Automatisierung und Systemdynamik</td>
</tr>
<tr>
<td>Programmiermethodik</td>
<td>Zündorf (FB16)</td>
<td>118001</td>
<td>B</td>
<td>6</td>
<td>WiSe</td>
<td>nein</td>
<td>2V/2Ü</td>
<td>Automatisierung und Systemdynamik</td>
</tr>
<tr>
<td>Projektarbeit Mess– und Automatisierungstechnik (Bachelor)</td>
<td>Kroll</td>
<td>112028</td>
<td>B</td>
<td>6 (3)</td>
<td>SoSe/WiSe</td>
<td>nein</td>
<td>4PrM (2PrM)</td>
<td>Automatisierung und Systemdynamik</td>
</tr>
<tr>
<td>Regelungstechnik: Zustandsraummethoden und Mehrgrößensysteme</td>
<td>Kroll/ Sommer</td>
<td>112012</td>
<td>B/M</td>
<td>6</td>
<td>SoSe</td>
<td>ja</td>
<td>3V/1Ü</td>
<td>Automatisierung und Systemdynamik</td>
</tr>
<tr>
<td>Seminar Human Factors Engineering</td>
<td>Schmidt</td>
<td>102014</td>
<td>B</td>
<td>6</td>
<td>SoSe/WiSe</td>
<td>nein</td>
<td>4S</td>
<td>Automatisierung und Systemdynamik</td>
</tr>
<tr>
<td>Seminar Mess– und Automatisierungstechnik</td>
<td>Kroll</td>
<td>112010</td>
<td>B</td>
<td>6</td>
<td>SoSe/WiSe</td>
<td>nein</td>
<td>4S</td>
<td>Automatisierung und Systemdynamik</td>
</tr>
<tr>
<td>Sensorapplikationen – Messen nichtelektrischer Größen</td>
<td>Kroll/ Schmoll</td>
<td>112009</td>
<td>B</td>
<td>6</td>
<td>SoSe</td>
<td>ja</td>
<td>3V/1Ü</td>
<td>Automatisierung und Systemdynamik</td>
</tr>
<tr>
<td>Modultitel</td>
<td>Lehrer (FB)</td>
<td>Veranstaltungsnummer</td>
<td>Semester</td>
<td>Semester</td>
<td>Automatisierung und Systemdynamik</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>----------</td>
<td>-----------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensoren und Messsysteme für Mechatroniker</td>
<td>Lehmann (FB16)</td>
<td>109014</td>
<td>B</td>
<td>6</td>
<td>nein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal- und Bildverarbeitung</td>
<td>Kroll/ Schmoll</td>
<td>112003</td>
<td>B/M</td>
<td>6</td>
<td>ja</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPS Programmierung nach IEC 61131–3 (alt: Programmiersprachen und Techniken für technische Systeme nach IEC 61131–3)</td>
<td>Börcsök/ Schwarz (FB16)</td>
<td>116005</td>
<td>B</td>
<td>6</td>
<td>nein</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

→ Fehler! Verweisquelle konnte nicht gefunden werden.
Energietechnik

Bitte überprüfen Sie im jeweils aktuellen Vorlesungsverzeichnis, ob die Veranstaltung angeboten wird.

<table>
<thead>
<tr>
<th>Vorlesung</th>
<th>Modulverantwortlicher/Dozentin</th>
<th>HIS Prüfungs-Nr.</th>
<th>Bachelor Credits</th>
<th>Semester</th>
<th>Basisveranstaltung</th>
<th>Umfang</th>
<th>Studienschwerpunkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energieeffiziente Produktion Grundlagen</td>
<td>Hesselbach</td>
<td>132016</td>
<td>B</td>
<td>3</td>
<td>SoSe</td>
<td>nein</td>
<td>2V</td>
</tr>
<tr>
<td>Energiemonitoring in der Praxis (Messen, Verarbeiten, Überwachen)</td>
<td>Hesselbach</td>
<td>132023</td>
<td>B/M</td>
<td>3</td>
<td>SoSe (fällt aus im SS2022)</td>
<td>nein</td>
<td>2P</td>
</tr>
<tr>
<td>(ersetzt: Messen von Stoff- und Energieströmen – Praktikum)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energiemonitoringsysteme (ersetzt: Messen von Stoff- und Energieströmen)</td>
<td>Hesselbach</td>
<td>132022</td>
<td>B/M</td>
<td>3</td>
<td>WiSe</td>
<td>nein</td>
<td>2V</td>
</tr>
<tr>
<td>Energiewandlungsverfahren</td>
<td>Braun (FB16)</td>
<td>115001</td>
<td>B</td>
<td>6</td>
<td>SoSe</td>
<td>nein</td>
<td>2V/2Ü</td>
</tr>
<tr>
<td>Grundlagen der Energietechnik</td>
<td>Zacharias (FB16)</td>
<td>105002</td>
<td>B</td>
<td>6</td>
<td>WiSe</td>
<td>nein</td>
<td>3V/1U</td>
</tr>
<tr>
<td>Grundlagen der Kälte- und Wärmepumpentechnik</td>
<td>Luke</td>
<td>141012</td>
<td>B</td>
<td>4</td>
<td>SoSe</td>
<td>nein</td>
<td>2V/1Ü</td>
</tr>
<tr>
<td>Grundlagen der Kälte- und Wärmepumpentechnik – Praktikum</td>
<td>Luke</td>
<td>141015</td>
<td>B</td>
<td>3</td>
<td>SoSe/WiSe</td>
<td>nein</td>
<td>2P</td>
</tr>
<tr>
<td>Höhere Mathematik 4 – Numerische Mathematik für Ingenieure</td>
<td>Meister (FB10)</td>
<td>760009</td>
<td>B</td>
<td>6</td>
<td>SoSe</td>
<td>nein</td>
<td>3V/1HÜ</td>
</tr>
<tr>
<td>+760010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life Cycle Engineering</td>
<td>Hesselbach</td>
<td>132002</td>
<td>B</td>
<td>3</td>
<td>WiSe</td>
<td>nein</td>
<td>2V</td>
</tr>
<tr>
<td>Life Cycle Engineering-Praktikum</td>
<td>Hesselbach</td>
<td>132005</td>
<td>B</td>
<td>3</td>
<td>SoSe</td>
<td>nein</td>
<td>2P</td>
</tr>
<tr>
<td>Nutzung der Windenergie</td>
<td>Zacharias (FB16)</td>
<td>115005</td>
<td>B</td>
<td>3</td>
<td>WiSe</td>
<td>nein</td>
<td>2V</td>
</tr>
<tr>
<td>Seminar für mehrphasige Systeme und Transportprozesse</td>
<td>Luke</td>
<td>141020</td>
<td>B/M</td>
<td>1–3</td>
<td>SoSe</td>
<td>nein</td>
<td>1S</td>
</tr>
<tr>
<td>Signal- und Bildverarbeitung</td>
<td>Kroll/ Schmoll</td>
<td>112003</td>
<td>B/M</td>
<td>6</td>
<td>WiSe</td>
<td>nein</td>
<td>2V/1Ü/1P</td>
</tr>
<tr>
<td>Solarthermie und Thermische Messtechnik</td>
<td>Vajen/ Jordan</td>
<td>143007 +143014</td>
<td>B</td>
<td>6</td>
<td>SoSe</td>
<td>ja</td>
<td>2,5V/U 1,5P</td>
</tr>
<tr>
<td>Strömungsmechanik 2</td>
<td>Wünsch</td>
<td>124003</td>
<td>B</td>
<td>6</td>
<td>WiSe</td>
<td>ja</td>
<td>3V/1Ü</td>
</tr>
<tr>
<td>Theoretische und experimentelle Betriebsfestigkeit</td>
<td>Oxe</td>
<td>121018</td>
<td>B/M</td>
<td>6</td>
<td>WiSe</td>
<td>nein</td>
<td>2V/2Ü</td>
</tr>
<tr>
<td>Modul</td>
<td>Lehraufgabenverantwortlicher</td>
<td>Modulcode</td>
<td>Semester</td>
<td>Note</td>
<td>Semester</td>
<td>Kombination</td>
<td>V/U</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>----------</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td>Wärmeübertragung 1</td>
<td>Luke</td>
<td>141009</td>
<td>B</td>
<td>6</td>
<td>SoSe</td>
<td>ja</td>
<td>3V/1Ü</td>
</tr>
<tr>
<td>Wärmeübertragung 1 – Praktikum</td>
<td>Luke</td>
<td>141016</td>
<td>B</td>
<td>3</td>
<td>SoSe/WiSe</td>
<td>nein</td>
<td>2P</td>
</tr>
<tr>
<td>Werkstoffanalytik mit Röntgenstrahlen</td>
<td>Niendorf/Liehr</td>
<td>151003</td>
<td>B/M</td>
<td>3</td>
<td>WiSe</td>
<td>nein</td>
<td>2V</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>Modulverantwortlich/DozentIn</td>
<td>HIS Prüfungs-Nr.</td>
<td>Bachelor/Master</td>
<td>Credits</td>
<td>Semester</td>
<td>Basisveranstaltung</td>
<td>Umfang</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>---------</td>
<td>----------</td>
<td>--------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Achtung: Es dürfen maximal 6 Credits aus den mit (I) gekennzeichneten Fächern gewählt werden!</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbeitssystemgestaltung und Prozessergonomie 1 (I)</td>
<td>Sträter/ Klippert</td>
<td>101014</td>
<td>B/M</td>
<td>3</td>
<td>WiSe</td>
<td>nein</td>
<td>2 V</td>
</tr>
<tr>
<td>Arbeitssystemgestaltung und Prozessergonomie 2 (I)</td>
<td>Sträter/ Klippert</td>
<td>101015</td>
<td>B/M</td>
<td>3</td>
<td>SoSe</td>
<td>nein</td>
<td>1 Ü / 1 S</td>
</tr>
<tr>
<td>Arbeitswissenschaft</td>
<td>Schmidt</td>
<td>102010</td>
<td>B/M</td>
<td>6</td>
<td>WiSe</td>
<td>ja</td>
<td>2 V/1 Ü/1 S</td>
</tr>
<tr>
<td>Assistenzsysteme</td>
<td>Schmidt</td>
<td>102020</td>
<td>B/M</td>
<td>4</td>
<td>SoSe</td>
<td>nein</td>
<td>2 V/1 Ü</td>
</tr>
<tr>
<td>Ausgewählte Themen zur Digitalen Produktions- und Logistikplanung</td>
<td>Wenzel</td>
<td>134011</td>
<td>B/M</td>
<td>3</td>
<td>SoSe/WiSe</td>
<td>nein</td>
<td>2 S</td>
</tr>
<tr>
<td>Autonome mobile Roboter</td>
<td>Geihs (FB16)</td>
<td>124005</td>
<td>B/M</td>
<td>6</td>
<td>SoSe</td>
<td>nein</td>
<td>2 V/2 Ü</td>
</tr>
<tr>
<td>Betriebliches Gesundheitsmanagement (I)</td>
<td>Sträter/ Hillebrecht</td>
<td>101018</td>
<td>B/M</td>
<td>3</td>
<td>SoSe/WiSe</td>
<td>nein</td>
<td>2 S/Block</td>
</tr>
<tr>
<td>Modultitel</td>
<td>Lehrer</td>
<td>Semester</td>
<td>Kurs</td>
<td>Termine</td>
<td>Veranstaltungsbereich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
<td>----------</td>
<td>------</td>
<td>--------------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energieeffiziente Produktion Grundlagen</td>
<td>Hesselbach</td>
<td>132016</td>
<td>B</td>
<td>3</td>
<td>SoSe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nein</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Produktionstechnik und Arbeitswissenschaft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energiemanagementsysteme</td>
<td>Hesselbach/ Schlüter/ Philipp/ Schlosser</td>
<td>132040</td>
<td>B/M</td>
<td>3</td>
<td>SoSe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nein</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Produktionstechnik und Arbeitswissenschaft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energiemonitoring in der Praxis (Messen, Verarbeiten, Überwachen) (ersetzt: Messen von Stoff- und Energieströmen – Praktikum)</td>
<td>Hesselbach</td>
<td>132023</td>
<td>B/M</td>
<td>3</td>
<td>SoSe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(fällt aus im SS2022)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nein</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2P</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Produktionstechnik und Arbeitswissenschaft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energiemonitoringsysteme (ersetzt: Messen von Stoff- und Energieströmen)</td>
<td>Hesselbach</td>
<td>132022</td>
<td>B/M</td>
<td>3</td>
<td>WiSe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nein</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Produktionstechnik und Arbeitswissenschaft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faserverbundwerkstoffe und deren Verarbeitungsverfahren</td>
<td>Feldmann</td>
<td>153010</td>
<td>B/M</td>
<td>3</td>
<td>WiSe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nein</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Produktionstechnik und Arbeitswissenschaft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funktionale Oberflächentechnik in der Praxis</td>
<td>Böhm/ Alsmann</td>
<td>131024</td>
<td>B/M</td>
<td>3</td>
<td>WiSe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nein</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Produktionstechnik und Arbeitswissenschaft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gießereietechnik I: Automobil- und Fahrzeugguss (Gussleichtbau)</td>
<td>Fehlbier</td>
<td>135006</td>
<td>B/M</td>
<td>6</td>
<td>WiSe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nein</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Produktionstechnik und Arbeitswissenschaft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gießereietechnik II: Maschinen- und Anlagenguss</td>
<td>Fehlbier</td>
<td>135009</td>
<td>B/M</td>
<td>6</td>
<td>SoSe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nein</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Produktionstechnik und Arbeitswissenschaft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gussgerechtes Konstruieren u. virtuelle Produkt- und Prozessentwicklung</td>
<td>Fehlbier/ Nölke</td>
<td>135007</td>
<td>B</td>
<td>6</td>
<td>SoSe/WiSe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nein</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2V/2Ü</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Produktionstechnik und Arbeitswissenschaft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kursauswahl</td>
<td>Dozent</td>
<td>Semester</td>
<td>Vorlesungs-</td>
<td>Prüfungs-</td>
<td>Modulstandort</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klebetechnische Fertigungsverfahren inkl. Studienleistung</td>
<td>Böhm</td>
<td>131018</td>
<td>6</td>
<td>WiSe</td>
<td>ja</td>
<td>2V/2Ü</td>
<td></td>
</tr>
<tr>
<td>Kunststoffverarbeitungsprozesse 1</td>
<td>Heim</td>
<td>152004</td>
<td>3</td>
<td>WiSe</td>
<td>nein</td>
<td>2V</td>
<td></td>
</tr>
<tr>
<td>Life Cycle Engineering</td>
<td>Hesselbach</td>
<td>132002</td>
<td>3</td>
<td>WiSe</td>
<td>nein</td>
<td>2V</td>
<td></td>
</tr>
<tr>
<td>Life Cycle Engineering-Praktikum</td>
<td>Hesselbach</td>
<td>132005</td>
<td>3</td>
<td>SoSe</td>
<td>nein</td>
<td>2P</td>
<td></td>
</tr>
<tr>
<td>Materialflusssysteme</td>
<td>Wenzel</td>
<td>134002</td>
<td>6</td>
<td>SoSe</td>
<td>ja</td>
<td>2V/2Ü</td>
<td></td>
</tr>
<tr>
<td>Menschliche Zuverlässigkeit 1 – Analyse und Bewertung (I) (ehem. Menschliche Zuverlässigkeit und Systemgestaltung)</td>
<td>Sträter</td>
<td>101101</td>
<td>3</td>
<td>WiSe</td>
<td>ja (m. M. Zuverlässigkeit 2)</td>
<td>2V</td>
<td></td>
</tr>
<tr>
<td>Menschliche Zuverlässigkeit 2 – Resiliente Systemgestaltung (I) (ehem. Kognitive Systeme und Zuverlässigkeit)</td>
<td>Sträter</td>
<td>101102</td>
<td>3</td>
<td>SoSe</td>
<td>ja (m. M. Zuverlässigkeit 1)</td>
<td>2V</td>
<td></td>
</tr>
<tr>
<td>Mensch-Maschine-Systeme 1</td>
<td>Schmidt</td>
<td>102008</td>
<td>3</td>
<td>WiSe</td>
<td>nein</td>
<td>2V</td>
<td></td>
</tr>
<tr>
<td>Mensch-Maschine-Systeme 1 (mit Seminarteil)</td>
<td>Schmidt</td>
<td>102017</td>
<td>6</td>
<td>WiSe</td>
<td>nein</td>
<td>2V/2S</td>
<td></td>
</tr>
<tr>
<td>Mensch-Maschine-Systeme 2</td>
<td>Schmidt</td>
<td>102009</td>
<td>3</td>
<td>SoSe</td>
<td>nein</td>
<td>2V</td>
<td></td>
</tr>
</tbody>
</table>

→ Fehler! Verweisquelle konnte nicht gefunden werden.
<table>
<thead>
<tr>
<th>Modultitle</th>
<th>Dozent/in</th>
<th>Semester</th>
<th>Kurs</th>
<th>Modulkompetenz</th>
<th>Veranstaltung</th>
<th>Modulbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mensch–Maschine–Systeme 2 (mit Seminarteil)</td>
<td>Schmidt</td>
<td>102002</td>
<td>B/M</td>
<td>6</td>
<td>SoSe</td>
<td>nein</td>
</tr>
<tr>
<td>Modellierung von Fertigungsprozessen</td>
<td>Steinhoff</td>
<td>133002</td>
<td>B/M</td>
<td>6</td>
<td>WiSe</td>
<td>nein</td>
</tr>
<tr>
<td>Moderne thermo-mechanische Behandlungsverfahren</td>
<td>Steinhoff</td>
<td>133001</td>
<td>B/M</td>
<td>6</td>
<td>WiSe</td>
<td>ja</td>
</tr>
<tr>
<td>Modernes Druckgießen im Kontext von Industrie 4.0, Smart Technologies und praktischer Anwendung</td>
<td>Fehlbier/Erhard</td>
<td>135013</td>
<td>B/M</td>
<td>3</td>
<td>SoSe</td>
<td>nein</td>
</tr>
<tr>
<td>Optimale Versuchsplanung für technische Systeme</td>
<td>Brabetz/Ayeb</td>
<td>107010</td>
<td>B/M</td>
<td>6</td>
<td>WiSe</td>
<td>nein</td>
</tr>
<tr>
<td>Praktikum Gießereitechnik I: Automobil- und Fahrzeugguss (Gussleichtbau)</td>
<td>Fehlbier</td>
<td>135005</td>
<td>B/M</td>
<td>3</td>
<td>WiSe</td>
<td>nein</td>
</tr>
<tr>
<td>Praktikum Gießereitechnik II: Maschinen- und Anlagenguss</td>
<td>Fehlbier</td>
<td>135010</td>
<td>B/M</td>
<td>3</td>
<td>SoSe</td>
<td>nein</td>
</tr>
<tr>
<td>Praktikum Mensch–Maschine–Interaktion</td>
<td>Schmidt</td>
<td>102003</td>
<td>B/M</td>
<td>3</td>
<td>SoSe</td>
<td>nein</td>
</tr>
<tr>
<td>Praktikum Numerische Simulation gießtechnologischer Prozesse für Leichtbauanwendungen</td>
<td>Fehlbier/Nölke</td>
<td>135008</td>
<td>M</td>
<td>3</td>
<td>SoSe/WiSe</td>
<td>nein</td>
</tr>
<tr>
<td>Präsentation und Moderation (I)</td>
<td>Sträter</td>
<td>101013</td>
<td>B</td>
<td>3</td>
<td>SoSe/WiSe</td>
<td>nein</td>
</tr>
<tr>
<td>Modultitel</td>
<td>Lehrer</td>
<td>Modulnummer</td>
<td>Veranstaltungsform</td>
<td>Halbjahr</td>
<td>Hrs.</td>
<td>Quelle</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>-------------</td>
<td>--------------------</td>
<td>----------</td>
<td>------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Produktions-/Innovationscontrolling (I)</td>
<td>Deiwiks</td>
<td>111010</td>
<td>B/M</td>
<td>4</td>
<td>WiSe</td>
<td>nein</td>
</tr>
<tr>
<td>Produktionstechnik für Wirtschaftsingenieure – Teilmodul 1</td>
<td>Böhm</td>
<td>131009</td>
<td>B</td>
<td>3</td>
<td>WiSe</td>
<td>ja</td>
</tr>
<tr>
<td>Produktionstechnik für Wirtschaftsingenieure – Teilmodul 2</td>
<td>Böhm</td>
<td>131010</td>
<td>B</td>
<td>3</td>
<td>SoSe</td>
<td>ja</td>
</tr>
<tr>
<td>Projektmanagement 3 – Vertiefung (I)</td>
<td>Spang</td>
<td>103003</td>
<td>B/M</td>
<td>6</td>
<td>WiSe</td>
<td>nein</td>
</tr>
<tr>
<td>Projektmanagement 5 – Projektmanagement von Infrastrukturprojekten</td>
<td>Spang</td>
<td>103005</td>
<td>B/M</td>
<td>6</td>
<td>SoSe</td>
<td>nein</td>
</tr>
<tr>
<td>Projektmanagement 6 – Internationales Projektmanagement (I)</td>
<td>Spang</td>
<td>103006</td>
<td>B/M</td>
<td>3</td>
<td>WiSe</td>
<td>nein</td>
</tr>
<tr>
<td>Projektmanagement 7 – Teammanagement in interdisziplinären Projektteams (I)</td>
<td>Spang</td>
<td>103007</td>
<td>B/M</td>
<td>6</td>
<td>SoSe</td>
<td>nein</td>
</tr>
<tr>
<td>Prozessmanagement (I)</td>
<td>Refflinghaus</td>
<td>104013</td>
<td>B/M</td>
<td>3</td>
<td>SoSe</td>
<td>ja (mit Übung)</td>
</tr>
<tr>
<td>Prozessmanagement Übung (I) (als Basisveranst, wenn mit P-Vorlesung zusammen)</td>
<td>Refflinghaus</td>
<td>104014</td>
<td>B/M</td>
<td>3</td>
<td>SoSe</td>
<td>ja (mit Vorlesung)</td>
</tr>
<tr>
<td>Psychische Belastung und Beanspruchung (I)</td>
<td>Sträter/ Schütte</td>
<td>101004</td>
<td>B/M</td>
<td>3</td>
<td>SoSe/WiSe</td>
<td>nein</td>
</tr>
</tbody>
</table>

→ Fehler! Verweisquelle konnte nicht gefunden werden.
<table>
<thead>
<tr>
<th>Modul</th>
<th>Lehrperson</th>
<th>Semester</th>
<th>Kapazität</th>
<th>Periode</th>
<th>Form</th>
<th>Prüfungstyp</th>
<th>Studiengänge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schweißtechnik 1</td>
<td>Niendorf/Baunack</td>
<td>151004</td>
<td>B/M</td>
<td>3</td>
<td>SoSe</td>
<td>nein</td>
<td>Produktionstechnik und Arbeitswissenschaft</td>
</tr>
<tr>
<td>Seminar Human Factors Engineering</td>
<td>Schmidt</td>
<td>102014</td>
<td>B</td>
<td>6</td>
<td>SoSe/ WiSe</td>
<td>nein</td>
<td>Produktionstechnik und Arbeitswissenschaft</td>
</tr>
<tr>
<td>Seminar Umformtechnik Labor</td>
<td>Steinhoff</td>
<td>133008</td>
<td>B/M</td>
<td>6</td>
<td>SoSe/ WiSe</td>
<td>nein</td>
<td>Produktionstechnik und Arbeitswissenschaft</td>
</tr>
<tr>
<td>Simulation und Machine Learning im</td>
<td>Junge</td>
<td>132024</td>
<td>B/M</td>
<td>6</td>
<td>SoSe</td>
<td>nein</td>
<td>Produktionstechnik und Arbeitswissenschaft</td>
</tr>
<tr>
<td>Energiemanagement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulationsgestützte Steuerung vernetzter</td>
<td>Hesselbach/Wagner/Goy</td>
<td>132014</td>
<td>B/M</td>
<td>6</td>
<td>WiSe</td>
<td>nein</td>
<td>Produktionstechnik und Arbeitswissenschaft</td>
</tr>
<tr>
<td>Systeme – Vom Simulationsmodell zur SPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solarthermie und Thermische Messtechnik</td>
<td>Vajen/Jordan</td>
<td>143007+143014</td>
<td>B</td>
<td>6</td>
<td>SoSe</td>
<td>nein</td>
<td>Produktionstechnik und Arbeitswissenschaft</td>
</tr>
<tr>
<td>Werkzeugmaschinen der Zerspanung</td>
<td>Böhm/Hatzky</td>
<td>131017</td>
<td>B</td>
<td>3</td>
<td>WiSe</td>
<td>nein</td>
<td>Produktionstechnik und Arbeitswissenschaft</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>Modulverantwortlicher/Dozentin</td>
<td>HIS Prüfungs-Nr.</td>
<td>Bachelor/Master</td>
<td>Credits</td>
<td>Semester</td>
<td>Basisveranstaltung</td>
<td>Umfang</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>---------</td>
<td>----------</td>
<td>--------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Faserverbundwerkstoffe und deren Verarbeitungsverfahren</td>
<td>Feldmann</td>
<td>153010</td>
<td>B/M</td>
<td>3</td>
<td>WiSe</td>
<td>nein</td>
<td>2V</td>
</tr>
<tr>
<td>Festigkeit und Versagen von Konstruktionswerkstoffen</td>
<td>Niendorf</td>
<td>151002</td>
<td>B/M</td>
<td>6</td>
<td>SoSe</td>
<td>ja</td>
<td>3V/1Ü</td>
</tr>
<tr>
<td>Formgedächtniswerkstoffe</td>
<td>Niendorf/Kroß</td>
<td>151020</td>
<td>B/M</td>
<td>3</td>
<td>WiSe</td>
<td>nein</td>
<td>2V</td>
</tr>
<tr>
<td>Formula Student Competition</td>
<td>Hesselbach/Hetzler/Wallenta</td>
<td>191040</td>
<td>B/M</td>
<td>6</td>
<td>SoSe/WiSe</td>
<td>nein</td>
<td>1–6PrM</td>
</tr>
<tr>
<td>Gefüge und Eigenschaften metallischer Werkstoffe</td>
<td>Niendorf</td>
<td>151001</td>
<td>B</td>
<td>6</td>
<td>WiSe</td>
<td>ja</td>
<td>3V/1Ü</td>
</tr>
<tr>
<td>Getriebetechnik</td>
<td>Fister</td>
<td>114011</td>
<td>B/M</td>
<td>6</td>
<td>WiSe</td>
<td>ja</td>
<td>2V/2Ü</td>
</tr>
<tr>
<td>Gießereitechnik I: Automobil und Fahrzeugguss (Gussleichtbau)</td>
<td>Fehlbier</td>
<td>135006</td>
<td>B/M</td>
<td>6</td>
<td>WiSe</td>
<td>ja</td>
<td>4V</td>
</tr>
<tr>
<td>Gießereitechnik II: Maschinen- und Anlagenguss</td>
<td>Fehlbier</td>
<td>135009</td>
<td>B/M</td>
<td>6</td>
<td>SoSe</td>
<td>ja</td>
<td>4V</td>
</tr>
<tr>
<td>Grundlagen Antriebsaggregate im Kraftfahrzeug (alt: Grundlagen Verbrennungsmotoren)</td>
<td>Fister/Spieker</td>
<td>114017</td>
<td>B/M</td>
<td>6</td>
<td>SoSe</td>
<td>nein</td>
<td>2V/2Ü</td>
</tr>
<tr>
<td>Grundlagen und numerische Anwendungen der Bruchmechanik</td>
<td>Ricoeur</td>
<td>121016</td>
<td>B/M</td>
<td>6</td>
<td>SoSe</td>
<td>nein</td>
<td>3V/1P</td>
</tr>
<tr>
<td>Gussgerechtes Konstruieren u. virtuelle Produkt- und Prozessentwicklung</td>
<td>Fehlbier/Nölke</td>
<td>135007</td>
<td>B</td>
<td>6</td>
<td>SoSe/WiSe</td>
<td>nein</td>
<td>2V/2Ü</td>
</tr>
<tr>
<td>Modulbeschreibung</td>
<td>Dozenten</td>
<td>Semester</td>
<td>Kreditpunkte</td>
<td>Dauer</td>
<td>Vorlesungsfreie Zeit</td>
<td>Veranstaltungsform</td>
<td>Seminare/Praktika</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>----------</td>
<td>--------------</td>
<td>-------</td>
<td>----------------------</td>
<td>--------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Hochtemperaturwerkstoffe (nicht in Kombination mit Materialien unter komplexen Belastungsbedingungen)</td>
<td>Niendorf</td>
<td>151023</td>
<td>3</td>
<td>SoSe</td>
<td>nein</td>
<td>2V</td>
<td>Werkstoffe und Konstruktion</td>
</tr>
<tr>
<td>Klebetechnische Fertigungsverfahren inkl. Studienleistung</td>
<td>Böhm</td>
<td>131018</td>
<td>6</td>
<td>WiSe</td>
<td>nein</td>
<td>2V/2Ü</td>
<td>Werkstoffe und Konstruktion</td>
</tr>
<tr>
<td>Kontinuumsmechanik</td>
<td>Ricoeur</td>
<td>121009</td>
<td>6</td>
<td>WiSe</td>
<td>nein</td>
<td>3V/1Ü</td>
<td>Werkstoffe und Konstruktion</td>
</tr>
<tr>
<td>Kunststoffprüfung</td>
<td>Heim/ Feldmann</td>
<td>152014</td>
<td>3</td>
<td>SoSe</td>
<td>nein</td>
<td>2V</td>
<td>Werkstoffe und Konstruktion</td>
</tr>
<tr>
<td>Kunststoffverarbeitungsprozesse 1 (Basis mit Werkstoffkunde der Kunststoffe 1)</td>
<td>Heim</td>
<td>152004</td>
<td>3</td>
<td>WiSe</td>
<td>ja</td>
<td>2V</td>
<td>Werkstoffe und Konstruktion</td>
</tr>
<tr>
<td>Materialermüdung und Randschichteigenschaften (nicht in Kombination mit Materialien unter komplexen Belastungsbedingungen)</td>
<td>Niendorf</td>
<td>151022</td>
<td>3</td>
<td>SoSe</td>
<td>nein</td>
<td>2V</td>
<td>Werkstoffe und Konstruktion</td>
</tr>
<tr>
<td>Materialien unter komplexen Belastungsbedingungen (nicht möglich in Kombination mit Hochtemperaturwerkstoffe und Materialermüdung und Randschichteigenschaften)</td>
<td>Niendorf</td>
<td>151008</td>
<td>6</td>
<td>SoSe</td>
<td>ja</td>
<td>4V</td>
<td>Werkstoffe und Konstruktion</td>
</tr>
<tr>
<td>Moderne Stahlwerkstoffe</td>
<td>Niendorf/Lambers/Holzweißig</td>
<td>151021</td>
<td>3</td>
<td>SoSe</td>
<td>nein</td>
<td>2V</td>
<td>Werkstoffe und Konstruktion</td>
</tr>
<tr>
<td>Modernes Druckgießen im Kontext von Industrie 4.0, Smart Technologies und praktischer Anwendung</td>
<td>Fehlbier/ Erhard</td>
<td>135013</td>
<td>3</td>
<td>SoSe</td>
<td>nein</td>
<td>1V/1Ü</td>
<td>Werkstoffe und Konstruktion</td>
</tr>
<tr>
<td>Praktikum FIRST</td>
<td>Rienäcker</td>
<td>111020</td>
<td>3</td>
<td>vorlesungsfrei Zeit nach SoSe</td>
<td>nein</td>
<td>2P/ Block</td>
<td>Werkstoffe und Konstruktion</td>
</tr>
<tr>
<td>Modulhandbuch Bachelor of Science Maschinenbau</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>**Praktikum Gießereitechnik I: Automobil- und</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fahrzeugguss (Gussleichtbau)**</td>
<td>Fehlbier</td>
<td>135005</td>
<td>B/M</td>
<td>3</td>
<td>WiSe</td>
<td>nein</td>
<td>2P/ Block</td>
</tr>
<tr>
<td>**Praktikum Gießereitechnik II: Maschinen- und</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anlagenguss**</td>
<td>Fehlbier</td>
<td>135010</td>
<td>B/M</td>
<td>3</td>
<td>SoSe</td>
<td>nein</td>
<td>2P</td>
</tr>
<tr>
<td>Praktikum Numerische Simulation gießtechno-logischer Prozesse für Leichtbauanwendungen</td>
<td>Fehlbier/ Nölke</td>
<td>135008</td>
<td>M</td>
<td>3</td>
<td>SoSe/WiSe</td>
<td>nein</td>
<td>2P</td>
</tr>
<tr>
<td>Schweißtechnik 1</td>
<td>Niendorf/ Baunack</td>
<td>151004</td>
<td>B/M</td>
<td>3</td>
<td>SoSe</td>
<td>nein</td>
<td>2V</td>
</tr>
<tr>
<td>Schweißtechnik 2</td>
<td>Niendorf/ Baunack</td>
<td>151005</td>
<td>B/M</td>
<td>3</td>
<td>WiSe</td>
<td>nein</td>
<td>2V</td>
</tr>
<tr>
<td>Sensorik für die Werkstoffwissenschaft</td>
<td>Möller</td>
<td>152016</td>
<td>B/M</td>
<td>6</td>
<td>SoSe</td>
<td>nein</td>
<td>4V</td>
</tr>
<tr>
<td>Strukturmechanik – Theorie und Berechnung</td>
<td>Matzenmiller</td>
<td>123005</td>
<td>6</td>
<td>WiSe (alle 2 Jahre)</td>
<td>ja</td>
<td>3V/1Ü</td>
<td>Werkstoffe und Konstruktion</td>
</tr>
<tr>
<td>Systemzuverlässigkeit im Maschinenbau</td>
<td>Möller</td>
<td>155010</td>
<td>B/M</td>
<td>6</td>
<td>SoSe</td>
<td>nein</td>
<td>4V</td>
</tr>
<tr>
<td>Theoretische und experimentelle Betriebsfestigkeit</td>
<td>Oxe</td>
<td>121018</td>
<td>B/M</td>
<td>6</td>
<td>WiSe</td>
<td>nein</td>
<td>2V/2Ü</td>
</tr>
<tr>
<td>Tribologie</td>
<td>Rienäcker</td>
<td>111009</td>
<td>B/M</td>
<td>6</td>
<td>SoSe</td>
<td>nein</td>
<td>4V</td>
</tr>
<tr>
<td>Tribologie Praktikum</td>
<td>Rienäcker/ Umbach</td>
<td>111006</td>
<td>B/M</td>
<td>3</td>
<td>WiSe</td>
<td>nein</td>
<td>2P/ Block</td>
</tr>
<tr>
<td>Versuchsplanung und Zuverlässigkeit</td>
<td>Möller</td>
<td>154020</td>
<td>B/M</td>
<td>6</td>
<td>WiSe</td>
<td>ja</td>
<td>4V</td>
</tr>
<tr>
<td>Werkstoffanalytik mit Röntgenstrahlen</td>
<td>Niendorf/ Liehr</td>
<td>151003</td>
<td>B/M</td>
<td>3</td>
<td>WiSe</td>
<td>nein</td>
<td>2V</td>
</tr>
<tr>
<td>Werkstoffkunde der Kunststoffe – Praktikum</td>
<td>Heim</td>
<td>152012</td>
<td>B/M</td>
<td>1</td>
<td>WiSe</td>
<td>nein</td>
<td>1P</td>
</tr>
<tr>
<td>Werkstoffkunde der Kunststoffe 1 (Basis mit Kunststoffverarbeitungsprozesse 1)</td>
<td>Heim</td>
<td>152002</td>
<td>B/M</td>
<td>3</td>
<td>WiSe</td>
<td>ja</td>
<td>2V</td>
</tr>
<tr>
<td>Werkstoffkunde der Kunststoffe 2</td>
<td>Heim/ Zarges</td>
<td>152015</td>
<td>B/M</td>
<td>3</td>
<td>SoSe</td>
<td>nein</td>
<td>2V</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------</td>
<td>--------</td>
<td>-----</td>
<td>---</td>
<td>------</td>
<td>------</td>
<td>----</td>
</tr>
</tbody>
</table>

→ Fehler! Verweisquelle konnte nicht gefunden werden.
Übersicht über die Schlüsselkompetenzen

<table>
<thead>
<tr>
<th>Vorlesung</th>
<th>Modulverantwortlich/Dozentin</th>
<th>HIS Prüfungs-Nr.</th>
<th>Bachelor/Master</th>
<th>Credits</th>
<th>Semester</th>
<th>Umfang</th>
<th>Studienschwerpunkt</th>
<th>Schlüsselkompetenz</th>
<th>Arbeitswissenchaften B.Sc./MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeits- und Organisationspsychologie 1</td>
<td>Sträter</td>
<td>101107</td>
<td>B/M</td>
<td>3</td>
<td>SoSe</td>
<td>2 V</td>
<td></td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Arbeits- und Organisationspsychologie 2</td>
<td>Sträter</td>
<td>101108</td>
<td>B/M</td>
<td>3</td>
<td>WiSe</td>
<td>2 V</td>
<td></td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Betriebliches Gesundheitsmanagement</td>
<td>Sträter/Hillebrecht</td>
<td>101018</td>
<td>B/M</td>
<td>3</td>
<td>SoSe/WiSe</td>
<td>2 S/Block</td>
<td></td>
<td>ja</td>
<td></td>
</tr>
<tr>
<td>Betriebswirtschaftslehre BWL Ia: Unternehmensführung</td>
<td>Eberl (FB07)</td>
<td>101550</td>
<td>B</td>
<td>3</td>
<td>SoSe/WiSe</td>
<td>2 V</td>
<td></td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>Betriebswirtschaftslehre BWL Ia: Investition, Finanzierung</td>
<td>Klein (FB07)</td>
<td>101530</td>
<td>B/M</td>
<td>3</td>
<td>SoSe/WiSe</td>
<td>2 V</td>
<td></td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>BUDDY-Pro gramm Bachelor</td>
<td>Studiendekan</td>
<td>195016</td>
<td>B</td>
<td>1–3</td>
<td>WiSe</td>
<td>2 PrM</td>
<td></td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>BUDDY-Pro gramm Master</td>
<td>Studiendekan</td>
<td>195018</td>
<td>M</td>
<td>1–3</td>
<td>WiSe</td>
<td>2 PrM</td>
<td></td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>Chinesisch UNIcert Basis, Teil 1 (Anfänger)</td>
<td>Intern. Studienzentrum (ISZ)</td>
<td>11001</td>
<td>B/M</td>
<td>4</td>
<td>SoSe/WiSe</td>
<td>4 S</td>
<td></td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>Chinesisch UNIcert Basis, Teil 2 (Anfänger mit Vorkenntnissen)</td>
<td>Intern. Studienzentrum (ISZ)</td>
<td>11002</td>
<td>B/M</td>
<td>4</td>
<td>SoSe/WiSe</td>
<td>4 S</td>
<td></td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>Chinesisch UNIcert Basis, Teil 3</td>
<td>Intern. Studienzentrum (ISZ)</td>
<td>11003</td>
<td>B/M</td>
<td>4</td>
<td>SoSe/WiSe</td>
<td></td>
<td></td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>Der Ingenieur als Führungskraft 1</td>
<td>Rieger</td>
<td>101011</td>
<td>B/M</td>
<td>3</td>
<td>SoSe</td>
<td>2 S/Block</td>
<td></td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>Der Ingenieur als Führungskraft 2</td>
<td>Rieger</td>
<td>101012</td>
<td>B/M</td>
<td>3</td>
<td>WiSe</td>
<td>2 S/Block</td>
<td></td>
<td>nein</td>
<td></td>
</tr>
<tr>
<td>Modulhandbuch Bachelor of Science Maschinenbau</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| Deutsch im Fachstudium nach DSH/TestDaF: Grammatik der Wissenschaftssprache (Kurs de41b) SS2020 Online Kurs: Grammatik und Schreiben (Kurs de0332) (Bedarf der Genehmigung durch den Studiendekan) | Intern. Studienzentrum (ISZ) | 12011 | B/M | 2 | SoSe/WiSe | 2 S | Schlüsselkompetenz | nein |
| Deutsch im Fachstudium nach DSH/TestDaF: Hausarbeiten schreiben (Kurs de41a)SS2020 Online Kurs: Lesen, zusammenfassen und Hausarbeiten schreiben (Kurs de0330)(Bedarf der Genehmigung durch den Studiendekan) | Intern. Studienzentrum (ISZ) | 12010 | B/M | 2 | SoSe/WiSe | 2 S | Schlüsselkompetenz | nein |
| Deutsch im Fachstudium nach DSH/TestDaF: Hochschulkommunikation (Diskutieren, Argumentieren, Sprechstundengespräche) (Kurs de42a) (Bedarf der Genehmigung durch den Studiendekan) | Intern. Studienzentrum (ISZ) | 12012 | B/M | 2 | SoSe/WiSe | 2 S | Schlüsselkompetenz | nein |
| Deutsch im Fachstudium nach DSH/TestDaF: Prüfungsgespräche und Präsentieren im akademischen Kontext (Kurs de42b) (Bedarf der Genehmigung durch den Studiendekan) | Intern. Studienzentrum (ISZ) | 12013 | B/M | 2 | SoSe/WiSe | 2 S | Schlüsselkompetenz | nein |
| Deutsch UNIcert IV, Teil A: Akademisches Schreiben. Hausarbeiten schreiben – Grammatik in der Wissenschaftssprache anwenden (Bedarf der Genehmigung durch den Studiendekan) | Intern. Studienzentrum (ISZ) | 12003 | B/M | 4 | SoSe/WiSe | 4 S | Schlüsselkompetenz | nein |
| Deutsch UNIcert IV, Teil B: Wissenschaftlich präsentieren und diskutieren (Bedarf der Genehmigung durch den Studiendekan) | Intern. Studienzentrum (ISZ) | 12004 | B/M | 4 | SoSe/WiSe | 4 S | Schlüsselkompetenz | nein |</p>
<table>
<thead>
<tr>
<th>Modul / Kurs / Pflichtmodul</th>
<th>Veranstalter</th>
<th>Veranstaltung</th>
<th>Semester</th>
<th>Schlüsselkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsche Fachkommunikation im Maschinenbau (I): Grundlagen für BA und MA</td>
<td>Intern. Studienzentrum (ISZ)</td>
<td>195101</td>
<td>B/M</td>
<td>2</td>
</tr>
<tr>
<td>Deutsche Fachkommunikation im Maschinenbau (II): Vertiefung für BA und MA</td>
<td>Intern. Studienzentrum (ISZ)</td>
<td>195102</td>
<td>B/M</td>
<td>2</td>
</tr>
<tr>
<td>Einführung in das wissenschaftliche Arbeiten mit dem Textsatzprogramm LaTeX</td>
<td>Wulfhorst</td>
<td>181011</td>
<td>B/M</td>
<td>3</td>
</tr>
<tr>
<td>Energiepolitik</td>
<td>Vajen / Brans / Pehnt</td>
<td>143011</td>
<td>M</td>
<td>2</td>
</tr>
<tr>
<td>Energiewirtschaft</td>
<td>Vajen / Samadi</td>
<td>143010</td>
<td>M</td>
<td>1</td>
</tr>
<tr>
<td>Englisch Advanced C1 (ehem. UNIcert IV, Teil 1 – Voraussetzung UNIcert III–Zertifikat)</td>
<td>Intern. Studienzentrum (ISZ)</td>
<td>13040</td>
<td>B/M</td>
<td>2</td>
</tr>
<tr>
<td>Englisch UNIcert I, Teil 4</td>
<td>Intern. Studienzentrum (ISZ)</td>
<td>13016</td>
<td>B/M</td>
<td>4</td>
</tr>
<tr>
<td>Englisch UNIcert II, Teil 1, Schwerpunkt: Technisches Englisch</td>
<td>Intern. Studienzentrum (ISZ)</td>
<td>13020</td>
<td>B/M</td>
<td>4</td>
</tr>
<tr>
<td>Englisch UNIcert III, Teil 1, Schwerpunkt: Technisches Englisch</td>
<td>Intern. Studienzentrum (ISZ)</td>
<td>13030</td>
<td>B/M</td>
<td>4</td>
</tr>
<tr>
<td>Englisch UNIcert III, Teil 3, Fokus: Academic Writing</td>
<td>Ebest</td>
<td>13019</td>
<td>B/M</td>
<td>4</td>
</tr>
<tr>
<td>Fabrikbetriebslehre (Pflichtmodul Bachelor Maschinenbau) (Pflichtmodul Bachelor Mechatronik (PO 2011)) (normal belegbar B/M Mechatronik (PO 2016))</td>
<td>Hesselbach</td>
<td>132001</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>Modul / Veranstaltung</td>
<td>Dozent / Dozenten</td>
<td>Vorlesungs- / Übungseinheit</td>
<td>semester</td>
<td>Praktikums- / Prüfungseinheiten</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>----------------------------</td>
<td>----------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Formula Student Competition</td>
<td>Hesselbach/ Hetzler/ Wallenta</td>
<td>191040</td>
<td>B/M</td>
<td>6 (max. 8 zus. mit WP)</td>
</tr>
<tr>
<td>Französisch Mittelstufe, B1/B2</td>
<td>Intern. Studienzentrum (ISZ)</td>
<td>14101/ 14102</td>
<td>B/M</td>
<td>2 SoSe/WiSe</td>
</tr>
<tr>
<td>Französisch UNIcert I, 1. Teil</td>
<td>Intern. Studienzentrum (ISZ)</td>
<td>14002</td>
<td>B/M</td>
<td>4 SoSe/WiSe</td>
</tr>
<tr>
<td>Französisch UNIcert I, 2. Teil</td>
<td>Intern. Studienzentrum (ISZ)</td>
<td>14003</td>
<td>B/M</td>
<td>4 SoSe/WiSe</td>
</tr>
<tr>
<td>Französisch UNIcert I, 3. Teil</td>
<td>Intern. Studienzentrum (ISZ)</td>
<td>14004</td>
<td>B/M</td>
<td>4 SoSe/WiSe</td>
</tr>
<tr>
<td>Grundlagen des gewerblichen Rechtsschutzes (Patente – Marken – Design)</td>
<td>Krömker/ Walther/Hinz</td>
<td>195110</td>
<td>B/M</td>
<td>2 WiSe</td>
</tr>
<tr>
<td>Hochschulbildung, Energie, Umwelt und Nachhaltigkeit in Lateinamerika und der Karibik</td>
<td>Prof. Gomez</td>
<td>Ausfall im SS2021</td>
<td>B/M</td>
<td>SoSe/WiSe</td>
</tr>
<tr>
<td>Ideenwerkstatt MACHEN!</td>
<td>Martin/ von Garssen</td>
<td>10301–10303</td>
<td>B/M</td>
<td>3 – 4 SoSe/WiSe</td>
</tr>
<tr>
<td>Intercultural Communication China/Germany</td>
<td>Intern. Studienzentrum (ISZ)</td>
<td>11012</td>
<td>B/M</td>
<td>2 im Wechsel mit Angebot in deutsch</td>
</tr>
<tr>
<td>Modul</td>
<td>Leitung/Verantwortung</td>
<td>Semester</td>
<td>Kredit</td>
<td>Anzahl</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Interkulturelle Kommunikation China/Deutschland</td>
<td>Intern. Studienzentrum (ISZ)</td>
<td>11011</td>
<td>B/M</td>
<td>1</td>
</tr>
<tr>
<td>Interkulturelle Kompetenzen</td>
<td>Intern. Studienzentrum (ISZ)</td>
<td>30001</td>
<td>B/M</td>
<td>2–4</td>
</tr>
<tr>
<td>Italienisch Grundstufe I, A1</td>
<td>Intern. Studienzentrum (ISZ)</td>
<td>15001</td>
<td>B/M</td>
<td>4</td>
</tr>
<tr>
<td>Italienisch Grundstufe I, A2</td>
<td>Intern. Studienzentrum (ISZ)</td>
<td>15002</td>
<td>B/M</td>
<td>4</td>
</tr>
<tr>
<td>Leitung von Tutorien Bachelor</td>
<td>Studiendekan</td>
<td>195011</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>Leitung von Tutorien Master</td>
<td>Studiendekan</td>
<td>195011/195013</td>
<td>M</td>
<td>2</td>
</tr>
<tr>
<td>MATLAB – Grundlagen und Anwendungen</td>
<td>Kroll/Dürrbaum</td>
<td>112005</td>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td>Mensch-Maschine-Systeme 1 (mit Seminarteil)</td>
<td>Schmidt</td>
<td>102017</td>
<td>B/M (nicht ME)</td>
<td>6</td>
</tr>
<tr>
<td>Mensch-Maschine-Systeme 1 (Pflichtmodul Bachelor Mechatronik)</td>
<td>Schmidt</td>
<td>102008</td>
<td>B/M</td>
<td>3</td>
</tr>
<tr>
<td>Mitarbeit im Schülerforschungszentrum Nordhessen SFN (Organisation und Anmeldung beim Studiendekan)</td>
<td>Studiendekan</td>
<td>195017</td>
<td>B/M</td>
<td>2–4</td>
</tr>
<tr>
<td>Mitarbeit in studentischen Gremien (mind. zwei Semester, studiengangsübergreifend möglich)</td>
<td>Studiendekan</td>
<td>195010/195014</td>
<td>B/M</td>
<td>1–4</td>
</tr>
<tr>
<td>Personalführung</td>
<td>Sträter</td>
<td>101023</td>
<td>M</td>
<td>3</td>
</tr>
<tr>
<td>Modulhandbuch Bachelor of Science Maschinenbau</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Präsentation und Moderation (I)</td>
<td>Sträter</td>
<td>101013</td>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td>Portugiesisch Grundstufe I, A1</td>
<td>Intern. Studienzentrum (ISZ)</td>
<td>19001</td>
<td>B/M</td>
<td>2</td>
</tr>
<tr>
<td>Projektmanagement 1 – Grundlagen des Projektmanagements Teil 1 (mit Übung)</td>
<td>Spang</td>
<td>103011</td>
<td>B/M</td>
<td>3</td>
</tr>
<tr>
<td>Projektmanagement 2 – Grundlagen des Projektmanagements Teil 2 (mit Übung)</td>
<td>Spang</td>
<td>103012</td>
<td>B/M</td>
<td>3</td>
</tr>
<tr>
<td>Projektmanagement 3 – Vertiefung (I)</td>
<td>Spang</td>
<td>103003</td>
<td>B/M</td>
<td>6</td>
</tr>
<tr>
<td>Projektmanagement 6 – Internationales Projektmanagement</td>
<td>Spang</td>
<td>103006</td>
<td>M (nicht ME)</td>
<td>3</td>
</tr>
<tr>
<td>Projektmanagement 9 – Möglichkeiten und Grenzen von Projektmanagement-Software</td>
<td>Spang</td>
<td>103010</td>
<td>B/M</td>
<td>3</td>
</tr>
<tr>
<td>Prozessmanagement</td>
<td>Refflinghaus</td>
<td>104013</td>
<td>B/M</td>
<td>3</td>
</tr>
<tr>
<td>Prozessmanagement Übung (I)</td>
<td>Refflinghaus</td>
<td>104014</td>
<td>B/M</td>
<td>3</td>
</tr>
<tr>
<td>Qualitätsmanagement I – Grundlagen und Strategien</td>
<td>Refflinghaus</td>
<td>104031</td>
<td>B/M</td>
<td>3</td>
</tr>
<tr>
<td>Qualitätsmanagement I – Übung</td>
<td>Refflinghaus / Esser</td>
<td>104009</td>
<td>B/M</td>
<td>3</td>
</tr>
<tr>
<td>Qualitätsmanagement II – Konzepte und Methoden</td>
<td>Refflinghaus</td>
<td>104032</td>
<td>B/M</td>
<td>3</td>
</tr>
<tr>
<td>Qualitätsmanagement II – Übung</td>
<td>Refflinghaus / Esser</td>
<td>104023</td>
<td>B/M</td>
<td>3</td>
</tr>
<tr>
<td>Qualitätsmanagement Projektseminar – Anwendung des Qualitätsmanagements</td>
<td>Refflinghaus</td>
<td>104022</td>
<td>B/M</td>
<td>3</td>
</tr>
<tr>
<td>Qualitätsmanagement Projektseminar – Grundlagen des Qualitätsmanagements</td>
<td>Refflinghaus</td>
<td>104021</td>
<td>B/M</td>
<td>3</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Schwedisch Grundstufe I, A1</td>
<td>Intern. Studienzentrum (ISZ)</td>
<td>21001</td>
<td>B/M</td>
<td>4</td>
</tr>
<tr>
<td>Spanisch UNIcert I, 3. Teil</td>
<td>Intern. Studienzentrum (ISZ)</td>
<td>22004</td>
<td>B/M</td>
<td>4</td>
</tr>
<tr>
<td>Spanisch UNIcert I, Teil 1</td>
<td>Intern. Studienzentrum (ISZ)</td>
<td>22002</td>
<td>B/M</td>
<td>4</td>
</tr>
<tr>
<td>Spanisch UNIcert I, Teil 2</td>
<td>Intern. Studienzentrum (ISZ)</td>
<td>22003</td>
<td>B/M</td>
<td>4</td>
</tr>
<tr>
<td>Spanisch UNIcert II, 1. Teil</td>
<td>Intern. Studienzentrum (ISZ)</td>
<td>22010</td>
<td>B/M</td>
<td>4</td>
</tr>
<tr>
<td>Spanisch UNIcert II, 2. Teil</td>
<td>Intern. Studienzentrum (ISZ)</td>
<td>22011</td>
<td>B/M</td>
<td>2</td>
</tr>
<tr>
<td>Speed Reading</td>
<td>Potzner</td>
<td>710021–23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studienlotsen</td>
<td>N.N.</td>
<td>195015</td>
<td>B/M</td>
<td>2</td>
</tr>
<tr>
<td>Team- und Konfliktmanagement</td>
<td>Sträter</td>
<td>101026</td>
<td>B/M</td>
<td>3</td>
</tr>
<tr>
<td>Teamarbeit</td>
<td>Geihs</td>
<td>181013</td>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td>Umweltwissenschaftliche Grundlagen für Ingenieure</td>
<td>Schaldach (CESR/FB 16)</td>
<td>123002</td>
<td>B/M</td>
<td>3</td>
</tr>
<tr>
<td>Unternehmensgründung – ClimaTec!</td>
<td>Hesselbach</td>
<td>132019 (3CP) 132020 (6CP)</td>
<td>B/M</td>
<td>3–6</td>
</tr>
<tr>
<td>Modulbeschreibung</td>
<td>Vorbereitung/Ort</td>
<td>Anzahl</td>
<td>Semester</td>
<td>Ü/P</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
<td>--------</td>
<td>----------</td>
<td>-----</td>
</tr>
<tr>
<td>Vektoranalysis</td>
<td>Wallenta</td>
<td>121102</td>
<td>B/M</td>
<td>4</td>
</tr>
<tr>
<td>Vom Hörsaal in die Berufspraxis: Wissenschaftskommunikation für Ingenieur*innen</td>
<td>Koch</td>
<td>122001</td>
<td>B/M</td>
<td>3</td>
</tr>
<tr>
<td>Wissenschaftliches Schreiben und Präsentieren (Pflichtmodul Bachelor Mechatronik (PO 2016)) (normal belegbar B/M Mechatronik (PO 2011) und B/M Maschinenbau)</td>
<td>Hetzler/Koch</td>
<td>195201</td>
<td>B/M</td>
<td>2</td>
</tr>
<tr>
<td>Workshop zur Leitung von Tutorien</td>
<td>Studiendekan</td>
<td>195012</td>
<td>B/M</td>
<td>1 o. 3</td>
</tr>
</tbody>
</table>

Hinweis zum Angebot des Internationalen Studienzentrum (ISZ) / Sprachenzentrum: Das Angebot des ISZ ist umfassend und vielseitig, was durch den FB 15 nachdrücklich unterstützt wird.

Bitte informieren Sie sich frühzeitig, ob und in welchem Umfang Ihr geplantes und in der Liste aufgeführte Modul tatsächlich angeboten wird!
Pflichtmodule Grundstudienphase

CAD

CAD – Computer Aided Design

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>CAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>CAD</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
</tbody>
</table>
| Lernergebnisse, Kompetenzen (Qualifikationsziele) | Die Studierenden beherrschen die Grundlagen technischen Zeichnens unter Berücksichtigung von Normen. Handhabung eines vom Dozenten vorgegebenen CAD-Programms zur rechnergestützten Darstellung von Bauteilen in 3D/2D.
Sie sind weiter in der Lage, Bauteile funktions- und werkstoffgerecht zu gestalten. |
| Lehrveranstaltungsarten | VLM 2 SWS |
| HÜ 2 SWS |
| Ü 2 SWS |
| Lehrinhalte | Die Lehrveranstaltung beinhaltet:
- Linienarten und Normschriften,
- funktions-, fertigung- und prüfgerechte Bemaßung,
- Darstellung von Normteilen,
- Mehrseitenansichten und Drei-Tafel-Projektion,
- Toleranzen und Passungen, Oberflächen, Werkstückkanten,
- Schnitte, Einzelheiten und Ausbrüche,
- Teilenummern, Stücklisten und Zeichnungsnummern,
- rechnergestützte CAD-Konstruktion |
<p>| Titel der Lehrveranstaltungen | CAD |
| (Lehr-/Lernformen) | Vorlesung, Hörsaalübungen, Übungen, rechnerunterstützte Tutorien in Kleingruppen (im CEC – Computational Engineering Center), e-learning: Lernvideos (Portal) und eAssessments, Gruppendiskussionen |
| Lehr- und Lernmethoden (ZEVA) | B. Sc. Maschinenbau |
| B. Sc. Mechatronik |
| B. Sc. Wirtschaftsingenieurwesen |
| Verwendbarkeit des Moduls | Jedes Wintersemester |
| Dauer des Angebotes des Moduls | Ein Semester |
| Sprache | Deutsch |
| Empfohlene (inhaltsliche) Voraussetzungen für die Teilnahme am Modul | - |
| Voraussetzungen für die Teilnahme am Modul | - |
| Studentischer Arbeitsaufwand | 2 SWS VL (30 Std.) |
| 2 SWS HÜ (30 Std.) |
| 2 SWS Ü (30 Std.) |
| Selbststudium 90 Std. |
| Studienleistungen | Übungstest/ Semesteraufgabe |</p>
<table>
<thead>
<tr>
<th>Voraussetzung für Zulassung zur Prüfungsleistung</th>
<th>Während des Semesters werden Leistungsüberprüfungen durchgeführt, diese müssen für die erstmalige Teilnahme an der Klausur bestanden werden.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 120 Min. Bei entsprechender Ankündigung durch den Dozenten zu Beginn der Lehrveranstaltung können Teilleistungen der abschließenden Prüfung in vorgezogenen lehrveranstaltungsbegleitenden Leistungen erbracht werden.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits, davon 1 Credit integrierte Schlüsselkompetenz</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Adrian Rienäcker</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Dr.–Ing. Sascha Umbach</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Vorlesungs- und Übungsfolien im PDF-Format, Lehrveranstaltungsplattform Moodle, Online-Übungen (e-Assessments, optional), Lernvideos (Portal)</td>
</tr>
</tbody>
</table>
Chemie für Ingenieure

Nummer/Code
Chemie für Ingenieure

Modulname
Chemie für Ingenieure

Art des Moduls
Pflichtmodul

Lernergebnisse, Kompetenzen (Qualifikationsziele)
Durch die Veranstaltung „Chemie für Ingenieure“ verfügen die Studierenden über ein fundiertes Basiswissen der Chemie. Ausgewählte, für Ingenieure der Fachrichtung Maschinenbau relevante Themen/Schwerpunkte werden vertieft. Durch die Erarbeitung chemischer Konzepte und Modellvorstellungen verstehen die Studierenden chemische Reaktionen und Stoffeigenschaften, um damit die Grundlage für Materialwissenschaften zu bilden.

Lehrveranstaltungsarten
VLmP 2 SWS

Lehrinhalte
- Chemische Reaktionen: Redoxreaktionen, Säure–Base Reaktionen, pH-Wert, Massenwirkungsgesetz, starke und schwache Säuren/ Basen und Puffer.
- Elektrochemie: Elektrochemische Spannungsreihe, Stromerzeugung (Batterie und Akkumulator), Technische Einsatzgebiete der Elektrolyse, Korrosion und aktiver/passiver Korrosionsschutz.
- Organische Chemie: Grundlagen, Aufbau der Kohlenwasserstoffe, Funktionelle Gruppen, Kunststoffe und Schmiermittel.

Titel der Lehrveranstaltungen
Chemie für Ingenieure

(Lehr–/ Lernformen) Lehr- und Lernmethoden (ZEVA)
- Vorlesung, Hörsaalübungen, e-Learning

Verwendbarkeit des Moduls
B. Sc. Maschinenbau

Dauer des Angebotes des Moduls
Ein Semester

Häufigkeit des Angebotes des Moduls
Jedes Wintersemester

Sprache
deutsch

Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul
-

Voraussetzungen für die Teilnahme am Modul
-

Studentischer Arbeitsaufwand
2 SWS VL (30 Std.)
Selbststudium 30 Std.
<table>
<thead>
<tr>
<th>Studienleistungen</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>–</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 60–120 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>2 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 10</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Rüdiger Faust</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Rüdiger Faust Dr. Sven Fürmeier</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Multimedia (Tafel, Beamer)</td>
</tr>
</tbody>
</table>
• Brown, LeMay, Bursten: Chemie, 10. Auflage, Pearson-Verlag, 2007
• Kickelbick: Chemie für Ingenieure, 1. Auflage, Pearson-Verlag, 2008 |
Einführung in die Projektarbeit

Introduction to project work

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Einführung in die Projektarbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td></td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Die Studierenden erlernen die Bearbeitung von Projekten in Kleingruppen. Sie erwerben dabei Fähigkeiten im Bereich der Projektkoordination und -konzeption, der Gruppenarbeit sowie der Präsentation von Ergebnissen.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>PS 2 SWS</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Einführung in die Projektarbeit</td>
</tr>
<tr>
<td>(Lehr-/Lernformen)</td>
<td>Gruppenarbeit, Projektarbeit, Präsentationen</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS PS (30 Std.) Selbststudium 30 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Studienleistungen werden vom jeweiligen Dozenten zu Beginn der Lehrveranstaltung festgelegt und sind unbenotet. Anwesenheitspflicht</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>–</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>–</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits, davon 2 Credits Schlüsselkompetenz</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Die Dozenten des Fachbereichs Maschinenbau</td>
</tr>
<tr>
<td>Medienformen</td>
<td>• PowerPoint-Präsentationen</td>
</tr>
<tr>
<td></td>
<td>• Laborarbeit</td>
</tr>
<tr>
<td>Literatur</td>
<td>-</td>
</tr>
</tbody>
</table>
Elektrotechnik und Elektronik für Maschinenbauer
- Elektrotechnik und Elektronik 1 (ETE 1)
- Elektrotechnik und Elektronik 2 (ETE 2)

Electrical Engineering and Electronics for Mechanical Engineers

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Elektrotechnik und Elektronik für Maschinenbauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Elektrotechnik und Elektronik für Maschinenbauer</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>Elektrotechnik und Elektronik 1: VLmP 2 SWS Elektrotechnik und Elektronik 2: VLmP 2SWS HÜ 1 SWS</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Elektrotechnik und Elektronik 1 (2 Credits) Elektrotechnik und Elektronik 2 (4 Credits)</td>
</tr>
<tr>
<td>(Lehr-/ Lernformen)</td>
<td>Vorlesung und Hörsaalübungen</td>
</tr>
<tr>
<td>Lehr- und Lernmethoden (ZEVA)</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Zwei Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltsliche) Voraussetzungen für die Teilnahme am Modul</td>
<td></td>
</tr>
<tr>
<td>Elektrotechnik und Elektronik 2:</td>
<td>ETE 1, Inhalte und mathematische Voraussetzungen wie unter ETE 1 angegeben.</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td></td>
</tr>
<tr>
<td>Elektrotechnik und Elektronik 2:</td>
<td>ETE 1, Inhalte und mathematische Voraussetzungen wie unter ETE 1 angegeben.</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td></td>
</tr>
<tr>
<td>Elektrotechnik und Elektronik 1:</td>
<td>2 SWS VL (30 Std.) Selbststudium 30 Std.</td>
</tr>
<tr>
<td>Elektrotechnik und Elektronik 2:</td>
<td>2 SWS VL (30 Std.) 1 SWS HÜ (15 Std.) Selbststudium 75 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Elektrotechnik und Elektronik 1: Klausur 60–180 Min. (unbenotet)</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Bestandene Studienleistung</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Modulabschlussklausur 90–180 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 16</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Marcus Ziegler</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>M.Sc. Jan Winter</td>
</tr>
<tr>
<td>Medienformen</td>
<td></td>
</tr>
<tr>
<td>Elektrotechnik und Elektronik 1:</td>
<td>Beamer (Vorlesungspräsentation), Tafel (Herleitungen, Erläuterungen)</td>
</tr>
<tr>
<td>Elektrotechnik und Elektronik 2:</td>
<td>Beamer (Vorlesungspräsentation), Tafel (Herleitungen, Erläuterungen), Papier (Übungen)</td>
</tr>
<tr>
<td>Literatur</td>
<td>Elektrotechnik und Elektronik 1:</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td></td>
<td>H. Linse; R. Fischer, Elektrotechnik für Maschinenbauer, Teubner Verlag, Stuttgart.</td>
</tr>
<tr>
<td></td>
<td>Hering, Gutekunst, Martin, Elektrotechnik für Maschinenbauer, VDI-Buch, 1999</td>
</tr>
<tr>
<td>Elektrotechnik und Elektronik 2:</td>
<td></td>
</tr>
</tbody>
</table>
Fertigungstechnik 1

Manufacturing Engineering

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Fertigungstechnik 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Fertigungstechnik 1</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Die Studierenden verfügen über umfassende Kenntnisse der spanenden und abtragenden Fertigungstechnik. Sie verstehen das interdisziplinäre Zusammenwirken bei der Bearbeitung von Bauteilen und kennen die Problemfelder und deren Lösungsansätze zur Herstellung von Bauteilen aus verschiedenen Werkstoffen mit definierten Formen, Größen, Toleranzen, Stückzahlen und Oberflächen.

Die Studierenden haben sich Kompetenzen bzgl. der Integration von Kenntnissen, aus dem Bereich Ingenieurwissenschaften Konstruktion, Werkstoffe, Werkzeugmaschinen und Werkzeuge in Hinblick z. B. auf nachfolgende Prozesse wie Montage und Demontage, angeeignet.

<table>
<thead>
<tr>
<th>Lehrveranstaltungsarten</th>
<th>VLmP 2 SWS</th>
</tr>
</thead>
</table>

Lehrinhalte

<table>
<thead>
<tr>
<th>Titel der Lehrveranstaltungen</th>
<th>Fertigungstechnik 1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>(Lehr-/Lernformen) Lehr- und Lernmethoden (ZEVA)</th>
<th>Vorlesung</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
<th>B. Sc. Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B. Sc. Wirtschaftsingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer des Angebotes des Moduls</th>
<th>Ein Semester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Häufigkeit des Angebotes des Moduls</th>
<th>Jedes Sommersemester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sprache</th>
<th>deutsch</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</th>
<th>-</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen für die Teilnahme am Modul</th>
<th>-</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Studentischer Arbeitsaufwand</th>
<th>2 SWS VL (30Std.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Selbststudium 60 Std.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studienleistungen</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>–</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 90 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Stefan Böhm</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Stefan Böhm</td>
</tr>
</tbody>
</table>
| **Medienformen** | • Vorlesung
• Ausgearbeitetes Skript |
<p>| Literatur | Paucksch, Zerspantechnik |</p>
<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Fertigungstechnik 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Fertigungstechnik 2</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Lehrveranstaltungsarten

VLmP 2 SWS

Lehrinhalte

Im zweiten Teil werden die Prozesse und Produkte der Umformtechnik sowie die Grundlagen der plastischen Formgebung vorgestellt. Es werden die verschiedenen Verfahren in der Blech- und der Massivumformung sowie Sonderverfahren behandelt. Flankierend wird ein Einblick in die Prozesssimulation sowie in besondere Aspekte bei Betrachtung der gesamten Prozesskette Umformung gegeben.

Titel der Lehrveranstaltungen

Fertigungstechnik 2

(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)

Vorlesung, Präsentationen, Fallstudien

Verwendbarkeit des Moduls

B. Sc. Maschinenbau

B. Sc. Wirtschaftsingenieurwesen

Dauer des Angebotes des Moduls

Ein Semester

Häufigkeit des Angebotes des Moduls

Jedes Wintersemester

Sprache

deutsch

Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul

-

Voraussetzungen für die Teilnahme am Modul

-

Studentischer Arbeitsaufwand

2 SWS VL (30Std.)
Selbststudium 60 Std.
<table>
<thead>
<tr>
<th>Studienleistungen</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>–</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 90 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
</tbody>
</table>
| **Modulverantwortliche/r** | Prof. Kurt Steinhoff
Prof. Martin Fehlbier |
| **Lehrende des Moduls** | Prof. Kurt Steinhoff
Prof. Martin Fehlbier
Prof. Hans-Helmut Becker |
| **Medienformen** | • PowerPoint-Präsentation (Computer und Beamer)
• Anschauungsmaterial
• Exkursion |
| **Literatur** | Gießen:
• “Schmelze, Erstarrung, Grenzflächen – Einführung in die Physik und Technologie flüssiger und fester Metalle”, Sahm, Egry, Volkmann, Vieweg Verlag;
• “Theorie und Praxis des Druckgusses”, B. Nogowizin, Verlag Schiele & Schön;
• „Handbuch Leichtbau – Methoden, Werkstoffe, Fertigung“, Henning, Moeller, Hanser Verlag
Umfornotechnik:
Fertigungstechnik 3
Manufacturing Engineering 3

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Fertigungstechnik 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Fertigungstechnik 3</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Die Studenten lernen die wichtigsten Verfahren der Kunststoffverarbeitung kennen. Darüber hinaus wird vermittelt, welche Produkte mit welchen Verfahren herstellbar sind.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 2 SWS</td>
</tr>
</tbody>
</table>
| Lehrinhalte | Überblick über Kunststoffprodukte und deren Herstellverfahren
Grundlagen des Werkstoffverhaltens während der Verarbeitung
Grundlagen der wichtigsten Erwärmverfahren für Kunststoffe
Verfahren der Kunststoffverarbeitung
Umforder
Fügen
Verarbeitungsphänomene und ihre Ursachen |
| Titel der Lehrveranstaltungen | Fertigungstechnik 3 |
| (Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA) | Vorlesung |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
B. Sc. Wirtschaftsingenieurwesen |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Sommersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Grundlagen Höhere Mathematik, Mechanik |
| Voraussetzungen für die Teilnahme am Modul | Empfohlen: Grundlagen Höhere Mathematik, Mechanik |
| Studentischer Arbeitsaufwand | 2 SWS VL (30Std.)
Selbststudium 60 Std. |
| Studienleistungen | – |
| Voraussetzung für Zulassung zur Prüfungsleistung | – |
| Prüfungsleistung | Klausur 60 Min. |
| Anzahl Credits für das Modul | 3 Credits |
| Lehreinheit | Fachbereich 15 |
| Modulverantwortliche/r | Prof. Hans-Peter Heim |
| Lehrende des Moduls | Prof. Hans-Peter Heim |
| Medienformen |
PowerPoint-Präsentation (Computer und Beamer) |
<table>
<thead>
<tr>
<th>Modulhandbuch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Literatur</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Nummer/Code</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Modulname</td>
</tr>
<tr>
<td>Art des Moduls</td>
</tr>
<tr>
<td>Lernergebnisse,</td>
</tr>
<tr>
<td>Kompetenzen</td>
</tr>
<tr>
<td>(Qualifikationsziele)</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lehrinhalte</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
</tr>
<tr>
<td>(Lehr–/Lernformen)</td>
</tr>
<tr>
<td>Lehr– und Lernmethoden</td>
</tr>
<tr>
<td>(ZEVA)</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
</tr>
<tr>
<td>Sprache</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Studienleistungen</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
</tr>
<tr>
<td>Lehreinheit</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
</tr>
<tr>
<td>Medienformen</td>
</tr>
</tbody>
</table>
| Literatur | Burg, Haf, Wille: Höhere Mathematik für Ingenieure, Band I, Analysis
Burg, Haf, Wille: Höhere Mathematik für Ingenieure, Band II, Lineare Algebra |
<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Höhere Mathematik 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td></td>
</tr>
<tr>
<td>Lernergebnisse,</td>
<td>Die Studierenden sind in der Lage, die auf der Grundlage der</td>
</tr>
<tr>
<td>Kompetenzen</td>
<td>aufbauende, für das Verständnis der in Mathematik 2</td>
</tr>
<tr>
<td>(Qualifikationsziele)</td>
<td>behandelten Themen, notwendige Fachsprache angemessen zu</td>
</tr>
<tr>
<td></td>
<td>verwenden. Die Studierenden können Inhalte der Mathematik 1</td>
</tr>
<tr>
<td></td>
<td>und 2 sinnvoll verknüpfen und zur Lösung mathematischer Probleme</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLMp 4 SWS</td>
</tr>
<tr>
<td></td>
<td>ü 2 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>• Komplexe Zahlen (cartesische Darstellung, Polarkoordinatenform)</td>
</tr>
<tr>
<td></td>
<td>• Reelle und komplexe Vektorräume (Erzeugendensysteme, Basen, Skalar- und Vektorprodukte)</td>
</tr>
<tr>
<td></td>
<td>• Lineare Abbildungen und Matrizen (Bilder, Kerne, Dimensionssatz, Projektionen und Drehungen, Determinanten)</td>
</tr>
<tr>
<td></td>
<td>• Lineare Gleichungssysteme und Gaußalgorithmus</td>
</tr>
<tr>
<td></td>
<td>• Mehrdimensionale Analysis (Differentialrechnung, Extremalprobleme, Taylorreihen, Integralrechnung, Volumina und Oberflächen)</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Höhere Mathematik 2</td>
</tr>
<tr>
<td>(Lehr-/Lernformen)</td>
<td>Vorlesungen, Hörsaalübungen, Übungen</td>
</tr>
<tr>
<td>Lehr- und Lernmethoden (ZEVA)</td>
<td></td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>4 SWS VL (60 Std.)</td>
</tr>
<tr>
<td></td>
<td>2 SWS Ü (30 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 90 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Studienleistungen werden zu Beginn der Lehrveranstaltungen vom jeweiligen Dozenten festgelegt.</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistung</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 120–180 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 10</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Andreas Meister</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Alle Dozenten des Institutes Mathematik</td>
</tr>
</tbody>
</table>
| **Medienformen** | • Tafel
| | • Beamer
| | • elektronische Lernplattform |
| **Literatur** | • Burg, Haf, Wille: Höhere Mathematik für Ingenieure, Band I, Analysis
| | • Burg, Haf, Wille: Höhere Mathematik für Ingenieure, Band II, Lineare Algebra |
Höhere Mathematik 3
Mathematics 3

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Höhere Mathematik 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse,</td>
<td></td>
</tr>
<tr>
<td>Kompetenzen (Q</td>
<td>Die Studierenden sind in der</td>
</tr>
<tr>
<td>ualifikationsziele)</td>
<td>Lage, die zum Verständnis der</td>
</tr>
<tr>
<td></td>
<td>Grundlagen der Theorie gewöhnlicher</td>
</tr>
<tr>
<td></td>
<td>und partieller Differential</td>
</tr>
<tr>
<td></td>
<td>gleichungen notwendige Fachsprache</td>
</tr>
<tr>
<td></td>
<td>angemessen zu verwenden. Die</td>
</tr>
<tr>
<td></td>
<td>Studierenden können Inhalte der</td>
</tr>
<tr>
<td></td>
<td>Mathematik I, II und III</td>
</tr>
<tr>
<td></td>
<td>miteinander verknüpfen. Die</td>
</tr>
<tr>
<td></td>
<td>Studierenden beherrschen die</td>
</tr>
<tr>
<td></td>
<td>entwickelten Verfahren und have</td>
</tr>
<tr>
<td></td>
<td>in der Lage, diese zur Lösung</td>
</tr>
<tr>
<td></td>
<td>gewöhnlicher und partieller</td>
</tr>
<tr>
<td></td>
<td>Differentialgleichungen einzusetz-</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 4 SWS</td>
</tr>
<tr>
<td></td>
<td>Ü 2 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>• Gewöhnliche Differential</td>
</tr>
<tr>
<td></td>
<td>gleichungen (Gleichungen erster</td>
</tr>
<tr>
<td></td>
<td>Ordnung, Gleichungen höherer</td>
</tr>
<tr>
<td></td>
<td>Ordnung, Systeme von Gleichungen</td>
</tr>
<tr>
<td></td>
<td>erster Ordnung)</td>
</tr>
<tr>
<td></td>
<td>• Laplacetransformation</td>
</tr>
<tr>
<td></td>
<td>(Definition, Eigenschaften und</td>
</tr>
<tr>
<td></td>
<td>Anwendung auf gewöhnliche</td>
</tr>
<tr>
<td></td>
<td>Differentialgleichungen)</td>
</tr>
<tr>
<td></td>
<td>• Fourier-Reihen</td>
</tr>
<tr>
<td></td>
<td>• Partielle Differential</td>
</tr>
<tr>
<td></td>
<td>gleichungen (Charakterisierung</td>
</tr>
<tr>
<td></td>
<td>und Typeneinteilung, klassische</td>
</tr>
<tr>
<td></td>
<td>Lösungen bei hyperbolischen und</td>
</tr>
<tr>
<td></td>
<td>parabolischen Differential</td>
</tr>
<tr>
<td></td>
<td>gleichungen)</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Höhere Mathematik 3</td>
</tr>
<tr>
<td>(Lehr-/Lernformen)</td>
<td>Vorlesungen, Übungen</td>
</tr>
<tr>
<td>Lehr- und Lernmethoden (Zeva)</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Regenerative Energien und</td>
</tr>
<tr>
<td></td>
<td>Energieeffizienz</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhalts</td>
<td>Fundierte Kenntnisse der Inhalte</td>
</tr>
<tr>
<td>liche) Voraussetzun</td>
<td>der Teilmodule Höhere Mathematik 1</td>
</tr>
<tr>
<td>gen für die Teilnahme am Modul</td>
<td>und 2</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Empfohlen: Fundierte Kenntnisse</td>
</tr>
<tr>
<td></td>
<td>der Inhalte der Teilmodule Höhere</td>
</tr>
<tr>
<td></td>
<td>Mathematik 1 und 2</td>
</tr>
<tr>
<td>Studentischer</td>
<td>4 SWS VL (60 Std.)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>2 SWS Ü (30 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 90 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Studienleistungen werden zu Beginn</td>
</tr>
<tr>
<td></td>
<td>der Lehrveranstaltungen vom</td>
</tr>
<tr>
<td></td>
<td>jeweiligen Dozenten festgelegt.</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsleistung</th>
<th>Klausur 120–180 Min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 10</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Andreas Meister</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Alle Dozenten des Institutes Mathematik</td>
</tr>
</tbody>
</table>
| Medienformen | • Tafel
• Beamer
• elektronische Lernplattform |
| Literatur | • Burg, Haf, Wille: Höhere Mathematik für Ingenieure Band III: Gewöhnliche Differentialgleichungen, Distributionen, Integraltransformationen |
Informationstechnik: Grundlagen der Programmierung

Information Technology: Programming Basics

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Informationstechnik: Grundlagen der Programmierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td></td>
</tr>
<tr>
<td>VLmP 2 SWS</td>
<td>HÜ 1 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td></td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Informationstechnik: Grundlagen der Programmierung</td>
<td></td>
</tr>
<tr>
<td>(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td></td>
</tr>
<tr>
<td>Vorlesung, Hörsaalübung, Übungen, Rechnerübungen</td>
<td></td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td></td>
</tr>
<tr>
<td>B. Sc. Maschinenbau</td>
<td></td>
</tr>
<tr>
<td>B. Sc. Wirtschaftsingenieurwesen</td>
<td></td>
</tr>
<tr>
<td>B. Sc. Berufspädagogik, Fachrichtung Metalltechnik</td>
<td></td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td></td>
</tr>
<tr>
<td>Ein Semester</td>
<td></td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td></td>
</tr>
<tr>
<td>Jedes Wintersemester</td>
<td></td>
</tr>
<tr>
<td>Sprache</td>
<td></td>
</tr>
<tr>
<td>deutsch</td>
<td></td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td></td>
</tr>
<tr>
<td>Umgang mit dem Rechner</td>
<td></td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
</tbody>
</table>
| **Studentischer Arbeitsaufwand** | 2 SWS VL (30 Std.)
1 SWS HÜ (15 Std.)
2 SWS Ü (30 Std.)
Selbststudium 105 Std. |
| **Studienleistungen** | – |
| **Voraussetzung für Zulassung zur Prüfungsleistung** | – |
| **Prüfungsleistung** | E-Klausur 120 Min. |
| **Anzahl Credits für das Modul** | 6 Credits, davon 2 Credits integrierte Schlüsselkompetenzen |
| **Lehreinheit** | Fachbereich 15 |
| **Modulverantwortliche/r** | Prof. Sigrid Wenzel |
| **Lehrende des Moduls** | Prof. Sigrid Wenzel |
| **Medienformen** | • Tafel
• Rechner und Beamer
• Vorlesungsbegleitende Unterlagen
• Arbeiten mit der Programmierumgebung ECLIPSE und der Programmiersprache JAVA am Rechner |
| **Literatur** | Die folgende Literaturliste ist Grundlage der Veranstaltung; sie wird jedoch laufend aktualisiert und ergänzt:
• Ullenboom, C.: Java ist auch eine Insel, galileo computing Verlag (http://www.galileocomputing.de/openbook/javainsel6/ frei im Internet).
Modulhandbuch

Konstruktionstechnik 1
Engineering Design 1

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Konstruktionstechnik 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Konstruktionstechnik 1</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Die Studierenden kennen die Grundlagen der Maschinenelemente: funktionssichere und betriebsfeste Auslegung von Maschinenelementen, Auslegung von stoffschlüssigen Verbindungen, Handhabung des CAD-Programms Pro/Engineer und rechnergestützte Darstellung von Bauteilen mit CAD.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 2 SWS</td>
</tr>
<tr>
<td>HÜ 2 SWS</td>
<td></td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Die Lehrveranstaltung beinhaltet:</td>
</tr>
<tr>
<td>Auslegung von Schrauben und Schraubverbindungen</td>
<td></td>
</tr>
<tr>
<td>Auslegung von Federn</td>
<td></td>
</tr>
<tr>
<td>Gestaltung von stoffs-, form- und kraftschlüssigen Verbindungen (Schweißen, Löten, Kleben)</td>
<td></td>
</tr>
<tr>
<td>Auslegung von Nieten/Bolzen</td>
<td></td>
</tr>
<tr>
<td>3D-Konstruktionstechniken</td>
<td></td>
</tr>
<tr>
<td>Erstellung von 3D-Baugruppen</td>
<td></td>
</tr>
<tr>
<td>Erstellen von Fertigungsunterlagen</td>
<td></td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Konstruktionstechnik 1</td>
</tr>
<tr>
<td>(Lehr-/Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Vorlesung, Hörsaalübungen, Übungen, rechnerunterstützte Tutorien in Kleingruppen (im CEC-Computational Engineering Center), e-learning: Lernvideos (Portal), Gruppendiskussionen</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td>B. Sc. Mechatronik</td>
<td></td>
</tr>
<tr>
<td>B. Sc. Wirtschaftsingenieurwesen</td>
<td></td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>CAD, Höhere Mathematik 1</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Empfohlen: CAD, Höhere Mathematik 1</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS VL (30 Std.)</td>
</tr>
<tr>
<td>2 SWS HÜ (30 Std.)</td>
<td></td>
</tr>
<tr>
<td>Selbststudium 120 Std.</td>
<td></td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Semesteraufgabe</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>–</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 120 Min.</td>
</tr>
</tbody>
</table>
Bei entsprechender Ankündigung durch den Dozenten zu Beginn der Lehrveranstaltung können Teilleistungen der abschließenden Prüfung in vorgezogenen lehrveranstaltungsbegleitenden Leistungen erbracht werden.

<table>
<thead>
<tr>
<th>Anzahl Credits für das Modul</th>
<th>6 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Martin Fehlbier – Konstruktionstechnik 1 Prof. Adrian Rienäcker – CAD Rechnerübungen</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Vorlesungs– und Übungsfolien im PDF–Format Lehrveranstaltungsplattform Moodle Lernvideos (Portal)</td>
</tr>
</tbody>
</table>
Konstruktionstechnik 2
Engineering Design 2

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Konstruktionstechnik 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Konstruktionstechnik 2</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
</tbody>
</table>
| Lehrveranstaltungsarten | VLmP 2 SWS
HÜ 2 SWS |
| Lehrinhalte | Die Lehrveranstaltung beinhaltet:
- Festigkeitsberechnung von statisch und dynamisch beanspruchten Maschinenelementen
- Beanspruchungsgrößen
- Gestalt- und Beanspruchungsgrößen
- Lebensdauer
- Welle/Nabe - Verbindung
- Lagerung rotierender Wellen
- Wälzlagerdimensionierung
- hydrodynamische Gleitlager
- Auslegung von Getrieben
- Verzahnungsgeometrie
- Sicherheitsnachweis |
| Titel der Lehrveranstaltungen | Konstruktionstechnik 2 |
| (Lehr-/- Lernformen) \ Lehr- und Lernmethoden (ZEVA) | Vorlesung, Hörsaalübungen, Übungen, rechnerunterstützte Tutorien in Kleingruppen (im CEC- Computational Engineering Center), e-learning: Lernvideos (Portal), Gruppendifussionen |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
B. Sc. Mechatronik |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Wintersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | CAD, Konstruktionstechnik 1, Technische Mechanik 1 und 2, Höhere Mathematik 1 |
| Voraussetzungen für die Teilnahme am Modul | Empfohlen: CAD, Konstruktionstechnik 1, Technische Mechanik 1 und 2, Höhere Mathematik 1 |
| Studentischer Arbeitsaufwand | 2 SWS VL (30 Std.)
2 SWS HÜ (30 Std.)
Selbststudium 120 Std. |
| Studienleistungen | Hausübungen (4 von 5 bestehen)
Semesterarbeit (CAD-Konstruktion) |
<table>
<thead>
<tr>
<th>Voraussetzung für Zulassung zur Prüfungsleistung</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 120 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Adrian Rienäcker</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Adrian Rienäcker</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Vorlesungs- und Übungsfolien im PDF-Format</td>
</tr>
<tr>
<td></td>
<td>Lehrveranstaltungsplattform Moodle</td>
</tr>
<tr>
<td></td>
<td>Lernvideos (Portal)</td>
</tr>
</tbody>
</table>
Konstruktionstechnik 3
Engineering Design 3

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Konstruktionstechnik 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td></td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Die Studierenden verstehen das strukturierte Konstruieren und funktionssichere Auslegen von Maschinenelementen mit statischem und dynamischem Systemverhalten.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 2 SWS \ HÜ 2 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Die Lehrveranstaltung beinhaltet:</td>
</tr>
<tr>
<td></td>
<td>- Konstruktionsprozess und –prinzipien,</td>
</tr>
<tr>
<td></td>
<td>- Auslegung von:</td>
</tr>
<tr>
<td></td>
<td>- Riementrieben</td>
</tr>
<tr>
<td></td>
<td>- Reibkraftkupplungen</td>
</tr>
<tr>
<td></td>
<td>- Bremsen</td>
</tr>
<tr>
<td></td>
<td>- Kettentriebe</td>
</tr>
<tr>
<td></td>
<td>- Rohrleitungen und Dichtungen</td>
</tr>
<tr>
<td></td>
<td>- Ähnlichkeitsgesetze der Baureihenentwicklung</td>
</tr>
<tr>
<td></td>
<td>- Prinzipien des Leichtbaus</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Konstruktionstechnik 3</td>
</tr>
<tr>
<td>(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Vorlesung, Hörsaalübungen, Übungen, rechnerunterstützte Tutorien in Kleingruppen (im CEC– Computational Engineering Center), e–learning: Lernvideos (Portal), Gruppendiskussionen</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau \ B. Sc. Mechatronik</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhalitliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>CAD, Konstruktionstechnik 1–2, Technische Mechanik 1–3, Höhere Mathematik 1–3</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Empfohlen: CAD, Konstruktionstechnik 1 und 2, Technische Mechanik 1–3, Höhere Mathematik 1–3</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS VL (30 Std.) \ 2 SWS HÜ (30 Std.) \ Selbststudium 120 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Hausübungen (4 von 5 bestehen) \ Semesterarbeit (CAD–Konstruktion)</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>–</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 120 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Adrian Rienäcker</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Adrian Rienäcker</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Vorlesungs- und Übungsfolien im PDF-Format</td>
</tr>
<tr>
<td></td>
<td>Lehrveranstaltungsplattform Moodle</td>
</tr>
<tr>
<td></td>
<td>Lernvideos (Portal)</td>
</tr>
<tr>
<td>Nummer/Code</td>
<td>Strömungsmechanik 1</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Modulname</td>
<td>Strömungsmechanik 1</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
</tbody>
</table>
| Lehrveranstaltungsarten | VLmP 2SWS
HÜ 1 SWS |
| Lehrinhalte | - Fluid- und Aerodynamik (Druck- und Volumenkräfte, Druck in schweren Fluiden, Druck in rotierenden Flüssigkeiten, Oberflächenspannung und Kapillarität)
- Hydrodynamik (Grundbegriffe, Kontinuitätsgleichung, Bernoullische Gleichung für stationäre und instationäre Strömungen, rotierendes Bezugssystem, Nutzleistung einer hydraulischen Strömungsmaschine)
- Impuls- und Drallsatz (Herleitung, Impulssatz für stationäre Strömungen, Anwendungen des Impulssatzes)
- Kompressible Fadenströmung (Energiebilanz für stationäre Strömungen, isentrope Gasströmungen, Schallgeschwindigkeit und Machzahl, stationäres Ausströmen aus einem Kessel, senkrechte Verdichtungsstoße)
- Reibungsbehaftete Strömungen (Viskoses Schubverhalten, Kontinuitätsgleichung für allgemeine Strömungen, Stoffgesetz für linear-viskose Fluide, Navier–Stokesschen–Gleichungen, ebene stationäre Schichtenströmung, Rohrströmung)
- Grenzschichtströmungen (Überströmte Platte, Grenzschichtdiffer entialgleichungen, Widerstand umströmter Körper) |
<p>| Titel der Lehrveranstaltungen | Strömungsmechanik 1 |
| (Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA) | Vorlesung, Hörsaalübungen, Tutorien in Kleingruppen |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Sommersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Technische Mechanik 1–3, Höhere Mathematik 1–3 |</p>
<table>
<thead>
<tr>
<th>Voraussetzungen für die Teilnahme am Modul</th>
<th>Empfohlen: Technische Mechanik 1–3, Höhere Mathematik 1–3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS VL (30 Std.)</td>
</tr>
<tr>
<td></td>
<td>1 SWS HÜ (15 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 105 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Teilnahme an studienbegleitenden Kurztests und/oder –klausuren</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Erfolgreicher Abschluss der Studienleistungen</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 120 Min.</td>
</tr>
<tr>
<td></td>
<td>Bei entsprechender Ankündigung durch den Dozenten zu Beginn der Lehrveranstaltung können Teilleistungen der abschließenden Prüfung in vorgezogenen lehrveranstaltungsbegleitenden Leistungen erbracht werden.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>5 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Olaf Wünsch</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Olaf Wünsch</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Folien, Demonstrationsversuche, Filme</td>
</tr>
</tbody>
</table>
Technische Mechanik 1

Engineering Mechanics 1

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Technische Mechanik 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 3 SWS</td>
</tr>
<tr>
<td>HÜ 1 SWS</td>
<td></td>
</tr>
<tr>
<td>Ü 2 SWS</td>
<td></td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Statik:</td>
</tr>
<tr>
<td>Kraftsysteme,</td>
<td></td>
</tr>
<tr>
<td>Gleichgewichtsbedingungen,</td>
<td></td>
</tr>
<tr>
<td>Schwerpunkt,</td>
<td></td>
</tr>
<tr>
<td>eindimensionale Tragwerke,</td>
<td></td>
</tr>
<tr>
<td>Schnittgrößen.</td>
<td></td>
</tr>
<tr>
<td>Kinetik des Massenpunktes:</td>
<td></td>
</tr>
<tr>
<td>Kinematik,</td>
<td></td>
</tr>
<tr>
<td>Impulssatz,</td>
<td></td>
</tr>
<tr>
<td>Energiesatz,</td>
<td></td>
</tr>
<tr>
<td>freie und erzwungene Schwingungen.</td>
<td></td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Technische Mechanik 1</td>
</tr>
<tr>
<td>(Lehr- / Lernformen) Verwendbarkeit des Moduls</td>
<td>Vorlesung, Hörsaalübung, Tutorien</td>
</tr>
<tr>
<td>Lehr- und Lernmethoden (ZEVA)</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td>B. Sc. Wirtschaftsingenieurwesen</td>
<td></td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Mathematik Abitur–Niveau</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>3 SWS VL (45 Std.)</td>
</tr>
<tr>
<td></td>
<td>1 SWS HÜ (15 Std.)</td>
</tr>
<tr>
<td></td>
<td>2 SWS Ü (30 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 90 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Studienleistungen werden vom jeweiligen Dozenten zu Beginn der Lehrveranstaltung festgelegt.</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistungen müssen zur erstmaligen Teilnahme an der Klausur bestanden werden.</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 120–180 Min.</td>
</tr>
<tr>
<td></td>
<td>Bei entsprechender Ankündigung durch den Dozenten zu Beginn der Lehrveranstaltung können Teilleistungen der abschließenden Prüfung in vorgezogenen lehrveranstaltungsbegleitenden Leistungen erbracht werden.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Andreas Ricoeur</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Andreas Ricoeur</td>
</tr>
<tr>
<td>Medienformen</td>
<td>• Tablet-PC und Beamer</td>
</tr>
<tr>
<td></td>
<td>• Skript</td>
</tr>
<tr>
<td></td>
<td>• Veranschaulichung an Modellen</td>
</tr>
<tr>
<td>Literatur</td>
<td>• Groß, et al.: Technische Mechanik 1,3,</td>
</tr>
<tr>
<td></td>
<td>• Balke: Einführung in die Technische Mechanik</td>
</tr>
<tr>
<td></td>
<td>• Dankert, Dankert: Technische Mechanik</td>
</tr>
</tbody>
</table>
Technische Mechanik 2
Engineering Mechanics 2

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Technische Mechanik 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 3 SWS</td>
</tr>
<tr>
<td></td>
<td>HÜ 1 SWS</td>
</tr>
<tr>
<td></td>
<td>Ü 2 SWS</td>
</tr>
</tbody>
</table>
| Lehrinhalte | Kinetik des starren Körpers in der Ebene:
- Kinematik,
- Drehimpulssatz,
- Schwerpunktsatz,
- Energie- und Arbeitssatz.
Statik deformierbarer Körper:
- Spannungs- und Verzerrungsbegriff,
- verallgemeinertes Hookesches Gesetz,
- elastische Tragwerkselemente,
- Eulersches Knicken. |
<p>| Titel der Lehrveranstaltungen | Technische Mechanik 2 |
| (Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA) | Vorlesung, Hörsaalübung, Tutorien |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau |
| | B. Sc. Wirtschaftsingenieurwesen |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Sommersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Technische Mechanik 1, Höhere Mathematik 1 |</p>
<table>
<thead>
<tr>
<th>Voraussetzungen für die Teilnahme am Modul</th>
<th>Empfohlen: Technische Mechanik 1, Höhere Mathematik 1</th>
</tr>
</thead>
</table>
| Studentischer Arbeitsaufwand | 3 SWS VL (45 Std.)
1 SWS HÜ (15 Std.)
2 SWS Ü (30 Std.)
Selbststudium 90 Std. |
| Studienleistungen | Studienleistungen werden vom jeweiligen Dozenten zu Beginn der Lehrveranstaltung festgelegt. |
| Voraussetzung für Zulassung zur Prüfungsleistung | Studienleistungen müssen zur erstmaligen Teilnahme an der Klausur bestanden werden. |
| Prüfungsleistung | Klausur 120–180 Min.
Bei entsprechender Ankündigung durch den Dozenten zu Beginn der Lehrveranstaltung können Teilleistungen der abschließenden Prüfung in vorgezogenen lehrveranstaltungsbegleitenden Leistungen erbracht werden. |
| Anzahl Credits für das Modul | 6 Credits |
| Lehreinheit | Fachbereich 15 |
| Modulverantwortliche/r | Prof. Andreas Ricoeur |
| Lehrende des Moduls | Prof. Andreas Ricoeur |
| Medienformen | • Tablet–PC und Beamer
• Skript
• Veranschaulichung an Modellen |
| Literatur | • Groß et al.: Technische Mechanik 2,3
• Balke: Einführung in die Technische Mechanik
• Dankert, Dankert: Technische Mechanik |
Technische Mechanik 3
Engineering Mechanics 3

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Technische Mechanik 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Technische Mechanik 3</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Kompetenzen: Die Studierenden können reale Verhältnisse auf relevante Phänomene vereinfachen, diese in mathematische Gleichungen fassen, die Gleichungen lösen und die Ergebnisse vor dem Hintergrund technischer Problemstellungen interpretieren.

Einbindung in die Berufsvorbereitung: Grundkenntnisse in der Mechanik sind unerlässlich bei einer Maschinenbaukonstruktion und bei der Optimierung technischer Systeme.

Lehrveranstaltungsarten

<table>
<thead>
<tr>
<th>Lehrveranstaltungsarten</th>
<th>VLmP 3 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HÜ 3 SWS</td>
</tr>
</tbody>
</table>

Lehrinhalte

- Prinzip der virtuellen Arbeit,
- Prinzip von d’Alembert/Lagrange,
- Lagrange-Gleichungen 2. Art,
- Ritz-Verfahren,
- Querkraftschub,
- Torsion dünnwandiger Profile,
- Einführung in die Theorie der Flächentragwerke.

Titel der Lehrveranstaltungen

| Technische Mechanik 3 |

(Lehr- / Lernformen)

| Lehr- und Lernmethoden (ZEVA) | Vorlesung, Hörsaalübung, Tutorien |

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
<th>B. Sc. Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
</tbody>
</table>

Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul

| Technische Mechanik 1 und 2, Höhere Mathematik 1 und 2 |

Voraussetzungen für die Teilnahme am Modul

| Empfohlen: Technische Mechanik 1 und 2, Höhere Mathematik 1 und 2 |

Studentischer Arbeitsaufwand

<p>| 3 SWS VL (45 Std.) |
| 3 SWS HÜ (45 Std.) |</p>
<table>
<thead>
<tr>
<th>Selbststudium 120 Std.</th>
</tr>
</thead>
</table>

Studienleistungen
Studienleistungen werden vom jeweiligen Dozenten zu Beginn der Lehrveranstaltung festgelegt.

<table>
<thead>
<tr>
<th>Voraussetzung für Zulassung zur Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistungen müssen zur erstmaligen Teilnahme an der Klausur bestanden werden.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur 120–180 Min.</td>
</tr>
</tbody>
</table>

Bei entsprechender Ankündigung durch den Dozenten zu Beginn der Lehrveranstaltung können Teilleistungen der abschließenden Prüfung in vorgezogenen lehrveranstaltungsbegleitenden Leistungen erbracht werden.

<table>
<thead>
<tr>
<th>Anzahl Credits für das Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 Credits</td>
</tr>
</tbody>
</table>

Lehreinheit
Fachbereich 15

Modulverantwortliche/r
Prof. Andreas Ricoeur

Lehrende des Moduls
Prof. Andreas Ricoeur

Medienformen
- Tablet–PC und Beamer
- Skript
- Veranschaulichung an Modellen

Literatur
- Groß et al.: Technische Mechanik 2–4, Balke: Einführung in die Technische Mechanik,
- Dankert, Dankert: Technische Mechanik
Technische Schwingungslehre
Engineering Vibrations

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Technische Schwingungslehre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Technische Schwingungslehre</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 2 SWS</td>
</tr>
<tr>
<td>HÜ 1 SWS</td>
<td></td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>• Einführung & Motivation</td>
</tr>
<tr>
<td></td>
<td>• Grundbegriffe, Kinematik von Schwingungen, Darstellung von Schwingungen, Fourierreihen, modulierte Schwingungen</td>
</tr>
<tr>
<td></td>
<td>• lineare Schwinger mit einem Freiheitsgrad: Linearisierung, freie & erzwungene Schwingungen, Abschirmung, seism. Aufnehmer</td>
</tr>
<tr>
<td></td>
<td>• lineare Schwingungssysteme mit N-Freiheitsgraden: freie & erzwungene Schwingungen von MK- und MDK-Systemen, Tilgung</td>
</tr>
<tr>
<td></td>
<td>• Zustandsraumdarstellung, numerische Integration</td>
</tr>
<tr>
<td></td>
<td>• Ausblick auf nichtlineare Schwingungen, Stabilitätsprobleme und kontinuierliche Schwingungssysteme</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Technische Schwingungslehre</td>
</tr>
<tr>
<td>(Lehr-/Lernformen)</td>
<td>Vortrag in Vorlesung und Übung; Selbststudium strukturiert und unterstützt durch Übungsaufgaben</td>
</tr>
<tr>
<td>Lehr- und Lernmethoden (ZEVA)</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Höhere Mathematik 1–3, Technische Mechanik 1–3</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS VL (30 Std.)</td>
</tr>
<tr>
<td>1 SWS HÜ (15 Std.)</td>
<td></td>
</tr>
<tr>
<td>Selbststudium 105 Std.</td>
<td></td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Studienleistungen werden vom jeweiligen Dozenten zu Beginn der Lehrveranstaltung festgelegt.</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistungen müssen zur erstmaligen Teilnahme an der Klausur bestanden werden.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 90–120 Min. Bei entsprechender Ankündigung durch den Dozenten zu Beginn der Lehrveranstaltung können Teilleistungen der abschließenden Prüfung in vorgezogenen lehrveranstaltungsbegleitenden Leistungen erbracht werden.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>5 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Hartmut Hetzler</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Hartmut Hetzler</td>
</tr>
</tbody>
</table>
| Medienformen | • Präsentation
• Tafel
• e-learning
• Unterlagen |
| Literatur | • Vorlesungsunterlagen, Übungsunterlagen
• Hagedorn, Hochlenert: „Technische Schwingungslehre“, Verlag Harri Deutsch, 2012
• Hagedorn, „Technische Schwingungslehre – Bd. 1“, Springer Verlag, 1987
• Klotter: „Technische Schwingungslehre, Bd. 1 Teil A“, Heidelberg, 1978
• Wittenburg: „Schwingungslehre“, Springer, 1995 |

Bitte beachten Sie auch Literaturhinweise in der Veranstaltung!
Technische Thermodynamik 1
Technical Thermodynamic 1

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Technische Thermodynamik 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 3 SWS HÜ 2 SWS</td>
</tr>
</tbody>
</table>
| Lehrinhalte | • Grundlagen: Definitionen zur technischen Thermodynamik, Bilanzgleichungen und ihre Anwendung (z.B. Energie und Entropie)
• Thermodynamische Eigenschaften von Reinstoffen: (z. B. Zustandsdiagramme)
• Berechnung und Beurteilung stationärer Prozesse in Komponenten und Kreisprozessen
• Einführung in die Wärmeübertragung: Wärmeleitung, Konvektion, Wärmestrahlung, Wärmeübertrager |
| Titel der Lehrveranstaltungen | Technische Thermodynamik 1 |
| (Lehr–/ Lernformen) Lehr– und Lernmethoden (ZEVA) | Vorlesung, Hörsaalübungen, Tutorien |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
M. Sc. Regenerative Energien und Energieeffizienz
• Wahlpflichtmodul |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Sommersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Höhere Mathematik 1–3 |
| Voraussetzungen für die Teilnahme am Modul | Empfohlen: Höhere Mathematik 1–3 |
| Studentischer Arbeitsaufwand | 3 SWS VL (45 Std.)
2 SWS HÜ (30 Std.) |
<table>
<thead>
<tr>
<th>Studienleistungen</th>
<th>Selbststudium 105 Std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>–</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 120 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr.-Ing. habil. Andrea Luke</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Dr.-Ing. habil. Andrea Luke</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Tafel, E-Learning</td>
</tr>
</tbody>
</table>
Werkstofftechnik mit Praktikum
- Werkstofftechnik 1
- Werkstofftechnik 2
- Praktikum Werkstofftechnik

Materials Science and Engineering

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Werkstofftechnik mit Praktikum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Werkstofftechnik mit Praktikum</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
</tbody>
</table>
| Lernergebnisse, Kompetenzen (Qualifikationsziele) | **Werkstofftechnik 1:**

Werkstofftechnik 2:

Praktikum Werkstofftechnik:
Die Studierenden kennen die wesentlichen Grundlagen der Werkstoffprüfung. Durch das Praktikum verfügen die Teilnehmer über ein Grundverständnis über die Durchführung und Auswertung von Versuchen im Ingenieurwesen. Die Studierenden sind in Lage, Verantwortung im Team zu übernehmen.

| Lehrveranstaltungsarten | Werkstofftechnik 1:
VLmP 2 SWS
HÜ 1 SWS |
|------------------------|--------------------------------|
| | Werkstofftechnik 2:
VLmP 2 SWS
HÜ 1 SWS |
| | Praktikum Werkstofftechnik:
Pr 2 SWS als Blockveranstaltung |

Lehrinhalte	Werkstofftechnik 1:
	Werkstofftechnik 2:
- Phasendiagramme |

|
|
Titel der Lehrveranstaltungen
- Werkstoffe auf Fe-Basis (Eisen-Kohlenstoffdiagramm, Gleichgewichts- und Nichtgleichgewichtsumwandlungen, Wärmebehandlung, Legierungssysteme)
- Werkstoffe auf Al-Basis (aushärtbare und nichtaushärtbare Legierungen) Kunststoffe

Praktikum Werkstofftechnik:
Durchführung und Bewertung wichtiger werkstoffkundlicher Untersuchungen wie z. B. Zugversuch, Ermüdungsversuch, Bruchmechanikversuch, Härprüfung usw.

(Lehr-/ Lernformen)
<table>
<thead>
<tr>
<th>Lehr- und Lernmethoden (ZEVA)</th>
<th>Vorlesung, Hörsaalübungen, Laborpraktika</th>
</tr>
</thead>
</table>

Verwendbarkeit des Moduls
- B. Sc. Maschinenbau
- B. Sc. Wirtschaftsingenieurwesen

Dauer des Angebotes des Moduls
Ein Semester

Häufigkeit des Angebotes des Moduls
Jedes Sommersemester

Sprache
Deutsch

Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Inhaltliche Voraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Werkstofftechnik 1:</td>
<td>Technische Mechanik 1, Höhere Mathematik 1</td>
</tr>
<tr>
<td>Werkstofftechnik 2:</td>
<td>Werkstofftechnik 1</td>
</tr>
<tr>
<td>Praktikum Werkstofftechnik:</td>
<td>Werkstofftechnik 1 und Werkstofftechnik 2</td>
</tr>
</tbody>
</table>

Voraussetzungen für die Teilnahme am Modul

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Inhaltliche Voraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Werkstofftechnik 1:</td>
<td>Empfohlen: Technische Mechanik 1, Höhere Mathematik 1</td>
</tr>
<tr>
<td>Werkstofftechnik 2:</td>
<td>Empfohlen: Werkstofftechnik 1</td>
</tr>
<tr>
<td>Praktikum Werkstofftechnik:</td>
<td>Empfohlen: Werkstofftechnik 1 und Werkstofftechnik 2</td>
</tr>
</tbody>
</table>

Studentischer Arbeitsaufwand

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Werkstofftechnik 1:</td>
<td>2 SWS VL (30 Std.)</td>
</tr>
<tr>
<td></td>
<td>1 SWS HÜ (15 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 45 Std.</td>
</tr>
<tr>
<td>Werkstofftechnik 2:</td>
<td>2 SWS VL (30 Std.)</td>
</tr>
<tr>
<td></td>
<td>1 SWS HÜ (15 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 45 Std.</td>
</tr>
<tr>
<td>Praktikum Werkstofftechnik:</td>
<td>2 SWS Pr (20 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 40 Std.</td>
</tr>
</tbody>
</table>

Studienleistungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Beschreibung</th>
</tr>
</thead>
</table>
| **Werkstofftechnik 1:** | - Werkstoffe auf Fe-Basis (Eisen-Kohlenstoffdiagramm, Gleichgewichts- und Nichtgleichgewichtsumwandlungen, Wärmebehandlung, Legierungssysteme)
- Werkstoffe auf Al-Basis (aushärtbare und nichtaushärtbare Legierungen) Kunststoffe
- Praktikum Werkstofftechnik: Durchführung und Bewertung wichtiger werkstoffkundlicher Untersuchungen wie z. B. Zugversuch, Ermüdungsversuch, Bruchmechanikversuch, Härprüfung usw.

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Werkstofftechnik 1:</td>
<td>2 SWS VL (30 Std.)</td>
</tr>
<tr>
<td></td>
<td>1 SWS HÜ (15 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 45 Std.</td>
</tr>
<tr>
<td>Werkstofftechnik 2:</td>
<td>2 SWS VL (30 Std.)</td>
</tr>
<tr>
<td></td>
<td>1 SWS HÜ (15 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 45 Std.</td>
</tr>
<tr>
<td>Praktikum Werkstofftechnik:</td>
<td>2 SWS Pr (20 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 40 Std.</td>
</tr>
</tbody>
</table>

Studienleistungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Beschreibung</th>
</tr>
</thead>
</table>
| **Werkstofftechnik 1:** | - Werkstoffe auf Fe-Basis (Eisen-Kohlenstoffdiagramm, Gleichgewichts- und Nichtgleichgewichtsumwandlungen, Wärmebehandlung, Legierungssysteme)
- Werkstoffe auf Al-Basis (aushärtbare und nichtaushärtbare Legierungen) Kunststoffe
- Praktikum Werkstofftechnik: Durchführung und Bewertung wichtiger werkstoffkundlicher Untersuchungen wie z. B. Zugversuch, Ermüdungsversuch, Bruchmechanikversuch, Härprüfung usw.

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Werkstofftechnik 1:</td>
<td>2 SWS VL (30 Std.)</td>
</tr>
<tr>
<td></td>
<td>1 SWS HÜ (15 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 45 Std.</td>
</tr>
<tr>
<td>Werkstofftechnik 2:</td>
<td>2 SWS VL (30 Std.)</td>
</tr>
<tr>
<td></td>
<td>1 SWS HÜ (15 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 45 Std.</td>
</tr>
<tr>
<td>Praktikum Werkstofftechnik:</td>
<td>2 SWS Pr (20 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 40 Std.</td>
</tr>
<tr>
<td>Modulhandbuch</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Klausur 90–180 Min. (benotet)</td>
<td></td>
</tr>
<tr>
<td>Praktikum Werkstofftechnik:</td>
<td></td>
</tr>
<tr>
<td>Testat zu jedem Versuch</td>
<td></td>
</tr>
<tr>
<td>Anwesenheitspflicht</td>
<td></td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td></td>
</tr>
<tr>
<td>Bestandene Studienleistung Werkstofftechnik 1</td>
<td></td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td></td>
</tr>
<tr>
<td>Modulabschlussklausur 90–180 Min.</td>
<td></td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td></td>
</tr>
<tr>
<td>8 Credits</td>
<td></td>
</tr>
<tr>
<td>Lehreinheit</td>
<td></td>
</tr>
<tr>
<td>Fachbereich 15</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Thomas Niendorf</td>
<td></td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td></td>
</tr>
<tr>
<td>Prof. Thomas Niendorf</td>
<td></td>
</tr>
<tr>
<td>Medienformen</td>
<td></td>
</tr>
<tr>
<td>Werkstofftechnik 1:</td>
<td></td>
</tr>
<tr>
<td>Tafel, Beamer, E-learning</td>
<td></td>
</tr>
<tr>
<td>Werkstofftechnik 2:</td>
<td></td>
</tr>
<tr>
<td>Tafel, Beamer, E-learning</td>
<td></td>
</tr>
<tr>
<td>Praktikum Werkstofftechnik:</td>
<td></td>
</tr>
<tr>
<td>Schriftliche Ausarbeitung</td>
<td></td>
</tr>
<tr>
<td>Literatur</td>
<td></td>
</tr>
<tr>
<td>Werkstofftechnik 1 und Werkstofftechnik 2:</td>
<td></td>
</tr>
<tr>
<td>• Böhm: Einführung in die Metallkunde (BI-Hochschultaschenbücher, Bd. 196)</td>
<td></td>
</tr>
<tr>
<td>• Macherauch: Praktikum in Werkstoffkunde, Vieweg</td>
<td></td>
</tr>
<tr>
<td>• Hornbogen, Warlimont: Metallkunde, Springer</td>
<td></td>
</tr>
<tr>
<td>• Bergmann: Werkstofftechnik 1, Hanser</td>
<td></td>
</tr>
<tr>
<td>• Ashby, Jones: Werkstoffe 1, Elsevier</td>
<td></td>
</tr>
<tr>
<td>Praktikum Werkstofftechnik:</td>
<td></td>
</tr>
<tr>
<td>• Skript</td>
<td></td>
</tr>
</tbody>
</table>
Pflichtmodule Hauptstudienphase

Berufspraktische Studien
Engineering internship

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Berufspraktische Studien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Berufspraktische Studien</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Differenziertes Verständnis für das Zusammenwirken verschiedener betrieblicher Tätigkeitsbereiche, vertiefte Einsicht in die Rolle des Ingenieurs, Anwendung der im Studium erworbenen Kenntnisse und Fertigkeiten, Transfer des theoretischen Wissens auf Probleme der Praxis.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>Pr/ Pr_ext mind. 14 Wochen</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Ingenieurmäßige Arbeit im Betrieb oder an der Hochschule, vorzugsweise innerhalb von Projekten.</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Berufspraktische Studien</td>
</tr>
<tr>
<td>(Lehr–/ Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Praktikum</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Semester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>Mind. 450 Std. in 14 Wochen Anwesenheitspflicht</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Qualifiziertes Zeugnis des Betriebes, Abschlussbericht</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Schriftlicher Bericht, unbenotet</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>15 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>–</td>
</tr>
<tr>
<td>Medienformen</td>
<td>–</td>
</tr>
<tr>
<td>Literatur</td>
<td>–</td>
</tr>
</tbody>
</table>
Fortgeschrittenenpraktikum Maschinenbau
Advanced engineering lab

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Fortgeschrittenenpraktikum Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Fortgeschrittenenpraktikum Maschinenbau</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>Pr 2 SWS</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Fortgeschrittenenpraktikum Maschinenbau</td>
</tr>
<tr>
<td>(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Gruppenarbeit, Laborpraktika, Präsentationen</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td>B. Sc. Wirtschaftsingenieurwesen</td>
<td></td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>abgeschlossenes Grundstudium</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Empfohlen: Abgeschlossenes Grundstudium</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS Pr (24 Std.) Selbststudium 66 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Studienleistungen werden vom jeweiligen Dozenten zu Beginn der Lehrveranstaltung festgelegt und sind benotet. Anwesenheitspflicht</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>-</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>-</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits, davon 2 Credits integrierte Schlüsselkompetenzen</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Studiendekan</td>
</tr>
</tbody>
</table>
Modulhandbuch

<table>
<thead>
<tr>
<th>Lehrende des Moduls</th>
<th>Die Dozenten des Fachbereichs Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen</td>
<td>-</td>
</tr>
<tr>
<td>Literatur</td>
<td>ggf. Skripte</td>
</tr>
</tbody>
</table>
Mess- und Regelungstechnik mit Praktikum
- Mess- und Regelungstechnik (5 Credits)
- Praktikum Mess- und Regelungstechnik (2 Credits)

Measurement and Control Engineering

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Mess- und Regelungstechnik mit Praktikum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Mess- und Regelungstechnik mit Praktikum</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>Mess- und Regelungstechnik: VLmP 3 SWS HÜ 1 SWS Praktikum Mess- und Regelungstechnik: Pr 2 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Vorlesung Mess- und Regelungstechnik: • Aufgaben und Grundbegriffe der Mess- und Regelungstechnik • Übertragungsverhalten von Sensoren und Messgeräten • Störeinflüsse und Messunsicherheit • Beschreibung und Analyse linearer dynamischer Systeme im Zeit- und Frequenzbereich • Beschreibung und Eigenschaften einschleifiger Regelsysteme im Zeit- und Frequenzbereich • Entwurf einschleifiger Regelkreise mittels Wurzelortskurven- und Frequenzenlinienverfahren Praktikum Mess- und Regelungstechnik: Das Praktikum enthält mehrere in Kleingruppen bearbeitete Versuche zu Anwendungen der Mess- und Regelungstechnik wie z. B.: • Rechnergestützter Regelungsentwurf mittels Matlab/Simulink™ • Füllstandsregelung und Mehrtanksystem • PC-gestützte Messtechnik mittel LABVIEW™ • Temperaturmessung • Dehnungsmessung mittels DMS</td>
</tr>
</tbody>
</table>
| Titel der Lehrveranstaltungen | Mess- und Regelungstechnik (5 Credits)
Praktikum Mess- und Regelungstechnik (2 Credits) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lehr-/ Lernformen)</td>
<td>Frontalunterricht, Tafelübungen, Laborpraktikum</td>
</tr>
<tr>
<td>Lehr- und Lernmethoden</td>
<td>(ZEVA)</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Zwei Semester</td>
</tr>
</tbody>
</table>
| Häufigkeit des Angebotes des Moduls | Vorlesung jedes Wintersemester
Praktikum jedes Semester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) | Höhere Mathematik 1–3, Mechanik 1–3, Elektrotechnik und Elektronik 1+2 |
| Voraussetzungen für die Teilnahme am Modul | – |
| Studentischer Arbeitsaufwand | Mess- und Regelungstechnik:
3 SWS VL (45 Std.)
1 SWS HÜ (15 Std.)
Selbststudium 90 Std.
Praktikum Mess- und Regelungstechnik:
2 SWS P i (30 Std.)
Selbststudium 30 Std. |
| Studienleistungen | Praktikum Mess- und Regelungstechnik:
Erfolgreiche Versuchs durchführung und – protokollierung mit Testat
Anwesenheitspflicht |
| Voraussetzung für Zulassung zur Prüfungsleistung | Studienleistungen
Siehe Prüfungsordnung gemäß § 7 Absatz 7 |
| Prüfungsleistung | Mess- und Regelungstechnik: Klausur 120 Min. |
| Anzahl Credits für das Modul | 7 Credits |
| Lehreinheit | Fachbereich 15 |
| Modulverantwortliche/r | Prof. Andreas Kroll
Pro. Andreas Kroll und Mitarbeiter |
| Lehrende des Moduls | – |
| Medienformen | Mess- und Regelungstechnik:
• Ausdruckbares Skript (PDF)
• Folien / Beamer
• Web-Portal zum Kurs mit Skript zum Download und Zusatz- informationen
• Tafel
Praktikum Mess- und Regelungstechnik:
• Experimentalaufbauten
• Computersimulationen
• Skript |
| Literatur | Mess- und Regelungstechnik:

Praktikum Mess- und Regelungstechnik:
- Skript zur Vorlesung Mess- und Regelungstechnik
- Skript zum Praktikum
<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Physik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Physik</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Die Studierenden verfügen über das Verständnis für die allgemeine Schwingungs- und Wellenlehre. Sie besitzen Kenntnisse der grundlegenden Phänomene in der allgemeinen Schwingungs- und Wellenlehre insbesondere auch in der Akustik, Optik und Laserphysik; Die Studierenden können physikalische Prinzipien in der Technik anwenden.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmp 4 SWS</td>
</tr>
</tbody>
</table>
| Lehrinhalte | • Schwingungen
 • Wellen
 • Ergänzungen aus der Akustik
 • Ergänzungen aus der Optik
 • Elemente der Laserphysik
 • Grundlegende Prinzipien der Quantenmechanik |
<p>| Titel der Lehrveranstaltungen | Physik |
| (Lehr- / Lernformen) Lehr- und Lernmethoden (ZEVA) | Vorlesungsexperimente bringen den Lehrinhalt näher, Simulationen von physikalischen Vorgängen unterstützen das Verständnis |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Sommersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Höhere Mathematik 1–3, Technische Mechanik 1–3 |
| Voraussetzungen für die Teilnahme am Modul | – |
| Studentischer Arbeitsaufwand | 4 SWS VL (60 Std.) Selbststudium 90 Std. |
| Studienleistungen | – |
| Voraussetzung für Zulassung zur Prüfungsleistung | Siehe Prüfungsordnung gemäß § 7 Absatz 7 |
| Prüfungsleistung | Klausur 60–180 Min. oder mündliche Prüfung 15–30 Min. |
| Anzahl Credits für das Modul | 5 Credits |
| Lehreinheit | Fachbereich 10 |
| Modulverantwortliche/r | Prof. Kilian Singer |
| Lehrende des Moduls | Prof. Kilian Singer |
| Medienformen | • Tafel |</p>
<table>
<thead>
<tr>
<th>Modulhandbuch</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Folien</td>
</tr>
<tr>
<td></td>
<td>Rechner</td>
</tr>
<tr>
<td></td>
<td>Videos von Experimenten</td>
</tr>
<tr>
<td>Literatur</td>
<td>Lehrbücher der Experimentalphysik</td>
</tr>
</tbody>
</table>
Semesterarbeit

Term paper

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Semesterarbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>St_A</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Wird vom Betreuer festgelegt</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Semesterarbeit</td>
</tr>
<tr>
<td>(Ler-/ Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Projektarbeit, praktische Arbeiten, Präsentationen</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Semester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch oder englisch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Basisvorlesungen des Schwerpunktes abgeschlossen</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>Selbststudium 210 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Projektarbeit</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Projektarbeit</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>7 Credits, davon 2 Credits integrierte Schlüsselkompetenz</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Die Dozenten des Fachbereichs Maschinenbau</td>
</tr>
<tr>
<td>Medienformen</td>
<td>–</td>
</tr>
<tr>
<td>Literatur</td>
<td>Wird vom Betreuer festgelegt</td>
</tr>
<tr>
<td>Nummer/Code</td>
<td>Technische Thermodynamik 2</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Modulname</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 2 SWS</td>
</tr>
<tr>
<td></td>
<td>HÜ 1 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>• Thermodynamische Eigenschaften von Gemischen und mehrphasigen Systemen (u. a. Gas–Dampf–Gemische, feuchte Luft)</td>
</tr>
<tr>
<td></td>
<td>• Berechnung stationärer, idealisierter Kreisprozesse und ihrer Komponenten mit mehrphasigen Fluiden, bspw. Wärmekraftmaschine und Kaldampfprozess</td>
</tr>
<tr>
<td></td>
<td>• Berechnung und Beurteilung von Prozessen mit Gas–Dampf–Gemischen (z. B. Zustandsänderungen feuchter Luft – Mollier h,x–Diagramm, Trocknungsprozesse)</td>
</tr>
<tr>
<td></td>
<td>• Einführung in die Thermodynamik chemischer Reaktionen (Verbrennungsprozesse)</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Technische Thermodynamik 2</td>
</tr>
<tr>
<td>(Lehr–/ Lernformen)</td>
<td>Vorlesung, Hörsaalübungen, Tutorien</td>
</tr>
<tr>
<td>Lehr– und Lernmethoden (ZEVA)</td>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Regenerative Energien und Energieeffizienz</td>
</tr>
<tr>
<td></td>
<td>• Wahlpflichtmodul</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Höhere Mathematik 1–3, Technische Thermodynamik 1</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS VL (30 Std.)</td>
</tr>
<tr>
<td></td>
<td>1 SWS HÜ (15 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 105 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>–</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 90 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>5 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr.–Ing. habil. Andrea Luke</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Dr.–Ing. habil. Andrea Luke</td>
</tr>
</tbody>
</table>
| Medienformen | • Tafel
• E-Learning |
Schlüsselkompetenzen

Für Schlüsselkompetenzen gelten die Rahmenvorgaben für Schlüsselkompetenzen der Universität Kassel in der jeweils geltenden Fassung.

Insgesamt sind 12 Credits als Leistungsnachweis zu erbringen. Aus welchem der oben genannten Kompetenzbereiche die Leistungsnachweise erbracht werden, obliegt der Entscheidung des/der Studierenden.

Für den Bereich Schlüsselkompetenzen müssen die zugehörigen Veranstaltungen der Liste entnommen werden, welche auf der Studiengangs-Homepage veröffentlicht ist. Es müssen verpflichtend das Modul Fabrikbetriebslehre sowie insgesamt mindestens 6 Credits aus dem Bereich des Institutes für Arbeitswissenschaften erbracht werden.

Das Angebot des Sprachenzentrums ist ausschließlich der Liste der Schlüsselkompetenzen zu entnehmen, welche auf der Studiengangs-Homepage des Fachbereiches Maschinenbau veröffentlicht ist sowie der Homepage und den Veröffentlichungen des Sprachenzentrums:
http://www.uni-kassel.de/einrichtungen/sprz/sprachenzentrum.html
<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Fabrikbetriebslehre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Die Studierenden kennen unterschiedliche Produktionsprozesse und sind in der Lage, diese aus geeigneten Quellen zu ermitteln. Sie besitzen die Fähigkeit, verschiedene Produktions- und Managementsysteme miteinander zu vergleichen und zu bewerten.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLMp 2 SWS</td>
</tr>
</tbody>
</table>
| Lehrinhalte | • Einführung Fabrikplanung
• systematischer Planungsablauf
• Standortwahl
• Organisationsformen der Fertigung
• Layoutplanung
• Feinplanung der Fertigung
• Rechnerunterstützung in der Fabrikplanung
• umweltgerechte Fabrikplanung |
| Titel der Lehrveranstaltungen | Fabrikbetriebslehre |
| (Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA) | Vorlesung, Hörsaalübung |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
• Pflichtmodul Schlüsselkompetenzen
B. Sc. Mechatronik
• Pflichtmodul |
<p>| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Wintersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | – |
| Voraussetzungen für die Teilnahme am Modul | – |
| Studentischer Arbeitsaufwand | 2 SWS VLMp (30 Std.) Selbststudium 30 Std. |
| Studienleistungen | – |
| Voraussetzung für Zulassung zur Prüfungsleistung | – |
| Prüfungsleistung | Klausur 90 Min. |
| Anzahl Credits für das Modul | 2 Credits |
| Lehreinheit | Fachbereich 15 |</p>
<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Prof. Stefan Böhm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Stefan Böhm</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Folien (Power Point)</td>
</tr>
<tr>
<td>Literatur</td>
<td>Aggteleky, Bela: Fabrikplanung Band 1–3</td>
</tr>
</tbody>
</table>
Arbeits- und Organisationspsychologie 1

Modulhandbuch

Nummer/Code

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Arbeits- und Organisationspsychologie 1</th>
</tr>
</thead>
</table>

Art des Moduls

<table>
<thead>
<tr>
<th>Schlüsselkompetenz</th>
</tr>
</thead>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Lehrveranstaltungsarten

<table>
<thead>
<tr>
<th>VLmP 2 SWS</th>
</tr>
</thead>
</table>

Lehrinhalte

Gegenstand der Vorlesung sind die Ziele, Aufgaben sowie die theoretischen und methodischen Grundlagen der Arbeitspsychologie. Schwerpunkte sind:

- Ergonomie und Arbeits- und Organisationspsychologie und deren historische Entwicklung
- Informationsverarbeitung des Menschen
- Mensch-Maschine-System und Systemergonomie
- Arbeitsorganisation
- Arbeitssystemgestaltung (Gestaltung der Arbeitsumgebung, Arbeitsplatz- und Arbeitsmittelgestaltung)

Titel der Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Arbeits- und Organisationspsychologie 1</th>
</tr>
</thead>
</table>

Verwendbarkeit des Moduls

<table>
<thead>
<tr>
<th>B. Sc. Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Sc. Mechatronik</td>
</tr>
<tr>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td>M. Sc. Mechatronik</td>
</tr>
<tr>
<td>M. Sc. Regenerative Energien und Energieeffizienz</td>
</tr>
<tr>
<td>M. Ed. Wirtschaftspädagogik</td>
</tr>
<tr>
<td>M. Sc. Psychologie</td>
</tr>
<tr>
<td>M. Sc. Wirtschaft, Psychologie, Management</td>
</tr>
</tbody>
</table>

Dauer des Angebotes des Moduls

| Ein Semester |

Häufigkeit des Angebotes des Moduls

| Jedes Sommersemester |

Sprache

| deutsch |

Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul

| - |

Voraussetzungen für die Teilnahme am Modul

| - |

Studentischer Arbeitsaufwand

<p>| 2 SWS VL (30 Std.) Selbststudium 30 Std. |</p>
<table>
<thead>
<tr>
<th>Studienleistungen</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>–</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 90 Min. oder mündliche Prüfung 30 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
</tbody>
</table>
| Modulverantwortliche/r | Prof. Oliver Sträter
Dr. Jürgen Pfitzmann |
| Lehrende des Moduls | Prof. Oliver Sträter |
| Medienformen | Vorlesung |
Arbeits- und Organisationspsychologie 2
Work and Organizational Psychology 2

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Arbeits- und Organisationspsychologie 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Arbeits- und Organisationspsychologie 2</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Schlüsselkompetenz</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Lernprozesse und Arbeitsstrukturen stehen in modernen Unternehmen im Zentrum arbeitspsychologischen Handelns. Personelle Voraussetzungen der Mitarbeiter und Förderung durch geeignete Trainings- und Entwicklungsmaßnahmen sind ebenso von zentraler Bedeutung wie die Vermeidung negativer Beanspruchungsfolgen, wie Stress, Burnout oder Mobbing.

Studierende verfügen über Kenntnisse von Konzepten humaner Arbeitsgestaltung.

Die Vorlesung baut auf Arbeitspsychologie 1 auf.

<table>
<thead>
<tr>
<th>Lehrveranstaltungsarten</th>
<th>VLmP 2 SWS</th>
</tr>
</thead>
</table>

Lehrinhalte

Gegenstand der Vorlesung sind die organisatorischen Aspekte und Umsetzungen der theoretischen und methodischen Grundlagen der Arbeitspsychologie.

Schwerpunkte sind:

- Produktionsgestaltung
- Betriebsmanagement und Gesundheitsmanagement
- Qualifikation & Training (Personale Voraussetzungen und Kompetenzentwicklung)
- Personalführung (Motivation und Führung) und Gruppenarbeit
- Methoden der empirischen psychologischen zur Organisationsgestaltung
- Strategien und Konzepte der psychologischen Arbeitsgestaltung
- Konzepte der Humanisierung der Arbeitswelt
- Makrostruktur von Arbeitsprozessen
- Konzepte der Verhaltensschulung

<table>
<thead>
<tr>
<th>Titel der Lehrveranstaltungen</th>
<th>Arbeits- und Organisationspsychologie 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lehr–/ Lernformen) Lehr– und Lernmethoden (ZEVA)</td>
<td>Vorlesung</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls

- B. Sc. Maschinenbau
- B. Sc. Mechatronik
- M. Sc. Maschinenbau
- M. Sc. Mechatronik
- M. Sc. Regenerative Energien und Energieeffizienz
- M. Ed. Wirtschaftspädagogik
- M. Sc. Psychologie
- M. Sc. Wirtschaft, Psychologie, Management

<table>
<thead>
<tr>
<th>Dauer des Angebotes des Moduls</th>
<th>Ein Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Arbeits- und Organisationspsychologie 1</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS VL (30 Std.) Selbststudium 30 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>–</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 90 Min. oder mündliche Prüfung 30 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
</tbody>
</table>
| **Modulverantwortliche/r** | Prof. Oliver Sträter
Dr. Jürgen Pfitzmann |
| **Lehrende des Moduls** | Prof. Oliver Sträter |
| **Medienformen** | Vorlesung |
| **Literatur** |
Betriebliches Gesundheitsmanagement
Occupational Health Management

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Betriebliches Gesundheitsmanagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Schlüsselkompetenz</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)
Dieses Kompaktseminar bietet die Möglichkeit zu erfahren, welche Maßnahmen ein Großunternehmen durchführt, um die Gesundheit der Arbeitnehmer zu fördern. Schwerpunkte liegen dabei auf dem Erfahrungsgewinn in den Bereichen Gefährdungsbeurteilung, Ergonomie und Gesundheitsförderung, die in den einzelnen Blockseminaren vertiefend behandelt und nachfolgend an praktischen Beispielen verdeutlicht werden.

<table>
<thead>
<tr>
<th>Lehrveranstaltungsarten</th>
<th>S 2 SWS Blockveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrinhalte</td>
<td>Einführungsveranstaltung</td>
</tr>
</tbody>
</table>

Themen:
- Einführender Vortrag zum betrieblichen Gesundheitsmanagement
- Diskussion
- Vorstellung & Verteilung der Referatsthemen
- Klärung organisatorischer Fragen

I Blockseminar

Thema: Gefährdungsbeurteilung
- standardisierte Gefährdungsbeurteilung
- Gefährdungen (allgemein)
- ergonomische Bewertung
- psychische Gefährdung
- Büroarbeitsplätze

praktischer Teil: Erstellen von Gefährdungsbeurteilungen für ausgewählte Arbeitsplätze

II Blockseminar

Thema: Ergonomie
- Kurzvorstellung Ergonomie
- ergonomische Bewertungsverfahren
- Bewertungsverfahren EAWS
- Ergonomie im Produktentstehungsprozess

praktischer Teil:
- exemplarische Bewertung von Arbeitsplätzen nach dem EAWS-Verfahren,
- Erarbeiten eines Ergonomiekonzepts im Produktentstehungsprozess

III Blockseminar
<table>
<thead>
<tr>
<th>Thema: Gesundheitsförderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>• kognitive Gesundheit</td>
</tr>
<tr>
<td>• körperliche Gesundheit</td>
</tr>
<tr>
<td>• Möglichkeiten des Vorgesetzten</td>
</tr>
<tr>
<td>• Möglichkeiten des Betriebs</td>
</tr>
</tbody>
</table>

praktischer Teil: Erarbeiten eines Gesundheitsförderungskonzeptes unter Einbezug der Möglichkeiten vor Ort

IV Blockseminar

Thema: Gesamtkonzept betriebliches Gesundheitsmanagement

• rechtliche Grundlagen
• Verantwortlichkeiten im Betrieb
• Nutzen eines BGM

praktischer Teil:
• Erstellung eines Gesamtkonzepts in Kleingruppen
• Betriebsbegehung unter Gesichtspunkten eines betrieblichen Gesundheitsmanagements

<table>
<thead>
<tr>
<th>Titel der Lehrveranstaltungen</th>
<th>Betriebliches Gesundheitsmanagement</th>
</tr>
</thead>
</table>

(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)
Blockveranstaltung, Gruppenarbeit, Gruppendiskussionen, Vorträge

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td>• Schlüsselkompetenz</td>
</tr>
<tr>
<td>• Wahlpflichtmodul</td>
</tr>
<tr>
<td>B. Sc. Mechatronik</td>
</tr>
<tr>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td>• Schlüsselkompetenz</td>
</tr>
<tr>
<td>• Wahlpflichtmodul</td>
</tr>
<tr>
<td>M. Sc. Mechatronik</td>
</tr>
<tr>
<td>B. Sc. Wirtschaftsingenieurwesen</td>
</tr>
<tr>
<td>M. Sc. Wirtschaftsingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer des Angebotes des Moduls</th>
<th>Ein Semester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Häufigkeit des Angebotes des Moduls</th>
<th>Jedes Semester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sprache</th>
<th>Deutsch</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</th>
<th>–</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen für die Teilnahme am Modul</th>
<th>Anmeldung erforderlich, Teilnehmerzahl ist auf 15 beschränkt.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Studentischer Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS S (30 Std.) Selbststudium 60 Std.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studienleistungen</th>
<th>Anwesenheitspflicht</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Voraussetzung für Zulassung zur Prüfungsleistung</th>
<th>Studienleistung</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prüfungsleistung</th>
<th>Präsentation und schriftliche Ausarbeitung</th>
</tr>
</thead>
</table>
Modulhandbuch

<table>
<thead>
<tr>
<th>Anzahl Credits für das Modul</th>
<th>3 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
</tbody>
</table>
| Modulverantwortliche/r | Prof. Oliver Sträter
 | Dr. Jürgen Pfitzmann |
| Lehrende des Moduls | Dr. Andree Hillebrecht |
| Medienformen | – |
| Literatur | – |
| | Beck'sche Textausgaben Arbeitsschutzgesetze – Beck
 | Deutsche Forschungsgemeinschaft (DFG)
 | Jährliche MAK- und BAT Werte–Liste VCH (DFG)
 | Florian/Stollenz Arbeitsmedizin aktuell – Gustav Fischer
 | Griefhahn Arbeitsmedizin – Enke
 | Deutsche Forschungsgemeinschaft (DFG) Begründung von MAK Werten (9 Bände)
 | Fritze Die ärztliche Begutachtung – Steinkopf
 | Konietzko Dupuis – Handbuch der Arbeitsmedizin– eco med
 | Kühn Birett – Merkblätter Gefährlicher Arbeitsstoffe – eco med
 | Martin – Grundlagen der menschlichen Arbeitsgestaltung – bund Verlag
 | Opfermann/Streit – Arbeitsstätten (ArbStättV/ASR)
 | Reichel u. a. Grundlagen der Arbeitsmedizin – Kohlhammer
 | Sohnius/Florian – Handbuch Betriebsärztlicher Dienst– eco med
 | Valentin – Arbeitsmedizin (I+II) Thieme
 | Wichmann/Schlipköter – Handbuch der Umweltmedizin– eco med
| Zeitschriften: | – |
| | Arbeitsmedizin, Sozialmedizin, Umweltmedizin – Gentner Verlag
 | Zentralblatt für Arbeitsmedizin, Arbeitsschutz und Ergonomie Dr. Haefner
 | ErgoMed – Fachzeitschrift für die Arbeitsmedizinische Praxis Dr. Haefner
 | Umweltmedizin in Forschung und Praxis – eco med

Betriebswirtschaftslehre 1a
Business Studies 1a

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Betriebswirtschaftslehre 1a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Qualifikationsziele:</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>• Die Studierenden haben ein fundiertes Verständnis für die grund-sätzlichen Aufgaben der Unternehmensführung.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 2 SWS</td>
</tr>
<tr>
<td>Tut 1 SWS</td>
<td></td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>• Unternehmensformen</td>
</tr>
<tr>
<td>• Entscheidungstheorie</td>
<td></td>
</tr>
<tr>
<td>• Management als Funktion und Institution</td>
<td></td>
</tr>
<tr>
<td>• Managementprozess</td>
<td></td>
</tr>
<tr>
<td>• Strategisches Management</td>
<td></td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Betriebswirtschaftslehre 1a: Unternehmensführung</td>
</tr>
<tr>
<td>(Lehr- / Lernformen) Lehr- und Lernmethoden (Zeva)</td>
<td>Vorlesung, Übung und Fallstudien, Tutorium, Selbststudium, Vor- und Nachbereitung anhand einschlägiger Lehrbuch- bzw. Skriptlektüre</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td>B. Sc. Mechatronik</td>
<td></td>
</tr>
<tr>
<td>Pflichtmodul in den Bachelorstudiengängen:</td>
<td></td>
</tr>
<tr>
<td>• English and American Culture and Business Studies (EACBS),</td>
<td></td>
</tr>
<tr>
<td>• Geschichte,</td>
<td></td>
</tr>
<tr>
<td>• Mathematik,</td>
<td></td>
</tr>
<tr>
<td>• Politologie,</td>
<td></td>
</tr>
<tr>
<td>• Soziologie,</td>
<td></td>
</tr>
<tr>
<td>• Wirtschaftsanglistik/-amerikanistik/-romanistik,</td>
<td></td>
</tr>
<tr>
<td>• Wirtschaftsingenieurwesen,</td>
<td></td>
</tr>
<tr>
<td>• Wirtschaftspädagogik,</td>
<td></td>
</tr>
<tr>
<td>• Wirtschaftsrecht,</td>
<td></td>
</tr>
<tr>
<td>• Wirtschaftswissenschaften</td>
<td></td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Winter- und Sommersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS VL (30 Std.)</td>
</tr>
<tr>
<td>1 SWS Tut (15 Std.)</td>
<td></td>
</tr>
<tr>
<td>Modulhandbuch</td>
<td>Selbststudium 45 Std.</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>–</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 60 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 07</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Peter Eberl</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Peter Eberl</td>
</tr>
<tr>
<td>Medienformen</td>
<td>–</td>
</tr>
</tbody>
</table>
Buddy-Programm Bachelor

buddy program bachelor

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Buddy-Programm Bachelor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Die Studierenden haben ihre Sozialkompetenz, Kommunikationskompetenz und Organisationskompetenz ausgebaut und gestärkt.</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Coaching und Mentoring für Erstsemesterstudierende, Teilnahme an einem Vorbereitungswerkshop, Teilnahme an Betreuungsmaßnahmen in der Einführungswoche, Betreuung von Studienanfängern in Kleingruppen.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>PrM 2 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Workshop, Gruppenarbeit</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Buddy-Programm Bachelor</td>
</tr>
<tr>
<td>(Lehr-/Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Workshop, Gruppenarbeit</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B.Sc. Maschinenbau B.Sc. Mechatronik</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein bis zwei Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Ausgeprägte Sozialkompetenz</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Ab dem 3. Fachsemester; Anmeldung erforderlich, Teilnehmerzahl ist begrenzt.</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2–3 SWS PrM (30–45 Std.) Selbststudium 30 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Studienleistungen werden vom jeweiligen Dozenten zu Beginn der Lehrveranstaltung festgelegt und sind unbenotet. Anwesenheitspflicht</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistung</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Abschlussbericht (5–10 Seiten)</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>1–3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Medienformen</td>
<td>–</td>
</tr>
<tr>
<td>Literatur</td>
<td>–</td>
</tr>
</tbody>
</table>
Der Ingenieur als Führungskraft 1

The Engineer as Manager 1

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Der Ingenieur als Führungskraft 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Einführung in die Führungslehre / Führungspsychologie. Die zwei Blockseminare (Der Ingenieur als Führungskraft 1 + 2) beschäftigen sich mit Grundlagenwissen zu den Bereichen: Kommunikation und Gruppendynamik. Die Seminare sind als Einstiegsveranstaltung angelegt, um den Teilnehmern den Bereich "Sozialkompetenz" systematisch zu erschließen. Alle zwei Themen betreffen den beruflichen und den privaten Lebensbereich.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>S 2 SWS Blockveranstaltung</td>
</tr>
</tbody>
</table>
| Lehrinhalte | Kommunikation (Teil 1):
 - Sozialkompetenz/Fachkompetenz
 - Führungslehre – ist das möglich?
 - Sender–Empfänger–Problem
 - Vier Aspekte der Kommunikation
 - Fragetechnik und Gesprächsstile |
| Titel der Lehrveranstaltungen | Der Ingenieur als Führungskraft 1 |
| (Lehr- / Lernformen) Lehr- und Lernmethoden (ZEVA) | Lehrgespräch, Gruppendiskussionen, Gruppenarbeit, Fallstudien, Rollenspiele, Demonstrationen, Videoeinsatz. Der Seminarverlauf ist so gestaltet, dass abwechselnd theoretische Erörterungen mit praktischen Übungen, Rollenspielen und Videoaufzeichnungen verbunden sind. |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
B. Sc. Mechatronik
M. Sc. Maschinenbau
M. Sc. Mechatronik
M. Sc. Regenerative Energien und Energieeffizienz |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Sommersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Die Seminare (Der Ingenieur als Führungskraft 1 + 2) bauen aufeinander auf, deshalb ist mit Teil 1 zu beginnen. |
| Voraussetzungen für die Teilnahme am Modul | Anmeldung erforderlich, Teilnehmerzahl ist auf 20 beschränkt. |
| Studentischer Arbeitsaufwand | 2 SWS S (30 Std.)
Selbststudium 60 Std. |
| Studienleistungen | Anwesenheitspflicht |
| Voraussetzung für Zulassung zur Prüfungsleistung | Studienleistung |
| Prüfungsleistung | |

<table>
<thead>
<tr>
<th>Anzahl Credits für das Modul</th>
<th>3 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Honorarprofessor Dr. Ulrich Rieger</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Honorarprofessor Dr. Ulrich Rieger</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Beamer, Videoaufzeichnungen</td>
</tr>
</tbody>
</table>
Der Ingenieur als Führungskraft 2

The Engineer as Manager 2

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Der Ingenieur als Führungskraft 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>Lernergebnisse,</td>
<td>Einführung in die Führungslehre / Führungspsychologie. Die zwei Kompetenzen, die zwei Blockseminare (Der Ingenieur als Führungskraft 1 + 2) beschäftigen sich mit Grundlagenwissen zu den Bereichen: Kommunikation und Gruppendynamik. Die Seminare sind als Einstiegsvorlesung angelegt, um den Teilnehmern den Bereich "Sozialkompetenz" systematisch zu erschließen. Alle zwei Themen betreffen den beruflichen und den privaten Lebensbereich.</td>
</tr>
<tr>
<td>Kompetenzen</td>
<td></td>
</tr>
<tr>
<td>(Qualifikationsziele)</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>S 2 SWS Blockveranstaltung</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Gruppendynamik (Teil 2):</td>
</tr>
<tr>
<td></td>
<td>• Gruppenstrukturen und Gruppenprozesse</td>
</tr>
<tr>
<td></td>
<td>• Gruppenleistung und Gruppenvorteil</td>
</tr>
<tr>
<td></td>
<td>• Führungsstile (Steuerung von Gruppenprozessen)</td>
</tr>
<tr>
<td></td>
<td>• Kompetenzstufen der Mitarbeiter</td>
</tr>
<tr>
<td></td>
<td>• Steuerung von Arbeitsgesprächen</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Der Ingenieur als Führungskraft 2</td>
</tr>
<tr>
<td>(Lehr–/Lernformen)</td>
<td>Lehrgespräch, Gruppendiskussionen, Gruppenarbeit, Fallstudien, Rollenspiele, Demonstrationen, Videoeinsatz. Der Seminarverlauf ist so gestaltet, dass abwechselnd theoretische Erörterungen mit praktischen Übungen, Rollenspielen und Videoaufzeichnungen verbunden sind.</td>
</tr>
<tr>
<td>Lehr- und Lernmethoden (ZEVA)</td>
<td></td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Mechatronik</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Mechatronik</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Regenerative Energien und Energieeffizienz</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Die Seminare (Der Ingenieur als Führungskraft 1 + 2) bauen aufeinander auf, deshalb ist mit Teil 1 zu beginnen.</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Anmeldung erforderlich, Teilnehmerzahl ist auf 20 beschränkt.</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS S (30 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 60 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Anwesenheitspflicht</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistung</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td></td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Honorarprofessor Dr. Ulrich Rieger</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Honorarprofessor Dr. Ulrich Rieger</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Beamer, Videoaufzeichnungen</td>
</tr>
</tbody>
</table>
Formula Student Competition

Modulhandbuch

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Formula Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Die Studierenden haben die Fähigkeit des koordinierten Arbeitens innerhalb eines Projektes verbessert. Sie sind in der Lage, selbständig innerhalb der Arbeitsgruppen zu arbeiten bzw. selbstständig Arbeitspakete zu erarbeiten.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>PrM 1 – 6 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Teamarbeit / Projektarbeit, Praktische Anwendung des theoretischen Wissens, Teilnahme an internationalem Wettbewerb</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Formula Student Competition</td>
</tr>
<tr>
<td>(Lehr- / Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Teamarbeit, Gruppenarbeit, Projektarbeit, Laborarbeiten, praktische Arbeiten, Rechner- und Simulationsaufgaben, Gruppendiskussionen, Erörterungen, Demonstrationen, Präsentationen, Vorträge</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Je nach CP-Umfang ist eine flexible Verteilung über mehrere Semester möglich.</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Semester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>30 h – 180 h</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Teilnahmenachweis (Teamleitung)</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Kolloquium</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>1 – 6 CP, Kann nicht im selben Semester wie Wahlpflichtfacht ‚Formula Student Competition‘ erbracht werden.</td>
</tr>
<tr>
<td></td>
<td>Wahlpflicht- und Schlüsselkompetenzmodul dürfen in Summe nur 8 CP ergeben.</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Hesselbach, Prof. Hetzler, Dr. Wallenta</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Dr. Hesselbach, Prof. Hetzler, Dr. Wallenta</td>
</tr>
<tr>
<td>Medienformen</td>
<td>–</td>
</tr>
<tr>
<td>Literatur</td>
<td>–</td>
</tr>
</tbody>
</table>
Grundlagen des gewerblichen Rechtsschutzes (Patente – Marken – Design)

Industrial Property Fundamentals

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Grundlagen des gewerblichen Rechtsschutzes (Patente – Marken – Design)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Grundlagen des gewerblichen Rechtsschutzes (Patente – Marken – Design)</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Vermittlung von Grundwissen auf dem Gebiet des gewerblichen Rechtsschutzes</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLMp 2 SWS Blockveranstaltung</td>
</tr>
</tbody>
</table>
| Lehrinhalte | - Patentrecht – deutsch/international
- Gebrauchsmusterrecht – deutsch
- Arbeitnehmererfinderrecht
- Markenrecht – deutsch/international
- Geschmacksmusterrecht – deutsch/international
- Urheberrecht – Software-Schutz
- sonstige Schutzrechte |
| Einzelheiten: | - Einführung ins Thema
- Patente/Gebrauchsmuster
- Materielles Recht
- Verfahrensrecht
- Ansprüche formulieren
- Durchsetzen von Schutzrechten
- Arbeitnehmererfinderrecht
- Patentrecherchen (PIZ)
- Geschmacksmuster |
| Titel der Lehrveranstaltungen | Grundlagen des gewerblichen Rechtsschutzes (Patente – Marken – Design) |
| (Lehr- / Lernformen) Lehr- und Lernmethoden (ZEVA) | |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
B. Sc. Mechatronik
M. Sc. Maschinenbau
M. Sc. Mechatronik |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Wintersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | – |
| Voraussetzungen für die Teilnahme am Modul | – |
| Studentischer Arbeitsaufwand | 2 SWS VL (30 Std.)
Selbststudium 30 Std. |
<table>
<thead>
<tr>
<th>Studienleistungen</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>–</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Mündliche Prüfung 30 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>2 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Dr. Heike Krömker</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Claus-Dieter Hinz, Robert Walther</td>
</tr>
<tr>
<td>Medienformen</td>
<td>–</td>
</tr>
</tbody>
</table>
| **Literatur** | • Skript
• Rudolf Kraßer: Patentrecht: Lehr- und Handbuch, Beck Juristischer Verlag |
Hochschulbildung, Energie, Umwelt und Nachhaltigkeit in Lateinamerika und der Karibik
Higher education, energy, environment and sustainability in Latin America and the Caribbean

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Hochschulbildung, Energie, Umwelt und Nachhaltigkeit in Lateinamerika und der Karibik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Hochschulbildung, Energie, Umwelt und Nachhaltigkeit in Lateinamerika und der Karibik</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Diese Veranstaltung bietet die Gelegenheit, Austauschmöglichkeiten für deutsche Studierende in Lateinamerika und der Karibik vorzustellen und zu diskutieren sowie interkulturelle Fragen im Zusammenhang mit den Schwerpunkten Energie, Umwelt und Nachhaltigkeit in dieser Region zu erörtern. Darüber hinaus haben die Studierenden auch die Möglichkeit, die spanische Sprache in entspannter Atmosphäre anzuwenden (bei entsprechenden Vorkenntnissen und Interesse) anzuwenden. Die erworbene Kompetenz schließt eine internationale und interkulturelle Lernerfahrung ein, die für eine spätere berufliche Tätigkeit qualifiziert.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>S 1,5 SWS</td>
</tr>
</tbody>
</table>
| Lehrinhalte | • Sozioökonomische Indikatoren Lateinamerikas und der Karibik im Vergleich
• Ein Überblick über die Biodiversität Lateinamerikas und der Karibik und das Potenzial des Naturkapitals der Region
• Verständnis der Chancen und Herausforderungen der Umweltpolitik für die Nachhaltigkeit dieser Region
• Verständnis der zentralen Ausprägungen des Energiesystems und der Herausforderungen der Energiewende in Lateinamerika und der Karibik
• Überblick über das Hochschulsystem in Lateinamerika und der Karibik
• Akademische Austauschmöglichkeiten in Lateinamerika und der Karibik |
| Titel der Lehrveranstaltungen | Hochschulbildung, Energie, Umwelt und Nachhaltigkeit in Lateinamerika und der Karibik |
| (Lehr-/Lernformen) Lehr- und Lernmethoden (ZEVA) | Vorlesungen und Seminarvorträge |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
B. Sc. Mechatronik
B. Sc. Elektrotechnik
B. Sc. Umweltingenieurwesen
B. Sc. Wirtschaftsingenieurwesen |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jeweils Wintersemester 2020/21 und Sommersemester 2021 |
| Sprache | Deutsch |
Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul

-

Voraussetzungen für die Teilnahme am Modul

-

Studentischer Arbeitsaufwand

| 1,5 SWS VL (23 h) | Selbststudium 37 Std. |

Studienleistungen

-

Voraussetzung für Zulassung zur Prüfungsleistung

-

Prüfungsleistung

Präsentation und Diskussion im Rahmen eines Seminarvortrages und eine Klausur (45 min).

Anzahl Credits für das Modul

2 NT- Credits

Lehreinheit

Fachbereich 15

Modulverantwortliche/r

Prof. Dr.-Ing. Alexander Gomez (FB15)

Lehrende des Moduls

Prof. Dr.-Ing. Alexander Gomez (FB15)

Medienformen

PowerPoint

Literatur

Aktuelle Studien zu den jeweils behandelten Themengebieten.
<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Ideenwerkstatt MACHEN!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Ideenwerkstatt MACHEN!</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Schlüsselkompetenz</td>
</tr>
</tbody>
</table>
| Lernergebnisse, Kompetenzen (Qualifikationsziele) | Schlüsselkompetenzen fachübergreifend Kompetenzbereiche:
 - Fachübergreifende Studien
 - Kommunikationskompetenz
 - Organisationskompetenz
 - Methodenkompetenz |
| Lehrveranstaltungsarten | S 2 SWS |
 Zu diesem Zweck wird zuerst ein Problemlösungsprozess entwickelt.
 Nach einer vielseitigen Sammlung von Daten in Form von Fakten, Beobachtungen, Erlebnissen und Meinungen formuliert jedes Team seine individuelle Aufgabenstellung und entwickelt darauf basierend Ideen, Konzepte und Alternativen.
 Anhand der Prototypen werden die Konzepte auf ihre Brauchbarkeit hin im Feldversuch empirisch untersucht.
 Zum Abschluss der Ideenwerkstatt werden die Ergebnisse vor einem ausgewählten Publikum präsentiert (Pitch) und hinsichtlich ihrer Machbarkeit und Umsetzbarkeit diskutiert. |
| Titel der Lehrveranstaltungen | Ideenwerkstatt MACHEN! |
| (Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA) | Präsenzstudium,
 Werkstatt,
 Projektmanagement,
 Kreativitätstechniken,
 Präsentationstechniken,
 interdisziplinäre Kommunikationstechniken |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
 B. Sc. Mechatronik
 M. Sc. Maschinenbau
 M. Sc. Mechatronik |
<p>| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Semester |
| Sprache | Deutsch oder Englisch |</p>
<table>
<thead>
<tr>
<th>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</th>
<th>Neugier, Engagement, Offenheit, Experimentierfreude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS S (30 Std.) Selbststudium 60 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Es besteht bei allen Veranstaltungen Anwesenheitspflicht, da der aktive Beitrag und das Feedback der Teilnehmer maßgeblich für das Gelingen dieser Veranstaltung ist.</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistung</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Abschlusspräsentation (Pitch) im Team der gemeinsam entwickelten Idee vor einer Jury und schriftliche Reflexion der Ideenwerkstatt (Ausarbeitung des Ideenpapiers); 3 Credits. Zusatzleistung: Schriftliche Reflexion des Teamentwicklungsprozesses oder der Präsentation; 1 Credit.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 – 4 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Forschungs- und Lehrzentrum für unternehmerisches Denken und Handeln</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Christian Martin, Sara von Garssen</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Diverse</td>
</tr>
<tr>
<td>Medienformen</td>
<td>–</td>
</tr>
</tbody>
</table>
- Carroll, Lewis: Alice im Wunderland. Augsburg, 2005
- Fuller, Buckminster: Bedienungsanleitung für das Raumschiff Erde und andere Schriften. Hamburg 2010
- Plattner, Hasso: Christoph Meinel; Ulrich Weinberg: Design Thinking: Innovation lernen – Ideenwelten öffnen, München 2009
- Breuer, Angela Carmen: Das Portfolio im Unterricht: Theorie und Praxis im Spiegel des Konstruktivismus, Münster [u.a.], 2009
- Osterwalder, Alexander: Business Model Generation: ein Handbuch für Visionäre, Spielveränderer und Herausforderer, Frankfurt am Main [u.a.], 2011
| · Pfeifer, Silvia: Lernen mit Portfolios: neue Wege des selbstgesteuerten Arbeitens in der Schule, Göttingen, 2007
| · Lenzen, Klaus–Dieter: Von H wie Hausarbeit bis P wie Portfolio; Kassel, 2005 |
Leitung von Tutorien

Guidance of tutorials

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Leitung von Tutorien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>Pr 2 SWS</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Leitung von Tutorien</td>
</tr>
<tr>
<td>(Lehr- / Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Präsentationen</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Mechatronik</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Semester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltsliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Fundierte Kenntnisse in dem betreffenden Fach, mindestens gute Note im betreffenden Modul</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS Pr (30 Std.) Selbststudium 30 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>–</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Detaillierter Tätigkeitsnachweis</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>2 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Medienformen</td>
<td>–</td>
</tr>
<tr>
<td>Literatur</td>
<td>–</td>
</tr>
</tbody>
</table>
Matlab – Grundlagen und Anwendungen

Matlab – Fundamentals and applications

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Matlab – Grundlagen und Anwendungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Die Studierende sind in der Lage, das PC-Programm MATLAB/Simulink und die Control Toolbox zu bedienen und zum Lösen einfacher regelungstechnischer Probleme einzusetzen.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>Pr 2 SWS</td>
</tr>
</tbody>
</table>
| Lehrinhalte | • Einführung in Matlab:
 • Eingaben im Kommandofenster,
 • Programmierung von Skript-Dateien und Funktionen,
 • Erstellung von 2D/3D-Grafiken
 • Einführung in Simulink:
 • grafische Realisierung regelungstechnischer Systeme (Blockschaltbild),
 • Simulation dynamischer Systeme
 • Matlab Control Toolbox:
 • Systemdarstellungen im Frequenz- und Zeitbereich,
 • Linearisierung,
 • Wurzelortskurven,
 • Reglerentwurf für lineare SISO-Systeme |
| Titel der Lehrveranstaltungen | Matlab – Grundlagen und Anwendungen |
| (Lehr-/Lernformen) Lehr- und Lernmethoden (ZEVA) | Frontalunterricht, Rechnerübungen |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
 B. Sc. Mechatronik
 M. Sc. Regenerative Energien und Energieeffizienz |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Sommersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | PC-Kenntnisse, Mess- und Regelungstechnik
 Programmier-Erfahrung |
| Voraussetzungen für die Teilnahme am Modul | Anmeldung erforderlich, Teilnehmerzahl ist auf 30 beschränkt. |
| Studentischer Arbeitsaufwand | 2 SWS Pr (30 Std.)
 Selbststudium 60 Std. |
<p>| Studienleistungen | Anwesenheitspflicht |
| Voraussetzung für Zulassung zur Prüfungsleistung | Studienleistung |
| Prüfungsleistung | Schriftliche Ausarbeitung |</p>
<table>
<thead>
<tr>
<th>Anzahl Credits für das Modul</th>
<th>3 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Andreas Kroll</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Dipl.-Ing. Axel Dürrbaum</td>
</tr>
</tbody>
</table>

Medienformen
- Matlab-Live Scripte
- Moodle-Kurs mit Skript zum Download und Zusatzinformationen
- Beamer, PC

Literatur
- Basisliteratur: Skript / Moodle-Kurs
- Zu Matlab existiert zahlreiche Sekundärliteratur, die teilweise in der Uni-Bibliothek als Online-Ressource verfügbar sind:
<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Mensch–Maschine–Systeme 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Mensch–Maschine–Systeme 1</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Die Studierenden haben ein breites und integriertes Wissen und Verstehen der Grundlagen für die Analyse, den Entwurf und die Bewertung von Mensch–Maschine–Systemen.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 2 SWS S 2 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Technologisch–technische Gestaltung</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Mensch–Maschine–Systeme 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
<th>B. Sc. Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schlüsselkompetenz</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>M. Sc. Maschinenbau</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>Wahlpflichtmodul</td>
<td></td>
</tr>
<tr>
<td>B. Sc. Informatik</td>
<td></td>
</tr>
<tr>
<td>B. Sc. Psychologie</td>
<td></td>
</tr>
<tr>
<td>B. Sc./M. Sc. Wirtschaftsingenieurwesen</td>
<td></td>
</tr>
<tr>
<td>Diplom Produkt–Design</td>
<td></td>
</tr>
<tr>
<td>Interdisziplinäres Ergänzungsstudium Innovationsmanagement</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer des Angebotes des Moduls</th>
<th>Ein Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>-</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>-</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS VL (30 Std.) 2 SWS S (30 Std.) Selbststudium 120 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Anwesenheitspflicht für Seminarteil</td>
</tr>
</tbody>
</table>
Modulhandbuch

<table>
<thead>
<tr>
<th>Voraussetzung für Zulassung zur Prüfungsleistung</th>
<th>Studienleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td></td>
</tr>
<tr>
<td>Klausur 90 Min. oder mündliche Prüfung 20 Min.; Seminarvortrag oder Hausarbeit</td>
<td></td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Ludger Schmidt</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Ludger Schmidt</td>
</tr>
<tr>
<td>Medienformen</td>
<td>–</td>
</tr>
<tr>
<td>Literatur</td>
<td></td>
</tr>
</tbody>
</table>
Mensch–Maschine–Systeme 1

Human–Machine Systems 1

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Mensch–Maschine–Systeme 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Die Studierenden haben ein breites und integriertes Wissen und Verstehen der Grundlagen für die Analyse, den Entwurf und die Bewertung von Mensch–Maschine–Systemen.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 2 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Technologisch–technische Gestaltung</td>
</tr>
<tr>
<td></td>
<td>Ergonomische Gestaltung und Anthropometrie</td>
</tr>
<tr>
<td></td>
<td>Menschliche Informationsverarbeitung und informations–technische Gestaltung</td>
</tr>
<tr>
<td></td>
<td>Regler–Mensch–Modell</td>
</tr>
<tr>
<td></td>
<td>Cognitive Engineering und menschliche Fehler</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Titel der Lehrveranstaltungen</th>
<th>Mensch–Maschine–Systeme 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Vorlesung, Fallstudien, Demonstrationen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
<th>B. Sc. Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td></td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>B. Sc. Mechatronik</td>
<td></td>
</tr>
<tr>
<td>M. Sc. Maschinenbau</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td></td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>B. Sc. Informatik</td>
<td></td>
</tr>
<tr>
<td>B. Sc. Psychologie</td>
<td></td>
</tr>
<tr>
<td>B. Sc./M. Sc. Wirtschaftsingenieurwesen</td>
<td></td>
</tr>
<tr>
<td>Diplom Produkt–Design</td>
<td></td>
</tr>
<tr>
<td>Interdisziplinäres Ergänzungsstudium Innovationsmanagement</td>
<td></td>
</tr>
</tbody>
</table>

Dauer des Angebotes des Moduls

Ein Semester

Häufigkeit des Angebotes des Moduls

Jedes Wintersemester

Sprache

deutsch

Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul

-

Voraussetzungen für die Teilnahme am Modul

-

Studentischer Arbeitsaufwand

2 SWS VL (30 Std.)
Selbststudium 60 Std.

Studienleistungen

-

Voraussetzung für Zulassung zur Prüfungsleistung

-
<table>
<thead>
<tr>
<th>Prüfungsleistung</th>
<th>Klausur 90 Min. oder mündliche Prüfung 20 Min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Ludger Schmidt</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Ludger Schmidt</td>
</tr>
<tr>
<td>Medienformen</td>
<td>–</td>
</tr>
</tbody>
</table>
Mitarbeit im Schülerforschungszentrum Nordhessen SFN

Participation at the „Schülerforschungszentrum Nordhessen“ (SFN)

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Mitarbeit im Schülerforschungszentrum Nordhessen SFN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Die Studierenden haben ihre Sozialkompetenz, Kommunikationskompetenz und Organisationskompetenz ausgebaut und gestärkt. Sie sind in der Lage, komplexe Wissenschaftsthemen auf einfache Weise zu vermitteln und können Forschungsprojekte anleiten und betreuen.</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Die Studierenden haben ihre Sozialkompetenz, Kommunikationskompetenz und Organisationskompetenz ausgebaut und gestärkt. Sie sind in der Lage, komplexe Wissenschaftsthemen auf einfache Weise zu vermitteln und können Forschungsprojekte anleiten und betreuen.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>PrM 2–4 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td></td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Mitarbeit im Schülerforschungszentrum Nordhessen SFN</td>
</tr>
<tr>
<td>(Lehr-/ Lernformen)</td>
<td>Gruppenarbeit, Gruppendiskussionen, Anleitung und Betreuung von Schülern, Bearbeitung von Forschungsthemen und -aufgaben</td>
</tr>
<tr>
<td>Lehr- und Lernmethoden (ZEVA)</td>
<td>B.Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Maschinenbau</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>M.Sc. Mechatronik</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Semester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Ausgeprägte Sozialkompetenz sowie Interesse an vielfältigen Forschungsthemen im MINT-Bereich</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Ab dem 2. Fachsemester</td>
</tr>
<tr>
<td></td>
<td>Organisation und Anmeldung über den Studiendekan</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>30 Std. pro Credit</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Aktive Mitarbeit im Schülerforschungszentrum</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistung</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Abschlussbericht (5–10 Seiten) und Tätigkeitsnachweis</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>2–4 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Medienformen</td>
<td>–</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Literatur</td>
<td>http://sfn-kassel.de/</td>
</tr>
</tbody>
</table>
Mitarbeit in studentischen Gremien

Participation in student’s committees

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Mitarbeit in studentischen Gremien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>Pr 2–4 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Vertretung studentischer Interessen gegenüber dem Fachbereich, Mitarbeit in akademischen Gremien wie Senat, Fachbereichsrat oder Prüfungsausschüssen, Tätigkeit als studentische Frauenbeauftragte, Organisation von Veranstaltungen, Mentorentätigkeit für jüngere Kommilitonen.</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Mitarbeit in studentischen Gremien</td>
</tr>
<tr>
<td>(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Gruppendiskussionen, Erörterungen, Präsentationen</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Mechatronik</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Zwei Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Semester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltsliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>30 Std. pro Credit</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Aktive Mitarbeit</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>–</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Detaillierter Tätigkeitsnachweis (1 Credit/Semester; mind. 2 Semester)</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>2–4 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Medienformen</td>
<td>–</td>
</tr>
<tr>
<td>Literatur</td>
<td>–</td>
</tr>
</tbody>
</table>
Präsentation und Moderation

Modulhandbuch

Präsentation und Moderation

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Präsentation und Moderation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>S 2 SWS Blockveranstaltung</td>
</tr>
</tbody>
</table>
| Lehrinhalte | Präsentation:
- Zielsetzung von Präsentationen
- Einsatz visueller Hilfsmittel
- Foliengegestaltung
- Vorbereitung und Durchführung einer eigenen Präsentation
- Zeitmanagement
Moderation:
- Ziele einer Moderation
- Moderationsmethoden
- Moderationszyklus
- Metaplantechnik
- Die Rolle des Moderators |
| Titel der Lehrveranstaltungen | Präsentation und Moderation |
| (Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA) | Blockveranstaltung, Vorträge, Gruppendiskussion |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Semester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Arbeits- und Organisationspsychologie 1 + 2 |
| Voraussetzungen für die Teilnahme am Modul | Anmeldung ab B.Sc. 5 / Teilnehmerzahl auf 16 pro Gruppe beschränkt (es gibt zwei Gruppen) |
| Studentischer Arbeitsaufwand | 2 SWS S (30 Std.)
Selbststudium 60 Std. |
<p>| Studienleistungen | Anwesenheitspflicht |</p>
<table>
<thead>
<tr>
<th>Voraussetzung für Zulassung zur Prüfungsleistung</th>
<th>Studienleistung Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>Präsentation und schriftliche Ausarbeitung</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Oliver Sträter</td>
</tr>
<tr>
<td></td>
<td>Dr. Jürgen Pfitzmann</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Dipl.-Psych. Markus Unger</td>
</tr>
<tr>
<td></td>
<td>Dipl.-Oec. Stephanie Schmidt, M.A.</td>
</tr>
<tr>
<td>Medienformen</td>
<td>–</td>
</tr>
<tr>
<td>Literatur</td>
<td>Wird am Anfang des Semesters angegeben</td>
</tr>
</tbody>
</table>
Projektmanagement 1 – Grundlagen des Projektmanagements, Teil 1

Project Management 1

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Projektmanagement 1 – Grundlagen des Projektmanagements, Teil 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 2 SWS Ü + HÜ (je ein Halbtag)</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Projektmanagement 1 – Grundlagen des Projektmanagements, Teil 1</td>
</tr>
<tr>
<td>(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Vorlesung, Übungen</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
B. Sc. Mechatronik
M. Sc. Maschinenbau
M. Sc. Mechatronik
M. Sc. Regenerative Energien und Energieeffizienz
B. Sc. Wirtschaftsingenieurwesen
M. Sc. Elektrotechnik
M. Sc. Informatik |
<table>
<thead>
<tr>
<th>Dauer des Angebotes des Moduls</th>
<th>Ein Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>-</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>-</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS VL (30 Std.)
Ü + HÜ (je 1 Halbtag; 10 Std.)
Selbststudium 30 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Anwesenheitspflicht in den Übungen</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Teilnahme an den Übungen</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 60 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr.-Ing. Konrad Spang</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Dr.-Ing. Konrad Spang</td>
</tr>
<tr>
<td>Medienformen</td>
<td>• Folien (Powerpoint, Projektor)
• Skript
• Softwarevorführung</td>
</tr>
</tbody>
</table>
Projektmanagement 2 – Grundlagen des Projektmanagements, Teil 2

Modulname

Projektmanagement 2 – Grundlagen des Projektmanagements, Teil 2

Art des Moduls

Schlüsselkompetenz

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Der Student ist in der Lage:

- unterschiedliche Formen der Projektaufbauorganisation zu beschreiben, miteinander zu vergleichen und in Abhängigkeit bestimmter Situationen eine geeignete auszuwählen
- zu erklären, was ein Projektmanagementprozess ist und unterschiedliche Prozessmodelle miteinander zu vergleichen
- effektive Instrumente des Projektänderungs-, –risiko- und –stakeholdermanagements anzuwenden
- die Aufgaben und Kompetenzen des Projektleiters zu nennen und zu beschreiben
- zu erklären, in welchen Situationen Leistungen, Entscheidungen oder Informationen des Auftraggebers wichtig für einen reibungslosen Projektfortgang sind
- wesentliche Komponenten des und Aufgaben im Projektwissensmanagement(s) zu nennen und zu beschreiben

Lehrveranstaltungsarten

VLmP 2 SWS

Ü + HÜ (je ein Halbtag)

Lehrinhalte

Titel der Lehrveranstaltungen

Projektmanagement 2 – Grundlagen des Projektmanagements, Teil 2

(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)

Vorlesung, Übung

Verwendbarkeit des Moduls

B. Sc. Maschinenbau
B. Sc. Mechatronik
M. Sc. Maschinenbau
M. Sc. Mechatronik
M. Sc. Regenerative Energien und Energieeffizienz
B. Sc. Wirtschaftsingenieurwesen
M. Sc. Elektrotechnik
M. Sc. Informatik

Dauer des Angebotes des Moduls

Ein Semester

Häufigkeit des Angebotes des Moduls

Jedes Sommersemester

Sprache

deutsch
<table>
<thead>
<tr>
<th>Empfohlene (inhaltsliche) Voraussetzungen für die Teilnahme am Modul</th>
<th>Grundlagen des Projektmanagements, Teil 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
</tbody>
</table>
| Studentischer Arbeitsaufwand | 2 SWS VL (30 Std.)
0,5 SWS Ü + HÜ (je ein Halbtag; 10 Std.)
Selbststudium 30 Std. |
| Studienleistungen | Anwesenheitspflicht in den Übungen |
| Voraussetzung für Zulassung zur Prüfungsleistung | Teilnahme an den Übungen |
| Prüfungsleistung | Klausur 60 Min. |
| Anzahl Credits für das Modul | 3 Credits |
| Lehreinheit | Fachbereich 15 |
| Modulverantwortliche/r | Prof. Dr.-Ing. Konrad Spang |
| Lehrende des Moduls | Prof. Dr.-Ing. Konrad Spang |
| Medienformen |
• Folien (Powerpoint, Projektor)
• Skript
• Softwarevorführung |
| Literatur |
Projektmanagement 3 – Vertiefung
Project Management 3

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Projektmanagement 3 – Vertiefung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Vertiefung von ausgewählten Themen des Projektmanagements fachübergreifend. Vorlesung und Gruppenarbeit mit Fallbeispielen sollen vertiefte Kenntnisse im Projektmanagement vermitteln und die Studierenden in die Lage versetzen, selbst erfolgreich Projekte zu steuern und zu leiten.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>HS 4 SWS</td>
</tr>
</tbody>
</table>
| Lehrinhalte | • u. a. Risiko und Krisenmanagement im Projekt
• Projektkultur
• Projekt-Controlling
• Vertragsmanagement
• Personal und PM
• Kommunikation und Information im Projekt
• Projektpräsentation
• Teamführung und Konfliktbewältigung im Projekt
• Behandlung von Fallbeispielen
• Projektbearbeitung im Team |
| Titel der Lehrveranstaltungen | Projektmanagement 3 – Vertiefung |
| (Lehr-/Lernformen) | Vorlesung, Gruppenarbeit, Seminarvorträge |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
M. Sc. Maschinenbau |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Wintersemester |
| Sprache | deutsch |
| Empfohlene (inhaltsliche) Voraussetzungen für die Teilnahme am Modul | PM 2, Grundlagen des Projektmanagements, Teil 2 |
| Voraussetzungen für die Teilnahme am Modul | PM 1, Grundlagen des Projektmanagements, Teil 1, Anmeldung erforderlich, Teilnehmerzahl ist beschränkt. |
| Studentischer Arbeitsaufwand | 4 SWS HS (60 Std.)
Selbststudium 120 Std. |
<p>| Studienleistungen | Anwesenheitspflicht |
| Voraussetzung für Zulassung zur Prüfungsleistung | Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
| Prüfungsleistung | Vortrag und Ausarbeitung (Gruppenleistung), Klausur 45 Min. oder mündliche Prüfung 20 Min. |</p>
<table>
<thead>
<tr>
<th>Anzahl Credits für das Modul</th>
<th>6 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr.-Ing. Konrad Spang</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Dr.-Ing. Konrad Spang</td>
</tr>
</tbody>
</table>
| Medienformen | • Folien (PowerPoint)
 | • Skript |
| Literatur | Wird in der Lehrveranstaltung bekannt gegeben. |
Projektmanagement 9 – Möglichkeiten und Grenzen von Projektmanagement-Software

Project Management Tools

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Projektmanagement 9 – Möglichkeiten und Grenzen von Projektmanagement-Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Projektmanagement 9 – Möglichkeiten und Grenzen von Projektmanagement-Software</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Schlüsselkompetenz</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Die Studenten haben sich folgende Kenntnisse aneignet:
- können verschiedene PM-Software-Programme anhand bestimmter Kriterien bewerten und im konkreten Fall über die Sinnhaftigkeit des Einsatzes von PM-Software urteilen.
- können einzelne Programme einsetzen und kennen deren Vor- u. Nachteile
- haben sich kritisch mit dem PM-Software-Einsatz auseinandergesetzt und sind sich der Grenzen des Einsatzes von PM-Software bewusst
- wissen, welche Aspekte bei der Einführung von PM-Software in einer Organisation (z.B. einem Industrieunternehmen) zu bedenken sind und wie ein solches Einführungsprojekt organisiert werden kann.

Lehrveranstaltungsarten

<table>
<thead>
<tr>
<th>S 2 SWS Blockveranstaltung</th>
</tr>
</thead>
</table>

Lehrinhalte

- Einführendes; Überblick über verfügbare Programme; Kriterien zur Bewertung und Auswahl
- Einsatz von PM-Software für verschiedene Elemente des PM (Projektplanung, Wissensmanagement etc.) + Übungen
- Referenz und Vorgehensmodelle aus dem IT-Projektmanagement (Agiles Projektmanagement, u.a.)
- Ergonomische Gesichtspunkte bei der Auswahl einer PM-Software
- Einführung von PM-Software

Titel der Lehrveranstaltungen

| Projektmanagement 9 – Möglichkeiten und Grenzen von Projektmanagement-Software |

(Lehr-/) Lernformen (ZEVA)

| Gruppenarbeit, Seminarvorträge, Präsentationen |

Verwendbarkeit des Moduls

<table>
<thead>
<tr>
<th>B. Sc. Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td>B. Sc. Mechatronik</td>
</tr>
<tr>
<td>M. Sc. Mechatronik</td>
</tr>
<tr>
<td>M. Sc. Wirtschaftsingenieurwesen</td>
</tr>
</tbody>
</table>

Dauer des Angebotes des Moduls

| Ein Semester |

Häufigkeit des Angebotes des Moduls

| Angebot nach Bedarf; Bitte informieren Sie sich frühzeitig auf der Homepage des Fachgebiets. |

Sprache

| deutsch |

Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul

| Projektmanagement 1 – Grundlagen des Projektmanagements, Teil 1 |
Voraussetzungen für die Teilnahme am Modul

- Projektmanagement 1 – Grundlagen des Projektmanagements, Teil 1 (einschl. Rechnerübung MS Project)
- Ggf. Projektmanagement 2 – Grundlagen des Projektmanagements, Teil 2 (einschl. Rechnerübung MS Project)
- Anmeldung erforderlich, Teilnehmerzahl ist beschränkt.
- Informationen zur Anmeldung finden Sie jeweils zu Semesterbeginn auf der Webseite des Fachgebiets Projektmanagement.

Studentischer Arbeitsaufwand

<table>
<thead>
<tr>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
<td>32 Std.</td>
</tr>
</tbody>
</table>

Selbststudium 58 Stunden

Studienleistungen

Anwesenheitspflicht

Voraussetzung für Zulassung zur Prüfungsleistung

Studienleistung

Prüfungsleistung

Referat und mündliche Prüfung, ggf. gekoppelt mit Rechneraufgabe

Anzahl Credits für das Modul

3 Credits

Lehreinheit

Fachbereich 15

Modulverantwortliche/r

Prof. Dr.-Ing. Konrad Spang

Lehrende des Moduls

Dr. Jan Christoph Albrecht

Medienformen

Power-Point-Folien

Literatur

Wird in der Lehrveranstaltung bekannt gegeben.
Prozessmanagement

Process Management

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Prozessmanagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Kenntnisse: Grundverständnis der modernen Strategien und Methoden zur Prozessgestaltung und -optimierung im Unternehmen</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Lehrveranstaltungsarten: VLmP 2 SWS</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Prozessmanagement</td>
</tr>
<tr>
<td>(Lehr-/ Lernformen) Lehr- und Lernmethoden (Zeva)</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau - Schlüsselkompetenz - Wahlpflichtmodul M. Sc. Maschinenbau - Schlüsselkompetenz - Wahlpflichtmodul B. Sc./MSc. Wirtschaftsingenieurwesen</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (Inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>-</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>-</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS VL (30 Std.) Selbststudium 60 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>–</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Voraussetzung für</td>
<td>–</td>
</tr>
<tr>
<td>Zulassung zur Prüfungsleistung</td>
<td>–</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 60 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Robert Refflinghaus</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Robert Refflinghaus</td>
</tr>
</tbody>
</table>
| Medienformen | • Folienvortrag
 • Skript (ergänzend)
 • Office-Tools
 • Flipcharts
 • Metaplantafeln
 • MindMap
 • Prozessmodellierungswerkzeuge |
| Literatur | Wird zu Beginn der Veranstaltung bekanntgegeben. |
Prozessmanagement Übung

Process Management – Exercise

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Prozessmanagement Übung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Schlüsselkompetenz</td>
</tr>
</tbody>
</table>
| Art des Moduls | Kenntnisse: Grundverständnis der modernen Strategien und Methoden zur Prozessgestaltung und -optimierung im Unternehmens
| Lernergebnisse, Kompetenzen (Qualifikationsziele) | Fertigkeiten: selbständiger Einsatz von modernen Prozessmanagement-Methoden anhand von computergestützten Instrumenten und Werkzeugen
| Leerung: interdisziplinäres Arbeiten in Kleingruppen, Anwendung von Methoden auf praktische Probleme |

<table>
<thead>
<tr>
<th>Lehrveranstaltungsarten</th>
<th>Ü 2 SWS</th>
</tr>
</thead>
</table>
| Lehrinhalte | In der Veranstaltung werden die relevanten Strategien und Methoden zum Prozessmanagement behandelt. Dazu gehören Themen wie
| • Prozessbeschreibung;
| • Prozessanalyse;
| • Prozessgestaltung;
| • Prozessbewertung/Prozesskennzahlen;
| • Prozesssimulation;
| • Prozessintegration;

<table>
<thead>
<tr>
<th>Titel der Lehrveranstaltungen</th>
<th>Prozessmanagement Übung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Übungen, Gruppenarbeit, Projektarbeit, Rechnerübungen, Gruppendiskussionen, Fallstudien</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
| M. Sc. Maschinenbau
<p>| B. Sc./MSc. Wirtschaftsingenieurwesen |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Wintersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Prozessmanagement-Vorlesung |
| Voraussetzungen für die Teilnahme am Modul | Die Teilnehmerzahl ist auf 25 beschränkt. |</p>
<table>
<thead>
<tr>
<th>Studentischer Arbeitsaufwand</th>
<th>2 SWS Ü (30 Std.) Selbststudium 60 Std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistungen</td>
<td>-</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Bewertung von Übungsaufgaben, die in Kleingruppen bearbeitet werden</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Robert Refflinghaus</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Robert Refflinghaus</td>
</tr>
</tbody>
</table>
| **Medienformen** | • Folienvortrag
• Skript (ergänzend)
• Office-Tools
• Flipcharts
• Metaplantafeln
• MindMap
• Prozessmodellierungswerkzeuge |
| **Literatur** | Wird zu Beginn der Veranstaltung bekanntgegeben. |
Qualitätsmanagement I – Grundlagen und Strategien

Quality Management I – Basics and Strategies

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Qualitätsmanagement I – Grundlagen und Strategien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Qualitätsmanagement I – Grundlagen und Strategien</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Schlüsselkompetenz</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Die Veranstaltung Qualitätsmanagement I soll fundierte Kenntnisse und ein grundlegendes Verständnis der modernen Qualitätsstrategien und -prinzipien im Unternehmen vermitteln.

<table>
<thead>
<tr>
<th>Lehrveranstaltungsarten</th>
<th>VLmP 2 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrinhalte</td>
<td>In der Veranstaltung werden ausführlich die relevanten QM-Strategien und -prinzipien behandelt (z. B. TQM, Führung/Mitarbeiterorientierung, Kundenorientierung, Business Excellence, Qualität und Wirtschaftlichkeit, TPM, KVP, Null-Fehler-Produktion, Six Sigma). Dabei wird auf die Inhalte und die zu erzielenden Ergebnisse im Unternehmen eingegangen. Weiterhin wird die Bedeutung der einzelnen Strategien und Prinzipien für das Qualitätsmanagement im Unternehmen aufgezeigt. Insbesondere geht es um das vertiefende Kennerlernen von Zielen, Vorgehen und Nutzen bei deren Anwendung.</td>
</tr>
</tbody>
</table>

Titel der Lehrveranstaltungen

Qualitätsmanagement I – Grundlagen und Strategien

(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)

Vorlesung

Verwendbarkeit des Moduls

B. Sc. Maschinenbau
B. Sc. Mechatronik
M. Sc. Maschinenbau
M. Sc. Mechatronik
B. Sc. Wirtschaftsingenieurwesen
M. Sc. Wirtschaftsingenieurwesen

Dauer des Angebotes des Moduls

Ein Semester

Häufigkeit des Angebotes des Moduls

Jedes Wintersemester

Sprache

deutsch

Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul

–

Voraussetzungen für die Teilnahme am Modul

–

Studentischer Arbeitsaufwand

2 SWS VL (30 Std.)
Selbststudium 60 Std.

Studienleistungen

–

Voraussetzung für Zulassung zur Prüfungsleistung

–

Prüfungsleistung

Klausur 60 Min.
<table>
<thead>
<tr>
<th>Anzahl Credits für das Modul</th>
<th>3 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Robert Refflinghaus</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Robert Refflinghaus</td>
</tr>
</tbody>
</table>
| Medienformen | Folienvortrag
| | Skript (ergänzend) |
| Literatur | Wird zu Beginn der Veranstaltung bekannt gegeben. |
Modulhandbuch

Qualitätsmanagement I – Übung

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Qualitätsmanagement I – Übung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Die Veranstaltung Qualitätsmanagement–Vertiefungsübung soll den praktischen Einsatz von modernen Qualitätsmethoden im Unternehmen vermitteln.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>Ü 2 SWS</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Qualitätsmanagement I – Übung</td>
</tr>
<tr>
<td>(Lehr- / Lernformen)</td>
<td>Übungen, Gruppenarbeit, Projektarbeit, Rechnerübungen, Simulationsübungen, Gruppendiskussionen, Fallstudien,</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>QM I</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Die Teilnehmerzahl ist auf 25 beschränkt.</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS Ü (30 Std.) Selbststudium 60 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>–</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Bewertung von Übungsaufgaben, die in Kleingruppen bearbeitet werden</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Robert Refflinghaus</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>M. Sc. Christian Esser</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Folienvortrag</td>
</tr>
<tr>
<td></td>
<td>Skript (ergänzend)</td>
</tr>
<tr>
<td></td>
<td>PC-Programme aus dem Bereich QM</td>
</tr>
<tr>
<td></td>
<td>Office-Tools</td>
</tr>
<tr>
<td></td>
<td>Flipcharts</td>
</tr>
<tr>
<td></td>
<td>Metaplantafeln</td>
</tr>
<tr>
<td></td>
<td>MindMap</td>
</tr>
</tbody>
</table>

Literatur: Wird zu Beginn der Veranstaltung bekannt gegeben.
Qualitätsmanagement II – Konzepte und Methoden
Quality Management II – Concepts and Methods

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Qualitätsmanagement II – Konzepte und Methoden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>Lernergebnisse,</td>
<td>Kenntnisse: grundlegendes Verständnis der modernen Qualitäts-</td>
</tr>
<tr>
<td>Kompetenzen</td>
<td>konzepte und -methoden im Unternehmen</td>
</tr>
<tr>
<td>(Qualifikationsziele)</td>
<td>Fertigkeiten: Beurteilung von Einsatzmöglichkeiten und Nutzen von</td>
</tr>
<tr>
<td></td>
<td>Qualitätskonzepten und -methoden im Unternehmensumfeld</td>
</tr>
<tr>
<td></td>
<td>Kompetenzen: Anwendung von Qualitätskonzepten und -methoden</td>
</tr>
<tr>
<td></td>
<td>auf Problemstellungen im Unternehmen</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 2 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>In der Veranstaltung werden ausführlich die relevanten QM–Konzepte</td>
</tr>
<tr>
<td></td>
<td>und QM–Methoden behandelt (z. B. QFD, Problemlösungsmethoden,</td>
</tr>
<tr>
<td></td>
<td>FMEA, DoE, Lieferantenmanagement, Q//M7). Dabei wird auf die</td>
</tr>
<tr>
<td></td>
<td>Inhalte und die zu erzielenden Ergebnisse eingegangen. Weiterhin wird</td>
</tr>
<tr>
<td></td>
<td>die Bedeutung der einzelnen Methoden für das Qualitätsmanagement</td>
</tr>
<tr>
<td></td>
<td>im Unternehmen aufgezeigt. Insbesondere geht es um das vertiefende</td>
</tr>
<tr>
<td></td>
<td>Kennerlernen von Zielen, Vorgehen und Nutzen bei der Methoden–</td>
</tr>
<tr>
<td></td>
<td>Anwendung</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Qualitätsmanagement II – Konzepte und Methoden</td>
</tr>
<tr>
<td>(Lehr–/ Lernformen)</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Lehr– und Lernmethoden (ZEVA)</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Mechatronik</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>M. Sc. Mechatronik</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Wirtschaftsingenieurwesen</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Wirtschaftsingenieurwesen</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltsliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>QM I</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS VL (30 Std.) Selbstdstudium 60 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>–</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 60 Min.</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Robert Refflinghaus</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Robert Refflinghaus</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Folienvortrag, Skript (ergänzend)</td>
</tr>
<tr>
<td>Literatur</td>
<td>Wird zu Beginn der Veranstaltung bekannt gegeben.</td>
</tr>
<tr>
<td>Nummer/Code</td>
<td>Qualitätsmanagement II – Übung</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Modulname</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Die Veranstaltung Qualitätsmanagement II – Übung soll den praktischen Einsatz von modernen Qualitätsmethoden im Unternehmen vermitteln</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>Ü 2 SWS</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Qualitätsmanagement II – Übung</td>
</tr>
<tr>
<td>(Lehr- / Lernformen)</td>
<td>Übungen, Gruppenarbeit, Projektarbeit, Rechnerübungen, Gruppen- diskussionen, Fallstudien</td>
</tr>
<tr>
<td>Lehr- und Lernmethoden (ZEVA)</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Mechatronik</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Mechatronik</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Wirtschaftsingenieurwesen</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Wirtschaftsingenieurwesen</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>QM II</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Die Teilnehmerzahl ist auf 25 beschränkt.</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS Ü (30 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 60 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>-</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>-</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Bewertung von Übungsaufgaben, die in Kleingruppen bearbeitet werden</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Robert Refflinghaus</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>M. Sc. Christian Esser</td>
</tr>
<tr>
<td>Medienformen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Folienvortrag</td>
</tr>
<tr>
<td></td>
<td>• Skript (ergänzend)</td>
</tr>
<tr>
<td></td>
<td>• PC-Programme aus dem Bereich QM</td>
</tr>
<tr>
<td></td>
<td>• Office-Tools</td>
</tr>
<tr>
<td></td>
<td>• Flipcharts</td>
</tr>
<tr>
<td></td>
<td>• Metaplantafeln</td>
</tr>
<tr>
<td></td>
<td>• MindMap</td>
</tr>
<tr>
<td>Literatur</td>
<td>Wird zu Beginn der Veranstaltung bekannt gegeben.</td>
</tr>
<tr>
<td>Nummer/Code</td>
<td>Qualitätsmanagement Projektseminar – Anwendung des Qualitätsmanagements</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>Modulname</td>
<td>Qualitätsmanagement Projektseminar – Anwendung des Qualitätsmanagements</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Schlüsselkompetenz</td>
</tr>
</tbody>
</table>
| Lernergebnisse, Kompetenzen (Qualifikationsziele) | • Selbständige und eigenverantwortliche Informationsbeschaffung/-recherche zu einer gegebenen Aufgabenstellung.
• Planung und Ausgestaltung einzelner Arbeitsschritte
• Nutzen von Qualitätsmanagement-Methoden und -Vorgehensweisen.
• Erfahrungen mit Teamarbeit
• Berichterstellung und Ergebnispräsentation |
| Lehrveranstaltungsarten | S. 2 SWS |
| Lehrinhalte | • Kennenlernen verschiedener Arbeitstechniken für die Planung und Durchführung von Projekten
• Kennenlernen des praktischen Einsatzes von unterschiedlichen Qualitätsmanagement-Methoden und -Vorgehensweisen
• Sichtung und Aufbereitung existierender Informationen zu einer gegebenen Aufgabenstellung im Bereich des Qualitätsmanagements
• Analyse, Bewertung und Optimierung eines definierten Prozesses unter Einsatz von Qualitätsmanagement-Methoden und -Vorgehensweisen
• Erarbeitung von QM-Maßnahmen |
| Titel der Lehrveranstaltungen | Qualitätsmanagement Projektseminar – Anwendung des Qualitätsmanagements |
| (Lehr- / Lernformen) Lehr- und Lernmethoden (ZEVA) | Gruppenarbeit, Projektarbeit, praktische Arbeiten, Seminar, Präsentationen |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
B. Sc. Mechatronik
M. Sc. Maschinenbau
M. Sc. Mechatronik
B. Sc. Wirtschaftsingenieurwesen
M. Sc. Wirtschaftsingenieurwesen |
<p>| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Sommersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | QM I + QM II ; Bereitschaft zur Teamarbeit und eigenverantwortliches Arbeiten |
| Voraussetzungen für die Teilnahme am Modul | Anmeldung erforderlich, Teilnehmerzahl ist auf 25 beschränkt. |</p>
<table>
<thead>
<tr>
<th>Studentischer Arbeitsaufwand</th>
<th>2 SWS S (30 Std.) Selbststudium 60 Std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistungen</td>
<td>Anwesenheitspflicht</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistung</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Bewertung von Projektarbeit durch Zwischen-Präsentationen, End-Präsentation und Projektabschlussbericht in Kleingruppen</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Robert Refflinghaus</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Robert Refflinghaus</td>
</tr>
<tr>
<td>Medienformen</td>
<td>• Foliervortrag</td>
</tr>
<tr>
<td></td>
<td>• Script (ergänzend)</td>
</tr>
<tr>
<td></td>
<td>• Office-Tools</td>
</tr>
<tr>
<td></td>
<td>• Flipcharts</td>
</tr>
<tr>
<td></td>
<td>• Metaplantafeln</td>
</tr>
<tr>
<td></td>
<td>• MindMap</td>
</tr>
<tr>
<td>Literatur</td>
<td>Wird zu Beginn der Veranstaltung bekannt gegeben.</td>
</tr>
</tbody>
</table>
Qualitätsmanagement Projektseminar – Grundlagen des Qualitätsmanagements

Quality Management Projectseminar – Basics of Quality Management

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Qualitätsmanagement Projektseminar – Grundlagen des Qualitätsmanagements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Selbständige und eigenverantwortliche Informationsbeschaffung/-recherche zu einer gegebenen Aufgabenstellung</td>
</tr>
<tr>
<td></td>
<td>• Planung und Ausgestaltung einzelner Arbeitsschritte</td>
</tr>
<tr>
<td></td>
<td>• Nutzen von Qualitätsmanagement–Methoden und –Vorgehensweisen</td>
</tr>
<tr>
<td></td>
<td>• Erfahrungen mit Teamarbeit</td>
</tr>
<tr>
<td></td>
<td>• Berichterstellung und Ergebnispräsentation</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>S. 2 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Kennenlernen verschiedener Arbeitstechniken für die Planung und Durchführung von Projekten</td>
</tr>
<tr>
<td></td>
<td>• Kennenlernen des praktischen Einsatzes von unterschiedlichen Qualitätsmanagement–Methoden und –Vorgehensweisen</td>
</tr>
<tr>
<td></td>
<td>• Sichtung und Aufbereitung existierender Informationen zu einer gegebenen Aufgabenstellung im Bereich des Qualitätsmanagements</td>
</tr>
<tr>
<td></td>
<td>• Analyse, Bewertung und Optimierung eines definierten Prozesses unter Einsatz von Qualitätsmanagement–Methoden und –Vorgehensweisen</td>
</tr>
<tr>
<td></td>
<td>• Erarbeitung von QM–Maßnahmen</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Qualitätsmanagement Projektseminar – Grundlagen des Qualitätsmanagements</td>
</tr>
<tr>
<td>(Lehr-/Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Gruppenarbeit, Projektarbeit, praktische Arbeiten, Seminar, Präsentationen</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Mechatronik</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Mechatronik</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Wirtschaftsingenieurwesen</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Wirtschaftsingenieurwesen</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlenen (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>QM I + QM II ; Bereitschaft zur Teamarbeit und eigenverantwortliches Arbeiten</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Anmeldung erforderlich, Teilnehmerzahl ist auf 25 beschränkt.</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS S (30 Std.) Selbststudium 60 Std.</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Anwesenheitspflicht</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistung</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Bewertung von Projektarbeit durch Zwischen-Präsentationen, End-Präsentation und Projektabschlussbericht in Kleingruppen</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Robert Refflinghaus</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Robert Refflinghaus</td>
</tr>
<tr>
<td>Medienformen</td>
<td>- Folienvortrag</td>
</tr>
<tr>
<td></td>
<td>- Script (ergänzend)</td>
</tr>
<tr>
<td></td>
<td>- Office-Tools</td>
</tr>
<tr>
<td></td>
<td>- Flipcharts</td>
</tr>
<tr>
<td></td>
<td>- Metaplantafeln</td>
</tr>
<tr>
<td></td>
<td>- MindMap</td>
</tr>
<tr>
<td>Literatur</td>
<td>Wird zu Beginn der Veranstaltung bekannt gegeben.</td>
</tr>
</tbody>
</table>
Qualitätsmanagement Projektseminar – Anwendung des Qualitätsmanagements

Quality Management Projectseminar – Application of Quality Management

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Qualitätsmanagement Projektseminar – Anwendung des Qualitätsmanagements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>QUALITÄTSMANAGEMENT PROJEKTESTAMM – ANWENDUNG DES QUALITÄTSMANAGEMENTS</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Schlüsselkompetenz</td>
</tr>
</tbody>
</table>
| Lernergebnisse, Kompetenzen (Qualifikationsziele) | - Selbstdéngige und eigenverantwortliche Informationsbeschaffung/ -recherche zu einer gegebenen Aufgabenstellung.
- Planung und Ausgestaltung einzelner Arbeitsschritte
- Erfahrungen mit Teamarbeit
- Berichterstellung und Ergebnispräsentation |
| Lehrveranstaltungsarten | S 2 SWS |
| Lehrinhalte | - Kennenlernen verschiedener Arbeitstechniken für die Planung und Durchführung von Projekten
- Kennenlernen des praktischen Einsatzes von unterschiedlichen Qualitätsmanagement–Methoden und –Vorgehensweisen
- Sichtung und Aufbereitung existierender Informationen zu einer gegebenen Aufgabenstellung im Bereich des Qualitätsmanagements
- Analyse, Bewertung und Optimierung eines definierten Prozesses unter Einsatz von Qualitätsmanagement–Methoden und –Vorgehensweisen
- Erarbeitung von QM–Maßnahmen |
| Titel der Lehrveranstaltungen | Qualitätsmanagement Projektseminar – Anwendung des Qualitätsmanagements |
| (Lehr–/Lernformen) Lehr– und Lernmethoden (ZEVA) | Gruppenarbeit, Projekarbeit, praktische Arbeiten, Seminar, Präsentationen |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
B. Sc. Mechatronik
M. Sc. Maschinenbau
M. Sc. Mechatronik
B. Sc. Wirtschaftsingenieurwesen
M. Sc. Wirtschaftsingenieurwesen |
<p>| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Sommersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | QM I + QM II ; Bereitschaft zur Teamarbeit und eigenverantwortli–ches Arbeiten |
| Voraussetzungen für die Teilnahme am Modul | Anmeldung erforderlich, Teilnehmerzahl ist auf 25 beschränkt. |</p>
<table>
<thead>
<tr>
<th>Studentischer Arbeitsaufwand</th>
<th>2 SWS S (30 Std.) Selbststudium 60 Std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistungen</td>
<td>Anwesenheitspflicht</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistung</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Bewertung von Projektarbeit durch Zwischen-Präsentationen, End-Präsentation und Projektabschlussbericht in Kleingruppen</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Robert Refflinghaus</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Robert Refflinghaus</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Folienvortrag</td>
</tr>
<tr>
<td></td>
<td>Script (ergänzend)</td>
</tr>
<tr>
<td></td>
<td>Office-Tools</td>
</tr>
<tr>
<td></td>
<td>Flipcharts</td>
</tr>
<tr>
<td></td>
<td>Metaplantafeln</td>
</tr>
<tr>
<td></td>
<td>MindMap</td>
</tr>
<tr>
<td>Literatur</td>
<td>Wird zu Beginn der Veranstaltung bekannt gegeben.</td>
</tr>
</tbody>
</table>
Speed Reading

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Speed Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Kenntnisse: Kennen von Lesepraktiken, Lernmethoden, Zeitmanagement</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Fertigkeiten: kognitive und praktische Fertigkeiten in Bezug auf Schnelllesen</td>
</tr>
<tr>
<td></td>
<td>Kompetenzen: Schnelles lesen, schnellere und bessere Texterfassung, effektives Lesen und Lernen, besseres Behalten von Informationen</td>
</tr>
<tr>
<td></td>
<td>Lernziele: Lernziele sind die Steigerung der Lesegeschwindigkeit und die Erhöhung des Textverständnisses durch gezielte Übungen zum Abbau von Leseblockaden, Leseübungen und die Aneignung neuer Schnelllesetechniken. Außerdem soll durch die Vorstellung verschiedener Lernmethoden die Merkfähigkeit gesteigert werden.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsarten</th>
<th>S 2 SWS Blockveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lese- und Lernmanagement sind weitere Themen. Sie beinhalten ein gutes Zeitmanagement, das gezielte Nichtlesen, die Vor- und Nachbereitung, Umgebungsbedingungen beim Lesen, das selektive Lesen von Fachbüchern und die Frage, wie ich am besten Notizen mache.</td>
</tr>
<tr>
<td></td>
<td>Im Wechsel zwischen theoretischen Inhalten und praktischen Übungen finden in jeder Veranstaltung Lese-, Koordinations-, Entspannungs-, Konzentrations- und Augenmuskelübungen statt.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Titel der Lehrveranstaltungen</th>
<th>Speed Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lehr-/Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Übungen, Gruppenarbeit, Gruppendiskussionen, Erörterungen, Seminar, Blockveranstaltung, Präsentationen, Vorträge</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Mechatronik</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Mechatronik</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Gute Deutschkenntnisse</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS S (30 Std.) Selbststudium 60 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Anwesenheitspflicht</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistung</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Referat, Abschlusstest, Lese- und Lernnachweise</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>2 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>SCL</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Dr. Christiane Potzner</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Dr. Christiane Potzner</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Präsentationen</td>
</tr>
</tbody>
</table>
Modulhandbuch

Studienlotsen
Study Guides

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Studienlotsen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Im Studienlotsenprojekt stehen ehrenamtliches Engagement und Kommunikationskompetenzen im Vordergrund. Studierende lernen, selbstständig StudienanfängerInnen zu betreuen und zu beraten. TeilnehmerInnen des Projekts durchlaufen zu Projektbeginn eine Schulung, die zum Ziel hat, die Studienlotsen umfassend auf ihre Aufgaben und Rolle vorzubereiten. Darüber hinaus werden die Studienlotsen aktiv in das Projektmanagement eingebunden und sollen lernen, sich weitgehend selbst zu organisieren. Semesterbegleitend finden weitere Treffen statt, die vor allem dem Austausch unter den ProjektteilnehmerInnen dienen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsarten</th>
<th>PrM 1,5 SWS</th>
</tr>
</thead>
</table>
| Lehrinhalte | - Kommunikationskompetenz (Gesprächsführung, Betreuung und Beratung)
- Soziale Kompetenzen (Rollenreflexion und -verständnis, Lotsenprofil)
- Organisationskompetenz (Planung und Durchführung von Veranstaltungen innerhalb des Projekts sowie der Betreuung der StudienanfängerInnen; eigenverantwortliche Mitgestaltung des Projekts) |

<table>
<thead>
<tr>
<th>Titel der Lehrveranstaltungen</th>
<th>Studienlotsen</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Es wird eine Mischung unterschiedlicher Methoden genutzt, v.a.: Vortrag/Input, Gruppenarbeit und Austausch, selbstgesteuertes Lernen und Organisation.</td>
</tr>
</tbody>
</table>

| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
B. Sc. Mechatronik
M. Sc. Maschinenbau
M. Sc. Mechatronik |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Gute Kenntnisse über formalen und inhaltlichen Aufbau des Studiums</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Mind. 3. Fachsemester</td>
</tr>
</tbody>
</table>
| Studentischer Arbeitsaufwand | 1,5 SWS PrM (20 Std.)
Selbststudium 40 Std. |
<p>| Studienleistungen | Aktive Teilnahme an den Veranstaltungen des Projekts |
| Voraussetzung für Zulassung zur Prüfungsleistung | – |
| Prüfungsleistung | Abgabe eines schriftlichen Leistungsnachweises |
| Anzahl Credits für das Modul | 2 Credits |
| Lehreinheit | SCL |
| Modulverantwortliche/r | Jacqueline Wendel |
| Lehrende des Moduls | Jacqueline Wendel |
| Medienformen | – |
| Literatur | – |</p>
<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Team- und Konfliktmanagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Team- und Konfliktmanagement</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>Lernergebnisse,</td>
<td>Die Studierenden</td>
</tr>
<tr>
<td>Kompetenzen</td>
<td>lernen die wesentlichen</td>
</tr>
<tr>
<td></td>
<td>Grundlagen über Gruppenprozesse und Konflikte</td>
</tr>
<tr>
<td></td>
<td>lernen an praktischen</td>
</tr>
<tr>
<td></td>
<td>Beispielen die verschiedenen</td>
</tr>
<tr>
<td></td>
<td>Teamentwicklungsmöglichkeiten kennen (Übungen zur Teamentwicklung, evtl. Outdoor-Übungen, erlebnisorientierte Teamentwicklungsaufgaben)</td>
</tr>
<tr>
<td></td>
<td>lernen verschiedene Teamrollen kennen und können diese auf ihr eigenes Verhalten übertragen.</td>
</tr>
<tr>
<td></td>
<td>kennen die verschiedenen Arten von Konflikten und mögliche Konsequenzen.</td>
</tr>
<tr>
<td></td>
<td>wissen, warum Konflikte entstehen, durch welche Faktoren sie begünstigt werden und welche Eskalationsstufen es gibt.</td>
</tr>
<tr>
<td></td>
<td>kennen die verschiedenen Interventionsmethoden zum Konfliktmanagement.</td>
</tr>
<tr>
<td></td>
<td>lernen sich selbst im Umgang mit schwierigen und konflikthaften Situationen zu reflektieren.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>S 2 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>In dem Seminar werden theoretische Grundlagen und praktische Aspekte zur Teamentwicklung und zum Konfliktmanagement sowie zur Kommunikation in Arbeitsgruppen/Teams anhand von Vorträgen und Referaten vermittelt und durch Übungen/Diskussionen vertieft. Methoden des Konfliktmanagements wie z. B. Moderation, Coaching, Teamtraining, Verhandlung, Mediation werden thematisiert und durch praktische Übungen vertieft. Diskutiert werden Aspekte wie z. B.:</td>
</tr>
<tr>
<td></td>
<td>Welche Teamrollen gibt es?</td>
</tr>
<tr>
<td></td>
<td>Was bedeutet Teamleistung, –dynamik, und –kohäsion?</td>
</tr>
<tr>
<td></td>
<td>Beispiele von Teamarbeit in der Praxis.</td>
</tr>
<tr>
<td></td>
<td>Was ist ein Konflikt? Was sind Besonderheiten sozialer Konflikte?</td>
</tr>
<tr>
<td></td>
<td>Welche Arten von Konflikten gibt es, welche Typologien eignen sich zur Klassifizierung und als Grundlage der Diagnose?</td>
</tr>
<tr>
<td></td>
<td>Wie und warum entstehen Konflikte?</td>
</tr>
<tr>
<td></td>
<td>Wie können Konflikte analysiert, bearbeitet und/oder vermieden werden? Ansätze zum kurativen und präventiven Konfliktmanagement</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Team- und Konfliktmanagement</td>
</tr>
<tr>
<td>(Lehr-/ Lernformen)</td>
<td>Seminar und Übungen</td>
</tr>
<tr>
<td>Lehr- und Lernmethoden (ZEVA)</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td></td>
</tr>
<tr>
<td>B. Sc. Maschinenbau</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>B. Sc. Mechatronik</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>M.Sc. Maschinenbau</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>M.Sc. Mechatronik</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>M.Sc. Wirtschaftsingenieurwesen</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Personalführung, Arbeits- und Organisationspsychologie 2</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Anmeldung erforderlich. Teilnehmerzahl ist auf 15 beschränkt.</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS 5 (30 Std.) Selbststudium 60 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Aktive Mitarbeit; Anwesenheitspflicht</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistung</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Schriftliche Prüfung 90 Min. oder mündliche Prüfung 30 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Oliver Sträter</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Oliver Sträter</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Metaplan, Flipchart, Beamer, PC, Multimodale Interaktion</td>
</tr>
<tr>
<td></td>
<td>Vopel (2008). Kreative Konfliktlösung. 3te Auflage: Iskopress</td>
</tr>
</tbody>
</table>
Teamarbeit

Nummer/Code

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Teamarbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Schlüsselkompetenz</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Angestrebte Lernergebnisse: Die Studierenden erlernen mit Hilfe externer Experten Problemlösungsmethoden im Team, u.a. Design-Thinking, und die Fähigkeit Problemstellungen im Team zu erarbeiten und zu managen. Das Erlernte wird anhand praktischer Arbeiten geübt und befähigt die Studierenden erfolgreich in einem Team zu arbeiten.

Die Studierenden können

- die Rollenzuteilung im Team klären und einhalten,
- die Kommunikation im Team gestalten, wahrnehmen und steuern,
- organisatorische Aufgaben und Führungsverantwortung übernehmen,
- die Dynamik eines Teams erkennen und gestalten,
- Problemzusammenhänge verstehen und Lösungsalternativen entwickeln,
- Konflikte im Team erkennen und lösen,
- Teamarbeit in Stresssituationen bewältigen.

Lehrveranstaltungsort

<table>
<thead>
<tr>
<th>Lehrveranstaltungsarten</th>
<th>PS 2 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrinhalte</td>
<td></td>
</tr>
<tr>
<td>- Design-Thinking</td>
<td></td>
</tr>
<tr>
<td>- Teamorganisation</td>
<td></td>
</tr>
<tr>
<td>- Teammanagement</td>
<td></td>
</tr>
<tr>
<td>- Rollenverhalten</td>
<td></td>
</tr>
<tr>
<td>- Kommunikationsverhalten</td>
<td></td>
</tr>
<tr>
<td>- Konflikt-Verhalten</td>
<td></td>
</tr>
<tr>
<td>- Umgang mit Emotionen.</td>
<td></td>
</tr>
</tbody>
</table>

Titel der Lehrveranstaltungen

Teamarbeit

(Lehr-/Lernform) Lehr- und Lernmethoden (ZEVA)

Aktive Mitarbeit im RoboCup-Team CarpeNoctem, Gruppen-diskussionen, begleitende Vorträge durch externe Experten, aktive Vorbereitung und Durchführung der Teilnahme an internationalen RoboCup-Turnieren

Verwendbarkeit des Moduls

B. Sc. Maschinenbau
B. Sc. Mechatronik

Dauer des Angebotes des Moduls

Ein Semester

Häufigkeit des Angebotes des Moduls

Jedes Semester

Sprache

bilingual

Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul

-

Voraussetzungen für die Teilnahme am Modul

Anmeldung erforderlich, Teilnehmerzahl ist auf 16 beschränkt.
<table>
<thead>
<tr>
<th>Studentischer Arbeitsaufwand</th>
<th>2 SWS PS (30 Std.) Selbststudium 60 Std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistungen</td>
<td>Teilnahme an selbst organiserter Gruppenarbeit, KickOff-Workshop (praktische Übungen im Kolloquium)</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>–</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Projektarbeit, mündliche Prüfung (10 Minuten) und Abschlussbericht (ca. 10 Seiten/Gruppe)</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 16</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Kurt Geihs</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Kurt Geihs</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Folien, Tafel</td>
</tr>
</tbody>
</table>
| **Literatur** | - Jürgen Ebeldinger, Thomas Range; Durch die Decke denken – Design-Thinking in der Praxis, Redline (2013)
- Cornelia Edding, Karl Schattenhofer; Einführung in die Teamarbeit; Carl Auer Verlag (2012)
- Nigel Cross; Designerly Ways of Knowing; Wiley (2006) |
Umweltwissenschaftliche Grundlagen für Ingenieure

Fundamentals of environmental sciences for engineers

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Umweltwissenschaftliche Grundlagen für Ingenieure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 2 SWS</td>
</tr>
</tbody>
</table>
| Lehrinhalte | **Thema Wasser:** Der hydrologische Kreislauf, Nutzung von Wasserressourcen und Auswirkungen auf Wasserqualität.
Thema Klimasystem der Erde und Klimawandel: Die Atmosphäre der Erde, Klima und Wetter, Auswirkungen des Klimawandels und Strategien zum Umgang mit dem Klimawandel
Thema Böden und Landnutzung: Grundlagen der Bodenkunde, Bodenfunktionen, Landnutzungsänderungen und deren Umweltfolgen
Thema terrestrische Ökosysteme: Biodiversität, Ökosysteme, Ökosystemdienstleistungen |
| Titel der Lehrveranstaltungen | Umweltwissenschaftliche Grundlagen für Ingenieure |
| (Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA) | Vorlesung |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
B. Sc. Mechatronik
M. Sc. Maschinenbau
M. Sc. Mechatronik
M. Sc. Regenerative Energien und Energieeffizienz
B. Sc. Umweltingenieurwesen
B. Sc. Informatik |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Wintersemester |
| Sprache | Deutsch |
| Empfohlene (inhaltsliche) Voraussetzungen für die Teilnahme am Modul | Interesse an der systemorientierten Betrachtung von Umweltproblemen |
| Voraussetzungen für die Teilnahme am Modul | – |
| Studentischer Arbeitsaufwand | 2 SWS Vorlesung (30 Std.)
Selbststudium 60 Std. |
<table>
<thead>
<tr>
<th>Studienleistungen</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>–</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 45 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 16</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr.-Ing. Rüdiger Schaldach</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Dr.-Ing. Rüdiger Schaldach</td>
</tr>
<tr>
<td>Medienformen</td>
<td>• Powerpoint-Präsentationen</td>
</tr>
<tr>
<td></td>
<td>• Costanza et al., 2001. Einführung in die ökologische Ökonomik. UTB Wissenschaft.</td>
</tr>
</tbody>
</table>
Unternehmensgründung – ClimaTec!

Modulhandbuch

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Unternehmensgründung – ClimaTec!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>Lehrveranstaltungsart</td>
<td>Seminar, 4 SWS (3–6 ECTS)</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Die Veranstaltung gliedert sich in die vier bzw. fünf Teilbereiche:</td>
</tr>
</tbody>
</table>
| | 1. Grundlagen und „Handwerkszeug“
| | Dazu zählen die Themen Finanzen und Finanzierung, Recht sowie die Erstellung eines Businessplans.
| | 2. Gründer berichten
| | 3. Erstellen Businessplan (5 Tage, 24h) mit Betreuung
| | Innerhalb von fünf Tagen (freie Zeiteinteilung) erarbeiten Teams (2–4 Studierende) einen Businessplan für konkrete Aufgaben mit kontinuierlicher Betreuung durch Coaches.
| | 4. Pitch vor fachkundiger Jury mit Prämierung
| | Abschließende Präsentation des Businessplans als Pitch (10 Minuten). Das Format ähnelt dabei einem realen Investorengespräch.
<p>| | Für die ersten vier Teilbereiche werden 3 ECTS vergeben. Für die zusätzliche Ausarbeitung des Businessplans (Teilbereich 5) werden weitere 3 ECTS vergeben (ca. 3 Wochen Aufwand). |
| Titel der Lehrveranstaltung | Unternehmensgründung – ClimaTec! |
| Lehr- und Lernmethoden | Einführende Grundlagen als Vortrag, Erfahrungsberichte von Gründern, anschließend Gruppenarbeit und selbstgesteuertes Lernen. Im Teilbereich 5 Ausarbeitung eines Businessplans. |</p>
<table>
<thead>
<tr>
<th>(Lehr- und Lernformen)</th>
<th></th>
</tr>
</thead>
</table>
| **Verwendbarkeit des Moduls** | B. Sc. Maschinenbau
B. Sc. Mechatronik
B. Sc. Informatik
B. Sc. Elektrotechnik
B. Sc. Wirtschaftsingenieurwesen
B. Sc. Bauingenieurwesen
B. Sc. Umwelt ingenieurwesen
M. Sc. Maschinenbau
M. Sc. Mechatronik
M. Sc. Regenerative Energien und Energieeffizienz
M. Sc. Informatik
M. Sc. Elektrotechnik
M. Sc. Wirtschaftsingenieurwesen
M. Sc. Bauingenieurwesen
M. Sc. Umwelt ingenieurwesen |
| **Dauer des Angebotes des Moduls** | 1 Semester, Blockveranstaltung (verteilt auf 2–3 Wochen) |
| **Häufigkeit des Angebotes des Moduls** | jedes Semester |
| **Sprache** | Deutsch |
| **Voraussetzungen für die Teilnahme am Modul** | – |
| **Studentischer Arbeitsaufwand** | 4 SWS S (50 Std.)
Selbststudium 50 Std. und ggf. zusätzlich schriftl. Ausarbeitung ca. 30–40 Seiten (Word) |
<p>| Studienleistungen | Abschlusspräsentation und ggf. Businessplan |
| Voraussetzung für Zulassung zur Prüfungsleistung | – |
| Prüfungsleistung | Präsentation mit Diskussion |
| Anzahl Credits für das Modul | 3–6 Credits (mit oder ohne Ausarbeitung Businessplan) |
| Modulverantwortliche/r | Prof. Dr.-Ing. Jens Hesselbach |
| Lehrende des Moduls | Prof. Dr.-Ing. Jens Hesselbach / Prof. Dr.-Ing. Mark Junge |
| Medienformen | Theorie: Folien (Power Point) |</p>
<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Vektoranalysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Schlüsselkompetenz</td>
</tr>
</tbody>
</table>
| Art des Moduls | Die Studierenden sind mit topologischen Konzepten, wie offenen Mengen und dem Rand einer Menge vertraut.
| Lernergebnisse, Kompetenzen (Qualifikationsziele) | Die Studierenden haben klassische Beispiele für Wege, Skalarfelder und Vektorfelder kennengelernt und verfügen über physikalische Anwendungen der jeweiligen Begriffe.
| | Sie verfügen über Kenntnisse zu den Grundlagen der Variationsrechnung.
| | Darüber hinaus sind die Studierenden in der Lage, eine notwendige und eine hinreichende Bedingung dafür anzugeben, dass ein Vektorfeld ein Potential bzw. ein Vektorpotential besitzt.
| | Außerdem sind die Studierenden fähig, die Länge eines Weges zu berechnen sowie Skalar- und Vektorfelder entlang von Wegen zu integrieren.
| | Es herrscht Sicherheit im Umgang mit den Differentialoperatoren Gradient, Divergenz und Rotation, sowie mit dem Laplace-Operator.
| | Abschließend sind die Studierenden in der Lage, Skalar- und Vektorfelder über gekrümmte Flächen zu integrieren und können die Integralsätze von Gauß, Green und Stokes sowohl formulieren, als auch einsetzen. |
| Lehrveranstaltungsarten | VLmP 3 SWS
| | Ü 1 SWS |
| Lehrinhalte | Topologie des IR^n
| | Skalar- und Vektorfelder
| | Wege und ihre Länge
| | Variationsrechnung
| | Wegintegrale 1. und 2. Art
| | Potentiale
| | Operatoren der mathematischen Physik
| | Untermannigfaltigkeiten des IR^n
| | Integralsätze von Gauß, Green und Stokes |
| Titel der Lehrveranstaltungen | Vektoranalysis |
| (Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA) | Vorlesung, Übungen |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
| | B. Sc. Mechatronik
| | M. Sc. Maschinenbau
| | M. Sc. Mechatronik
<p>| | M. Sc. Bauingenieurwesen |
| Dauer des Angebotes des Moduls | Ein Semester |</p>
<table>
<thead>
<tr>
<th>Häufigkeit des Angebotes des Moduls</th>
<th>Jedes Sommersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Höhere Mathematik 1 bis 3</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>3 SWS VL (45 Std.) 1 SWS Ü (15 Std.) Selbststudium 60 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>–</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 90–120 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>4 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Dr. Daniel Wallenta</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Dr. Daniel Wallenta</td>
</tr>
</tbody>
</table>
| Medienformen | • Tafelanschrieb
| | • Skript |
| Literatur | • R. Courant/D. Hilbert: Methoden der mathematischen Physik I, Springer Verlag
| | • H. Vogel: Gerthsen Physik, Springer
| | • H. Amann, J. Escher: Analysis I–III, Birkhäuser
| | • H. Heuser: Lehrbuch der Analysis Teil 1 und 2, Teubner |
Vom Hörsaal in die Berufspraxis: Wissenschaftskommunikation für Ingenieur*innen

English Translation

Nummer/Code

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Vom Hörsaal in die Berufspraxis: Wissenschaftskommunikation für Ingenieur*innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Schlüsselkompetenzen</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Die Teilnehmer*innen</td>
</tr>
<tr>
<td></td>
<td>- haben ein Verständnis für die Bedeutung von Wissenschaftskommunikation entwickelt,</td>
</tr>
<tr>
<td></td>
<td>- wissen, wie wissenschaftliche Erkenntnisse zielgruppenspezifisch und verständlich kommuniziert werden können,</td>
</tr>
<tr>
<td></td>
<td>- haben praktische Erfahrungen als Kommunikator*innen in verschiedenen Formaten gesammelt</td>
</tr>
<tr>
<td></td>
<td>- kennen verschiedene Ansätze, wissenschaftliche Inhalte medial zu veranschaulichen,</td>
</tr>
<tr>
<td></td>
<td>- sind in der Lage, Ingenieurswissenschaftliche Inhalte auf unterschiedlichen Plattformen zu veröffentlichen.</td>
</tr>
</tbody>
</table>

Integrierte Schlüsselkompetenzen:
- Kommunikationskompetenz
- Methodenkompetenz

Lehrveranstaltungsarten

<table>
<thead>
<tr>
<th>Lehrveranstaltungsarten</th>
<th>Blockseminar 2 SWS</th>
</tr>
</thead>
</table>

Lehrinhalte

- Was ist Wissenschaftskommunikation und wofür brauchen wir sie?
- Wie wird Wissen verhandelt und wie wird unsere Wahrnehmung der Wirklichkeit davon beeinflusst?
- Vom Fachchinesisch zur klaren Aussage (Linguistik und Verständlichkeitsforschung)
- Framing
- Ingenieur*innen als Kommunikator*innen (Körpersprache, Stimme, mediale Stützung, Sprachstil)
- Thematisierung und Erprobung verschiedener Formate der Wissenschaftskommunikation (Eine Auswahl aus folgender Liste):
 - Präsentation
 - TED Talk
 - Science Slam
 - Presseartikel/Blog
 - Wisskomm 2.0 (Social Media)
 - Wisskomm im betrieblichen Kontext
 - Podcasts
 - Wisskomm analog: verständlich schreiben
 - ... Multimodale Gestaltungsmöglichkeiten (Mediengestaltung)
 - Wie greifen Text und Bild ineinander?
 - Grafiken und Schaubilder
 - Fotos und Videos
<table>
<thead>
<tr>
<th>Titel der Lehrveranstaltungen</th>
<th>Vom Hörsaal in die Berufspraxis: Wissenschaftskommunikation für Ingenieur*innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lehr-/ Lernformen)</td>
<td>(ZEVA) Gruppenarbeiten, Vorträge, kollaboratives und kooperatives Lernen, handlungs- und produktionsorientierte Lehrformen, Rollenspiele, praktische Anteile,</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
M. Sc. Maschinenbau
B. Sc. Mechatronik
M. Sc. Mechatronik |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Semester |
| Sprache | deutsch |
| Empfohlene (inhaltsliche) Voraussetzungen für die Teilnahme am Modul | – Bereitschaft, in Kommunikationsprojekten des Fachbereichs mitzuwirken
– Eventuell kurzes Motivationsschreiben |
| Voraussetzungen für die Teilnahme am Modul | Blockseminar 30 Stunden
Eigenarbeit 60 Stunden. |
| Studentischer Arbeitsaufwand | – Medial aufbereitete Inhalte, in denen Wissenschaftskommunikation betrieben wird (Präsentation, Instagram-Beitrag, Podcast, Science Slam, Ted Talk) |
| Studienleistungen | Portfolio (10–15 S.) oder
Hausarbeit |
| Voraussetzung für Zulassung zur Prüfungsleistung | Anzahl Credits für das Modul | 3 Credits |
| Lehreinheit | Maschinenbau |
| Modulverantwortliche/r | Studiendekan |
| Lehrende des Moduls | Dr. Daniel Koch |
| Medienformen | • Präsentationen
• Filme
• Planspiel |
| Literatur |

Seite | 171
Wissenschaftliches Schreiben und Präsentieren

Academic Writing and Presentation

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Wissenschaftliches Schreiben und Präsentieren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Schlüsselkompetenzen</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>Seminar 2 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Besonderheiten des Schreibens im Kontext der Ingenieurwissenschaften</td>
</tr>
<tr>
<td></td>
<td>Lesen und Exzerpieren</td>
</tr>
<tr>
<td></td>
<td>Literaturverwaltungsprogramme</td>
</tr>
<tr>
<td></td>
<td>Reflexion des eigenen Schreibverhaltens</td>
</tr>
<tr>
<td></td>
<td>Schreibprozesse planen und terminieren</td>
</tr>
<tr>
<td></td>
<td>Wissenschaftssprache anwenden</td>
</tr>
<tr>
<td></td>
<td>Texte überarbeiten, Feedback geben und empfangen</td>
</tr>
<tr>
<td></td>
<td>Standards guter wissenschaftlicher Praxis</td>
</tr>
<tr>
<td></td>
<td>Präsentationstechniken</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Wissenschaftliches Schreiben und Präsentieren</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Mechatronik</td>
</tr>
<tr>
<td></td>
<td>Pflichtmodul Schlüsselkompetenz</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td></td>
</tr>
<tr>
<td>Modulhandbuch</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Semester</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Für Studierende ab dem 3. Semester empfohlen.</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td></td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS (30 Std.) Selbststudium 30 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Anfertigung der wöchentlichen Schreibaufgaben</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistung</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Portfolio</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>2 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Dr. Daniel Koch</td>
</tr>
<tr>
<td>Medienformen</td>
<td>* Moodle</td>
</tr>
<tr>
<td>Literatur</td>
<td>*</td>
</tr>
</tbody>
</table>
Workshop zur Leitung von Tutorien

Workshop for tutors

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Workshop zur Leitung von Tutorien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Workshop zur Leitung von Tutorien</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Schlüsselkompetenz</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Die Studierenden haben die Fähigkeit, im Rahmen von Kleingruppen eigenes Wissen und erworbene Kenntnisse zu vermitteln.

Sie verfügen über folgende Kompetenzen:
- Leitung von Lerngruppen
- Vermitteln von Lernmethoden
- Motivation von Lernenden
- Erhöhung der Sprachkompetenz
- Konfliktlösungen finden
- Zeitmanagement

Lehrveranstaltungsarten

<table>
<thead>
<tr>
<th>Lehrveranstaltungsarten</th>
<th>Pr 2 SWS Blockveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrinhalte</td>
<td>Grundlagenvermittlung,</td>
</tr>
<tr>
<td></td>
<td>Kurzvorträge,</td>
</tr>
<tr>
<td></td>
<td>Erarbeitung von Lernmethoden, –strategien und –stilen,</td>
</tr>
<tr>
<td></td>
<td>Konfliktmanagement,</td>
</tr>
<tr>
<td></td>
<td>Kreativmethoden,</td>
</tr>
<tr>
<td></td>
<td>Gruppenarbeit.</td>
</tr>
</tbody>
</table>

Titel der Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Titel der Lehrveranstaltungen</th>
<th>Workshop zur Leitung von Tutorien</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lehr-/ Lernformen) Verwendbarkeit des Moduls</td>
<td>Gruppenarbeit, Präsentationen, Seminar</td>
</tr>
<tr>
<td>Lehr- und Lernmethoden (ZEVA)</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Mechatronik</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Mechatronik</td>
</tr>
</tbody>
</table>

Dauer des Angebotes des Moduls

Ein Semester

Häufigkeit des Angebotes des Moduls

Je nach Nachfrage im Winter- oder Sommersemester

Sprache

deutsch

Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul

- Tätigkeit als Tutor

Voraussetzungen für die Teilnahme am Modul

<table>
<thead>
<tr>
<th>Studentischer Arbeitsaufwand</th>
<th>2 SWS Pr (30 Std.)</th>
</tr>
</thead>
</table>

Studienleistungen

<table>
<thead>
<tr>
<th>Voraussetzung für Zulassung zur Prüfungsleistung</th>
<th>-</th>
</tr>
</thead>
</table>

Prüfungsleistung

<table>
<thead>
<tr>
<th>Mündliches Referat (15 Min., 1 Credit) oder schriftliche Ausarbeitung (5–20 Seiten, 3 Credits)</th>
</tr>
</thead>
</table>

Anzahl Credits für das Modul

<table>
<thead>
<tr>
<th>1 oder 3 Credits</th>
</tr>
</thead>
</table>

Lehreinheit

<table>
<thead>
<tr>
<th>Fachbereich 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
</tr>
<tr>
<td>Medienformen</td>
</tr>
<tr>
<td>Literatur</td>
</tr>
</tbody>
</table>
Wahlpflichtmodule

Für die Belegung der Wahlpflichtveranstaltungen muss eine Schwerpunktsetzung erfolgen und einer der angebotenen Schwerpunkte ausgewählt werden:

- Werkstoffe und Konstruktion
- Energietechnik
- Automatisierung und Systemdynamik
- Angewandte Mechanik
- Produktionstechnik und Arbeitswissenschaft

Es sind aus diesem Schwerpunkt zwei Basisfächer von insgesamt 12 Credits und vertiefende Module im Umfang von insgesamt 18 Credits zu wählen.

Für den Bereich der Wahlpflichtveranstaltungen müssen die zugehörigen Module den jeweiligen Schwerpunktlisten entnommen werden, welche auf der Studiengangs-Homepage veröffentlicht sind.
Angewandte Mehrkörperdynamik

Applied Multibody Dynamics

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>...</td>
</tr>
</tbody>
</table>
| Lernergebnisse, Kompetenzen (Qualifikationsziele) | * Grundlegendes Verständnis der dreidimensionalen Kinematik starrer Körper, sowie der Grundgleichungen der Mehrkörperdynamik*
* Kenntnis und Klassifikation verschiedener Bindungstypen (Zwangbedingungen)*
* Verständnis für Differentialalgebraische Gleichungssysteme (DAE) und deren Rückführung auf gewöhnliche Differentialgleichungssysteme*
* Numerische Verfahren zur Lösung gewöhnlicher Differentialgleichungen und differentialalgebraischer Gleichungen verstehen und anwenden.*
* Fähigkeit einen einfachen 2D Mehrkörper Solver selbst in Matlab zu implementieren und zu validieren.*
* Grundlegende Anwenderkenntnisse in kommerzieller Mehrkörper-Software (MSC Adams) |
| Lehrveranstaltungsarten | VLMp 2 SWS
Ü 2 SWS |
| Lehrinhalte | * Einführung und Motivation: Formalisierung der Starrkörpermechanik, Anwendungsbeispiele, Vorlesungsplan, Empfohlene Voraussetzungen, Literatur*
* Vektoren, Koordinaten, Drehungen: Darstellung von Vektoren in unterschiedlichen Koordinatensystemen, Koordinatentransformation, Drehmatrizen und Drehtensoren*
* Drehung im dreidimensionalen Raum: Euler/Kardan Winkel, Euler Parameter, Drehtensor*
* Kinematik und Kinetik: Kinematische Differentialgleichung, Impuls- und Drehimpulssatz*
* Zwangsbedingungen: Bilaterale Bindungen, Abgrenzung zu unilateralen Bindungen, Typische Bindungsgleichungen*
* Bewegungsgleichungen und DAE Formulierung: Prinzip von d’Alembert in der Fassung von Lagrange, Definition der Deskriptorförmat (DAE)*
* Differentialalgebraische Gleichungssysteme und deren Reduktion auf gewöhnliche Differentialgleichungen*
* Numerische Verfahren der Mehrkörperdynamik: Stabilisierung und Projektion, Ausgewählte Solver*
* Anwendungsbeispiele aus der Praxis*
* Implementierung eines 2D Mehrkörperdynamik Solvers in Matlab*
 o Überblick zur objektorientierten Programmierung in Matlab*
 o Anlegen einer Programmstruktur für die Mehrkörperdynamik* |
Titel der Lehrveranstaltungen

(Lehr- / Lernformen)
Lehr- und Lernmethoden (ZEVA)

- Definition von Ortsvektoren, Koordinatensystemen und Körpern, sowie deren Darstellung
- Kräfte, Drehmomente, vorgegebene Bewegungen
- Direkte und Inverse Kinematik
- Simulation gewöhnlicher Differentialgleichungen
- Implementieren von algebraischen Nebenbedingungen
- Lösen differentialalgebraischer Gleichungssysteme
- Anwendungsbeispiele in MSC Adams
- Definition von Starrkörpern, Import von CAD Daten
- Erstellen von Koordinatensystemen, Kräften und eingeprägten Bewegungen
- Erstellen von Simulationen
- Postprocessing und Datenexport

Verwendbarkeit des Moduls

- B. Sc. Maschinenbau
- M. Sc. Maschinenbau

Dauer des Angebotes des Moduls

Ein Semester

Häufigkeit des Angebotes des Moduls

Jedes Sommersemester

Sprache

Deutsch

Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul

- Mathematik 1–3
- TM 1–3
- Einführung in die Informationstechnik

Voraussetzungen für die Teilnahme am Modul

- -

Studentischer Arbeitsaufwand

- 2 SWS VL (30 Std.)
- 2 SWS Ü (30 Std.)
- Selbststudium 120 Std.

Studienleistungen

- -

Voraussetzung für Zulassung zur Prüfungsleistung

Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8

Prüfungsleistung

Mündliche Prüfung 45–60 Min.

Anzahl Credits für das Modul

6 Credits

Lehreinheit

Fachbereich 15

Modulverantwortliche/r

Prof. Hartmut Hetzler
<table>
<thead>
<tr>
<th>Lehrende des Moduls</th>
<th>Dr.-Ing. Felix Boy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen</td>
<td>eLearning</td>
</tr>
<tr>
<td></td>
<td>Sprechstunden</td>
</tr>
<tr>
<td></td>
<td>Blockseminar für Übungen</td>
</tr>
<tr>
<td>Literatur</td>
<td>Vorlesungsunterlagen</td>
</tr>
<tr>
<td></td>
<td>Wittenburg, J., Dynamics of Systems of Rigid Bodies, Springer, 2010</td>
</tr>
<tr>
<td></td>
<td>Wörnle, Mehrkörpersysteme, Teubner-Vieweg</td>
</tr>
<tr>
<td></td>
<td>Shabana, A., Dynamics of Multibody Systems, Cambridge University Press, 2005</td>
</tr>
<tr>
<td>Nummer/Code</td>
<td>Arbeitssystemgestaltung und Prozessergonomie 1</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Modulname</td>
<td>Arbeitssystemgestaltung und Prozessergonomie 1</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

<table>
<thead>
<tr>
<th>Lehrveranstaltungsarten</th>
<th>VLMp 2 SWS</th>
</tr>
</thead>
</table>

Lehrinhalte

Die Themengebiete umfassen ergonomische Kriterien der Arbeitssystemgestaltung (Anthropometrie, Informationsverarbeitung, Umwelteinflüsse), die Arbeitsorganisation (Arbeitszeitgestaltung, Entlohnungsmodelle, Motivation), qualitätsbezogene Aspekte der Arbeitssystemgestaltung sowie die Gestaltung von (Montage–) Arbeitssystemen in Theorie und Praxis (Betriebsmittelauswahl und -gestaltung, Materialbereitstellung, Ablaufprinzipien, Verkettung von Arbeitsplätzen, Mensch–Maschine–Schnittstellen).

Titel der Lehrveranstaltungen

| Arbeitssystemgestaltung und Prozessergonomie 1 |

(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)

| Vorlesung |

Verwendbarkeit des Moduls

| B. Sc. Maschinenbau
M. Sc. Maschinenbau
Lehramt an Hauptschulen und Realschulen; Arbeitslehre
M. Ed. Wirtschaftspädagogik |

Dauer des Angebotes des Moduls

| Ein Semester |

Häufigkeit des Angebotes des Moduls

| Jedes Wintersemester |

Sprache

| deutsch |

Empfohlene (inhalitliche) Voraussetzungen für die Teilnahme am Modul

| Arbeits- und Organisationspsychologie 1+2 |

Voraussetzungen für die Teilnahme am Modul

| – |

Studentischer Arbeitsaufwand

| 2 SWS VL (30 Std.)
Selbststudium 60 Std. |

Studienleistungen

| – |

Voraussetzung für Zulassung zur Prüfungsleistung

| Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |

Prüfungsleistung

| Klausur 90 Min. oder mündliche Prüfung 30 Min. |

Anzahl Credits für das Modul

| 3 Credits |

Lehreinheit

| Fachbereich 15 |

Modulverantwortliche/r

| Dr. Jürgen Pfitzmann
Prof. Dr. Oliver Sträter |

Lehrende des Moduls

| Dr. Jürgen Klippert
Dr. Jürgen Pfitzmann |

Medienformen

| – |

Literatur

Arbeitsystemgestaltung und Prozessergonomie 2 – praktische Anwendung

Occupational Design and Process Ergonomics 2 – Exercises

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Arbeitssystemgestaltung und Prozessergonomie 2 – praktische Anwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Arbeitssystemgestaltung und Prozessergonomie 2 – praktische Anwendung</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>
| Lehrveranstaltungsarten | S 1 SWS
Ü 1 SWS |

Seite | 183
durchgeführt. Hierbei wird auf die Bedeutung der Mitarbeiterpartizipation bei der Gestaltung hingewiesen.

<table>
<thead>
<tr>
<th>Titel der Lehrveranstaltungen</th>
<th>Arbeitssystemgestaltung und Prozessergonomie 2 – praktische Anwendung</th>
</tr>
</thead>
</table>
| (Lehr- / Lernformen) Lehr- und Lernmethoden (ZEVA) | Präsentation
Multimodale Interaktion |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
M. Sc. Maschinenbau
M. Sc. Regenerative Energien und Energieeffizienz
B. Sc. Wirtschaftsingenieurwesen |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Sommersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Arbeitssystemgestaltung und Prozessergonomie 1, Arbeits- und Organisationspsychologie 1+2, abgeschlossenes Grundstudium |
| Voraussetzungen für die Teilnahme am Modul | – |
| Studentischer Arbeitsaufwand | 1 SWS S (15 Std.)
1 SWS Ü (15 Std.)
Selbststudium 60 Std. |
| Studienleistungen | Präsentation und Hausarbeit |
| Voraussetzung für Zulassung zur Prüfungsleistung | Studienleistung
Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
| Prüfungsleistung | Mündliche Prüfung 30 Min. |
| Anzahl Credits für das Modul | 3 Credits |
| Lehreinheit | Fachbereich 15 |
| Modulverantwortliche/r | Dr. Jürgen Pfitzmann
Prof. Oliver Sträter |
| Lehrende des Moduls | Dr. Jürgen Pfitzmann |
| Medienformen |
- Präsentation
- Multimodale Interaktion |
| Literatur |
Arbeitswissenschaft
Industrial Engineering and Ergonomics

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Arbeitswissenschaft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Arbeitswissenschaft</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Die Studierenden haben ein breites und integriertes Wissen arbeitswissenschaftlicher Grundlagen und sind in der Lage, ihr Wissen selbstständig zu vertiefen.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 2 SWS</td>
</tr>
<tr>
<td></td>
<td>S 1 SWS</td>
</tr>
<tr>
<td></td>
<td>Ü 1 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>• Einführung und Belastungs–Beanspruchungs–Konzept</td>
</tr>
<tr>
<td></td>
<td>• Betriebsorganisation</td>
</tr>
<tr>
<td></td>
<td>• Arbeitsorganisation</td>
</tr>
<tr>
<td></td>
<td>• Modellierung und Optimierung von Arbeitsprozessen</td>
</tr>
<tr>
<td></td>
<td>• Zeitstrukturanalyse und experimentelle Zeitermittlungsmethoden</td>
</tr>
<tr>
<td></td>
<td>• Rechnerische Zeitermittlungsmethoden</td>
</tr>
<tr>
<td></td>
<td>• Entgelt und Motivation</td>
</tr>
<tr>
<td></td>
<td>• Arbeitsschutz und sicherheitstechnische Arbeitsgestaltung</td>
</tr>
<tr>
<td></td>
<td>• Arbeitsumgebungsfaktoren</td>
</tr>
<tr>
<td></td>
<td>• Arbeitsplatzgestaltung in der Produktion</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Arbeitswissenschaft</td>
</tr>
<tr>
<td>(Lehr-/Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Vorlesung, Fallstudien</td>
</tr>
<tr>
<td></td>
<td>Projektarbeit, Seminar, Präsentationen, Vorträge</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Mechatronik</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Mechatronik</td>
</tr>
<tr>
<td></td>
<td>B. Ed./M. Ed. Berufspädagogik; Fachrichtg. Metall- und Elektrotechnik</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Informatik</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Psychologie</td>
</tr>
<tr>
<td></td>
<td>B. Sc./M. Sc. Wirtschaftsingenieurwesen</td>
</tr>
<tr>
<td></td>
<td>Diplom Produkt–Design</td>
</tr>
<tr>
<td></td>
<td>Interdisziplinäres Ergänzungsstudium Innovationsmanagement</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
</tbody>
</table>
| **Studentischer Arbeitsaufwand** | 2 SWS VL (30 Std.)
1 SWS S (15 Std.)
1 SWS Ü (15 Std.)
Selbststudium 120 Std. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistungen</td>
<td>Anwesenheitspflicht für Seminarteil</td>
</tr>
</tbody>
</table>
| **Voraussetzung für Zulassung zur Prüfungsleistung** | Studienleistung
Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
| **Prüfungsleistung** | Klausur 90 Min. oder mündliche Prüfung 20 Min.;
Seminarvortrag oder Hausarbeit |
| **Anzahl Credits für das Modul** | 6 Credits |
| **Lehreinheit** | Fachbereich 15 |
| **Modulverantwortliche/r** | Prof. Ludger Schmidt |
| **Lehrende des Moduls** | Prof. Ludger Schmidt |
| **Medienformen** | – |
| **Literatur** | Schlick, Bruder, Luczak (Hrsg.): Arbeitswissenschaft. Berlin: Springer, 2010 |
Assistenzsysteme

Assistance Systems

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Assistenzsysteme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Die Studierenden verfügen über Kenntnisse auf verschiedenen Anwendungsgebieten der Mensch-Maschine-Systeme und über die Möglichkeiten, den Menschen bei seiner Tätigkeit zu unterstützen. Sie können die Grenzen und Risiken solcher Systeme erkennen.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 2 SWS, Ü 1 SWS</td>
</tr>
</tbody>
</table>
| Lehrinhalte | • Einführung und konzeptionelle Grundlagen
• Technische Grundlagen
• Fahrerassistenz
• Navigationsassistenz
• Assistenz in der Luftfahrt
• Prozessüberwachung
• Teleoperationsunterstützung
• Hilfesysteme in PC-Anwendungen
• Assistenz mit Mobilgeräten
• Ambient Assisted Living
• Smart Home
• Patientenüberwachung in der Intensivmedizin |
| Titel der Lehrveranstaltungen | Assistenzsysteme |
| (Lehr-/Lernformen) Lehr- und Lernmethoden (ZEVA) | Vorlesung, Fallstudien, Übung |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
B. Sc. Mechatronik
M. Sc. Maschinenbau
M. Sc. Mechatronik
B. A./M. A. Politikwissenschaft
B. A./M. A. Soziologie
B. Sc. Informatik
B. Sc. Psychologie
B. Sc./M. Sc. Wirtschaftsingenieurwesen
Diplom Produkt-Design
Interdisziplinäres Ergänzungsstudium Innovationsmanagement |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Sommersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Mensch-Maschine-Systeme 1 und/oder 2 |
| Voraussetzungen für die Teilnahme am Modul | – |
| Studentischer Arbeitsaufwand | 2 SWS VL (30 Std.) |
| | 1 SWS Ü (15 Std.) |
| | Selbststudium 75 Std. |
| Studienleistungen | – |
| Voraussetzung für Zulassung zur Prüfungsleistung | Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
| Prüfungsleistung | Mündliche Prüfung 20 Min. |
| Anzahl Credits für das Modul | 4 Credits |
| Lehreinheit | Fachbereich 15 |
| Modulverantwortliche/r | Prof. Ludger Schmidt |
| Lehrende des Moduls | Prof. Ludger Schmidt |
| Medienformen | – |
| Literatur | – |
Ausgewählte Kapitel der Höheren Mechanik

Excerpts from higher mechanics

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Ausgewählte Kapitel der Höheren Mechanik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 3 SWS</td>
</tr>
</tbody>
</table>
| Lehrinhalt | • Lagrangesche Mechanik
• Hamiltonsche Mechanik
• Nichtholonome Systeme
• Variationsprinzipien mit Anwend. auf die lineare Kontinuumsmechanik,
• Ritz-Verfahren / Methode der Gewichteten Residuen,
• Theorie der elastischen Scheiben und Platten. |
| Titel der Lehrveranstaltungen | Ausgewählte Kapitel der Höheren Mechanik |
| (Lehr- / Lernformen) Lehr- und Lernmethoden (ZEVA) | Vorlesung, Übungen |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
M. Sc. Maschinenbau |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Wintersemester (nicht im WS 2018/2019),
Jedes Sommersemester ab 2019 |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Technische Mechanik 1 + 2 |
| Voraussetzungen für die Teilnahme am Modul | – |
| Studentischer Arbeitsaufwand | 3 SWS VL (45 Std.)
1 SWS Ü (15 Std.)
Selbststudium 120 Std. |
<p>| Studienleistungen | – |</p>
<table>
<thead>
<tr>
<th>Voraussetzung für Zulassung zur Prüfungsleistung</th>
<th>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>Kombinierte schriftliche/mündliche Prüfung 60–90 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Andreas Ricoeur</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Andreas Ricoeur</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Tafelanschrieb, Skript</td>
</tr>
</tbody>
</table>
| Literatur | N.L. Mußchelischwill: „Einige Grundaufgaben zur mathematischen Elastizitätstheorie“, Hanser Verlag München, 1971;
A. Budo: „Theoretische Mechanik“, Deutscher Verlag der Wissenschaften, 1990;
<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Ausgewählte Themen zur Digitalen Produktions- und Logistikplanung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Ausgewählte Themen zur Digitalen Produktions- und Logistikplanung</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Durch die selbständige Ausarbeitung eines innovativen Themas im Rahmen der Forschungen des Fachgebietes sind die Studierenden in der Lage, wissenschaftlich zu arbeiten und zu präsentieren (Methodenkompetenz), gleichzeitig aber auch sich eigenständig mit einem aktuellen Fachthema auseinanderzusetzen (Fachkompetenz).</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>S 2 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Das Seminar richtet sich an Studierende höheren Semesters sowie insbesondere auch an Bacheloranden und Masteranden und behandelt ausgewählte Themen zur Produktions- und Logistikplanung; zu digitalen Planungsmethoden und zur Digitalen Fabrik. Die Themenvorschläge werden zu Beginn des Semesters vorgestellt und orientieren sich an der Aktualität der Forschung. Darüber hinaus können Studierende auch eigene Themen benennen, bearbeiten und präsentieren.</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Ausgewählte Themen zur Digitalen Produktions- und Logistikplanung</td>
</tr>
<tr>
<td>(Lehr- / Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Seminar, Blockveranstaltung, Vorträge, Diskussion</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
B. Sc. Mechatronik
M. Sc. Maschinenbau
M. Sc. Mechatronik
B. Sc. Wirtschaftsingenieurwesen
M. Sc. Wirtschaftsingenieurwesen |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Semester |
| Sprache | deutsch |
| Empfohlene (inhaltsliche) Voraussetzungen für die Teilnahme am Modul | – |
| Voraussetzungen für die Teilnahme am Modul | – |
| Studentischer Arbeitsaufwand | 2 SWS S (30 Std.)
Selbststudium 60 Std. |
| Studienleistungen | Anwesenheitspflicht |
| Voraussetzung für Zulassung zur Prüfungsleistung | Studienleistung
Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
<p>| Prüfungsleistung | Hausarbeit und Seminarvortrag 30 Min. |</p>
<table>
<thead>
<tr>
<th>Anzahl Credits für das Modul</th>
<th>3 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Sigrid Wenzel</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Sigrid Wenzel</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Tafel, Rechner und Beamer</td>
</tr>
<tr>
<td>Literatur</td>
<td>Zur Themenvorbereitung stehen Basistexte zum Einstieg zur Verfügung. Eine selbstständige fundierte Literaturrecherche ist jedoch Voraussetzung für die Erstellung der Vorträge.</td>
</tr>
</tbody>
</table>
Auszüge aus der Analytischen Strömungsmechanik

Excerpt of Theoretical Fluid Mechanics

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Auszüge aus der Analytischen Strömungsmechanik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>
| Lehrveranstaltungsarten | VLmP 1 SWS
Ü 1 SWS |
| Lehrinhalte | Klassische Strömungsprobleme
Vereinfachung der Navier-Stokes-Gleichungen
Diskussion grundsätzlicher Lösungseigenschaften
Klassische Anfangsrandwertprobleme analytisch aufbereiten und numerisch lösen |
| Titel der Lehrveranstaltungen | Auszüge aus der Analytischen Strömungsmechanik |
| (Lehr-/Lernformen) Lehr- und Lernmethoden (ZEVA) | Vorlesung, Übungen mit PC/Laptop |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
M. Sc. Maschinenbau
M. Sc. Regenerative Energien und Energieeffizienz |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Im Wintersemester alle zwei Jahre im Wechsel mit der Veranstaltung Wirbeldynamik. |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Strömungsmechanik 1, Technische Mechanik 1–3, Höhere Mathematik 1–3 |
| Voraussetzungen für die Teilnahme am Modul | – |
| Studentischer Arbeitsaufwand | 1 SWS VL (15 Std.)
1 SWS Ü (15 Std.)
Selbststudium 60 Std. |
<p>| Studienleistungen | – |
| Voraussetzung für Zulassung zur Prüfungsleistung | Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |</p>
<table>
<thead>
<tr>
<th>Prüfungsleistung</th>
<th>Mündliche Prüfung 25 Min. und/oder Abschlusspräsentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Olaf Wünsch</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Dr.-Ing. Markus Rütten</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Folien (PowerPoint)</td>
</tr>
</tbody>
</table>
Autonome Mobile Roboter

Autonomous Mobile Robots

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Autonome Mobile Roboter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse,</td>
<td>Die Studierenden verstehen die Grundkonzepte der Technik autonome</td>
</tr>
<tr>
<td>Kompetenzen</td>
<td>mobiler Roboter und sind in der Lage, einfache Programmieraufgaben</td>
</tr>
<tr>
<td>(Qualifikationsziele)</td>
<td>in diesem Umfeld zu erledigen.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 2 SWS</td>
</tr>
<tr>
<td></td>
<td>Ü 2 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Die Vorlesung behandelt die Grundlagen autonome mobiler Roboter.</td>
</tr>
<tr>
<td></td>
<td>Zu den Themen gehören Hardware-Komponenten, Sensorik und</td>
</tr>
<tr>
<td></td>
<td>Aktorik, Weltmodellierung, Kommunikation und Middleware,</td>
</tr>
<tr>
<td></td>
<td>Verhaltenssteuerung, etc.</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Autonome Mobile Roboter</td>
</tr>
<tr>
<td>(Lehr-/ Lernformen)</td>
<td>Vorlesung, Übungen, praktische Arbeiten</td>
</tr>
<tr>
<td>Lehr- und Lernmethoden (ZEVA)</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Mechatronik</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch/englisch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Verständnis der Grundlagen, Konzeption und Implementierung autonome mobiler Roboter</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS VL (30 Std.)</td>
</tr>
<tr>
<td></td>
<td>2 SWS Ü (30 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 120 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Testat</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistung</td>
</tr>
<tr>
<td></td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 120 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 16</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Kurt Geihs</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Kurt Geihs und Mitarbeiter</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Folienpräsentation</td>
</tr>
<tr>
<td></td>
<td>Beispiele an der Tafel</td>
</tr>
<tr>
<td></td>
<td>Web Page mit Folienkopien</td>
</tr>
<tr>
<td></td>
<td>Übungsaufgaben</td>
</tr>
<tr>
<td></td>
<td>Literaturhinweisen etc.</td>
</tr>
<tr>
<td></td>
<td>Siehe: www.vs.uni-kassel.de</td>
</tr>
<tr>
<td>Literatur</td>
<td>Wird in der Vorlesung vorgestellt.</td>
</tr>
</tbody>
</table>
Betriebliches Gesundheitsmanagement
Occupational Health Management

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Betriebliches Gesundheitsmanagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Dieses Kompaktseminar bietet die Möglichkeit zu erfahren, welche Maßnahmen ein Großunternehmen durchführt, um die Gesundheit der Arbeitnehmer zu fördern.

Schwerpunkte liegen dabei auf dem Erfahrungsgewinn in den Bereichen Gefährdungsbeurteilung, Ergonomie und Gesundheitsförderung, die in den einzelnen Blockseminaren vertiefend behandelt und nachfolgend an praktischen Beispielen verdeutlicht werden.

<table>
<thead>
<tr>
<th>Lehrveranstaltungsarten</th>
<th>S 2 SWS Blockveranstaltung</th>
</tr>
</thead>
</table>

Lehrinhalte

Einführungsveranstaltung

Themen:
- Einführender Vortrag zum betrieblichen Gesundheitsmanagement
- Diskussion
- Vorstellung & Verteilung der Referatsthemen
- Klärung organisatorischer Fragen

I Blockseminar

Thema: Gefährdungsbeurteilung

- standardisierte Gefährdungsbeurteilung
- Gefährdungen (allgemein)
- ergonomische Bewertung
- psychische Gefährdung
- Büroarbeitsplätze

praktischer Teil: Erstellen von Gefährdungsbeurteilungen für ausgewählte Arbeitsplätze

II Blockseminar

Thema: Ergonomie

- Kurzvorstellung Ergonomie
- ergonomische Bewertungsverfahren
- Bewertungsverfahren EAWS
- Ergonomie im Produktentstehungsprozess

praktischer Teil:
- exemplarische Bewertung von Arbeitsplätzen nach dem EAWS-Verfahren,
- Erarbeiten eines Ergonomiekonzepts im Produktentstehungsprozess

III Blockseminar
<table>
<thead>
<tr>
<th>Thema: Gesundheitsförderung</th>
<th>kognitive Gesundheit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>körperliche Gesundheit</td>
</tr>
<tr>
<td></td>
<td>Möglichkeiten des Vorgesetzten</td>
</tr>
<tr>
<td></td>
<td>Möglichkeiten des Betriebs</td>
</tr>
<tr>
<td>praktischer Teil: Erarbeiten eines Gesundheitsförderungskonzeptes unter Einbezug der Möglichkeiten vor Ort</td>
<td></td>
</tr>
</tbody>
</table>

IV Blockseminar
Thema: Gesamtkonzept betriebliches Gesundheitsmanagement
- rechtliche Grundlagen
- Verantwortlichkeiten im Betrieb
- Nutzen eines BGM

Praktischer Teil:
- Erstellung eines Gesamtkonzepts in Kleingruppen
- Betriebsbegehung unter Gesichtspunkten eines betrieblichen Gesundheitsmanagements

<table>
<thead>
<tr>
<th>Titel der Lehrveranstaltungen</th>
<th>Betriebliches Gesundheitsmanagement</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)</th>
<th>Blockveranstaltung, Gruppenarbeit, Gruppendiskussionen, Vorträge</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
<th>B. Sc. Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td></td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Mechatronik</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td></td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Mechatronik</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Wirtschaftsingenieurwesen</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Wirtschaftsingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer des Angebotes des Moduls</th>
<th>Ein Semester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Häufigkeit des Angebotes des Moduls</th>
<th>Jedes Semester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sprache</th>
<th>Deutsch</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</th>
<th>–</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen für die Teilnahme am Modul</th>
<th>Anmeldung erforderlich, Teilnehmerzahl ist auf 15 beschränkt.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Studentischer Arbeitsaufwand</th>
<th>2 SWS S (30 Std.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Selbststudium 60 Std.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studienleistungen</th>
<th>Anwesenheitspflicht</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Voraussetzung für Zulassung zur Prüfungsleistung</th>
<th>Studienleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsleistung</th>
<th>Präsentation und schriftliche Ausarbeitung</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
<th>B. Sc. Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td></td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Mechatronik</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td></td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Mechatronik</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Wirtschaftsingenieurwesen</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Wirtschaftsingenieurwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer des Angebotes des Moduls</th>
<th>Ein Semester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Häufigkeit des Angebotes des Moduls</th>
<th>Jedes Semester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sprache</th>
<th>Deutsch</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</th>
<th>–</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen für die Teilnahme am Modul</th>
<th>Anmeldung erforderlich, Teilnehmerzahl ist auf 15 beschränkt.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Studentischer Arbeitsaufwand</th>
<th>2 SWS S (30 Std.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Selbststudium 60 Std.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studienleistungen</th>
<th>Anwesenheitspflicht</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Voraussetzung für Zulassung zur Prüfungsleistung</th>
<th>Studienleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsleistung</th>
<th>Präsentation und schriftliche Ausarbeitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulhandbuch</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
</tbody>
</table>
| Modulverantwortliche/r | Prof. Oliver Sträter
Dr. Jürgen Pfitzmann |
| Lehrende des Moduls | Dr. Andree Hillebrecht |
| Medienformen | – |
| **Literatur** | – |
| | • Beck’sche Textausgaben Arbeitsschutzgesetze – Beck
• Deutsche Forschungsgemeinschaft (DFG)
• Jährliche MAK- und BAT Werte–Liste VCH (DFG)
• Florian/Stollenz Arbeitsmedizin aktuell – Gustav Fischer
• Grieben Arbeitsmedizin – Enke
• Deutsche Forschungsgemeinschaft (DFG) Begründung von MAK Werten (9 Bände)
• Fritze Die ärztliche Begutachtung – Steinkopf
• Konietzko Dupuis – Handbuch der Arbeitsmedizin– eco med
• Kühn Birett – Merkblätter Gefährlicher Arbeitsstoffe – eco med
• Martin – Grundlagen der menschlichen Arbeitsgestaltung – bund Verlag
• Opfermann/Streit – Arbeitsstätten (ArbStättV/ASR)
• Reichel u. a. Grundlagen der Arbeitsmedizin – Kohlhammer
• Sohnius/Florian – Handbuch Betriebsärztlicher Dienst– eco med
• Valentin – Arbeitsmedizin (I+II) Thieme
• Wichmann/Schlipköter – Handbuch der Umweltmedizin– eco med |
| Zeitschriften: | – |
| | • Arbeitsmedizin, Sozialmedizin, Umweltmedizin – Gentner Verlag
• Zentralblatt für Arbeitsmedizin, Arbeitsschutz und Ergonomie Dr. Haefner
• ErgoMed – Fachzeitschrift für die Arbeitsmedizinische Praxis Dr. Haefner
• Umweltmedizin in Forschung und Praxis – eco med |
Computational Intelligence in der Automatisierung

Computational Intelligence in Automation

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Computational Intelligence in der Automatisierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Computational Intelligence in der Automatisierung</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLM 3 SWS</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>Ü 1 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>• Was bedeutet Computational Intelligence und was ist das Besondere an ihr? • Problemstellungen und Lösungsansätze • Mustererkennung und Klassifikation • Modellbildung • Regelung • Optimierung und Suche • Fuzzy-Logik und Fuzzy-Systeme • Allgemeine Prinzipien • Fuzzy-Clusterverfahren • Fuzzy-Modellierung, Fuzzy-Identifikation • Fuzzy-Regelung • Anwendungsbeispiele • Künstliche Neuronale Netze • Allgemeine Prinzipien • Netzwerke vom MLP-, RBF- und SOM-Typ • Anwendungsbeispiele • Evolutionäre Algorithmen • Allgemeine Prinzipien • Genetische Algorithmen • Evolutionsstrategien • Genetisches Programmieren • Anwendungsbeispiele • Hybride CI-Systeme • Schwarmintelligenz & Künstliche Immunsysteme</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Computational Intelligence in der Automatisierung</td>
</tr>
<tr>
<td>(Lehr-/ Lernformen)</td>
<td>Frontalunterricht, Tafelübungen, Rechnerübungen, Repetitorium</td>
</tr>
<tr>
<td>Lehr- und Lernmethoden (ZEVA)</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td>Modulhandbuch</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td></td>
</tr>
</tbody>
</table>
| **B. Sc. Mechatronik**
| **M. Sc. Maschinenbau**
| **M. Sc. Mechatronik** |
| **Dauer des Angebotes des Moduls** | Ein Semester |
| **Häufigkeit des Angebotes des Moduls** | Jedes Sommersemester |
| **Sprache** | deutsch |
| **Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul** | – |
| **Voraussetzungen für die Teilnahme am Modul** | – |
| **Studentischer Arbeitsaufwand** | 3 SWS VL (45 Std.)
| | 1 SWS Ü (15 Std.)
| | Selbststudium 120 Std. |
| **Studienleistungen** | – |
| **Voraussetzung für Zulassung zur Prüfungsleistung** | Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
| **Prüfungsleistung** | Klausur 120 Min. oder mündliche Prüfung 30 Min. |
| **Anzahl Credits für das Modul** | 6 Credits |
| **Lehrreinheit** | Fachbereich 15 |
| **Modulverantwortliche/r** | Prof. Andreas Kroll |
| **Lehrende des Moduls** | Prof. Andreas Kroll |
| **Medienformen** |
| Ausdruckbare Vorlesungsfolien, Lehrbuch zum Kurs, Tafel
| Moodles-Kurs für Vorlesungs-/Übungsunterlagen sowie Zusatzinformationen |
| **Literatur** | Basisliteratur:
| A. P. Engelbrecht: Computational Intelligence, 2. Auflage
Data Mining für Technische Anwendungen
Data Mining for Technical Application

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Data Mining für Technische Anwendungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Data Mining für Technische Anwendungen</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>
| Lernergebnisse, Kompetenzen (Qualifikationsziele) | Kenntnisse: Aufgaben und Schritte des Data Mining, wesentliche Paradigmen aus dem Bereich des Data Mining
Fertigkeiten: praktischer Einsatz der Paradigmen (geübt unter Verwendung von Matlab oder RapidMiner)
Kompetenzen: Bewertung von praktischen Anwendungen der Paradigmen, selbständige Entwicklung von einfachen Anwendungen |
| Lehrveranstaltungsarten | VLmP 3 SWS
Ü 1 SWS |
| Lehrinhalte | Die Vorlesung beschäftigt sich hauptsächlich mit Algorithmen des Data Mining wie sie in technischen Anwendungen benötigt werden. Der Schwerpunkt liegt auf Klassifikationstechniken. Folgende Themen werden besprochen:
- Grundlagen und Datenvorverarbeitung
- Merkmalsselektion
- lineare Klassifikatoren (u.a. Perzepton–Lernen, lineares Ausgleichsproblem, Fisher–Kriterium)
- nichtlineare Klassifikatoren (u.a. Support Vector Machines, RBF–Netze
- Generative Klassifikatoren, Relevance Vector Machines
- Bayessche Netze
- Ensembletechniken
- Grundlagen des Spatial Data Mining und des Temporal Data |
| Titel der Lehrveranstaltungen | Data Mining für Technische Anwendungen |
| (Lehr–/Lernformen)
Lehr– und Lernmethoden (ZEVA) | Vorlesung, Übungen, Rechnerübungen, Präsentationen |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
B. Sc. Mechatronik |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Wintersemester |
| Sprache | Deutsch, englisch nach Absprache |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Lineare Algebra, Analysis |
| Voraussetzungen für die Teilnahme am Modul | – |
| Studentischer Arbeitsaufwand | 3 SWS VL (45 Std.)
1 SWS Ü (15 Std.)
Selbststudium 120 Std. |
<p>| Studienleistungen | – |</p>
<table>
<thead>
<tr>
<th>Voraussetzung für Zulassung zur Prüfungsleistung</th>
<th>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 120 Min. oder mündliche Prüfung 20 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 16</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Bernhard Sick</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Dr. Bernhard Sick</td>
</tr>
<tr>
<td>Medienformen</td>
<td>• Beamer</td>
</tr>
<tr>
<td></td>
<td>• Whiteboard</td>
</tr>
<tr>
<td>Literatur</td>
<td>Folien werden zur Verfügung gestellt</td>
</tr>
</tbody>
</table>
Digitale Logik

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Digitale Logik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>
| Lernergebnisse, Kompetenzen (Qualifikationsziele) | Die/der Lernende kann
 • die Anwendung digitaler Schaltungen beschreiben,
 • die grundlegende Funktionsweise digitaler Schaltungen erläutern,
 • binäre Zahlendarstellungen und Codes definieren,
 • grundlegende Rechenregeln erläutern und anwenden,
 • die Regeln der Booleschen Algebra erläutern und anwenden,
 • Verfahren zur Optimierung und Analyse auf Beispielschaltungen anwenden,
 • einfache Digitalschaltungen planen bzw. entwerfen,
 • Zustandsautomaten aus vorgegebenen Funktionsbeschreibungen entwickeln. |

Lehrveranstaltungsarten
VLmP 2 SWS
Ü 1 SWS

Lehrinhalte
• Zahlendarstellung und Codes,
• Boolesche Algebra,
• Entwurf und
• Vereinfachung von Schaltnetzen,
• Analyse und Synthese von
• Schaltwerken,
• Steuerwerksentwurf,
• Mikroprogrammsteuerung

Titel der Lehrveranstaltungen
Digitale Logik

(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)
Vortrag, selbstgesteuertes Lernen

Verwendbarkeit des Moduls
B. Sc. Maschinenbau
B. Sc. Mechatronik

Dauer des Angebotes des Moduls
Ein Semester

Häufigkeit des Angebotes des Moduls
Jedes Wintersemester

Sprache
deutsch

Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul
–

Voraussetzungen für die Teilnahme am Modul
–

Studentischer Arbeitsaufwand
2 SWS VL (30 Std.)
1 SWS Ü (15 Std.)
Selbststudium 75 Std.

Studienleistungen
Abgabe von Übungsaufgaben
<table>
<thead>
<tr>
<th>Voraussetzung für Zulassung zur Prüfungsleistung</th>
<th>Studienleistung Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 90 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>4 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 16</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Peter Zipf</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Peter Zipf</td>
</tr>
<tr>
<td>Medienformen</td>
<td>• Beamer (Vorlesungspräsentation)</td>
</tr>
<tr>
<td></td>
<td>• Tafel (Herleitungen, Erläuterungen)</td>
</tr>
<tr>
<td></td>
<td>• Papier (Übungen)</td>
</tr>
<tr>
<td></td>
<td>• H. M. Lipp, J. Becker: Grundlagen der Digitaltechnik, Oldenbourg Verlag, 6.überarb. Aufl., 2008</td>
</tr>
<tr>
<td></td>
<td>Weitere Literatur wird in der Vorlesung bzw. auf der Homepage des Fachgebiets bekannt gegeben.</td>
</tr>
</tbody>
</table>
Einführung in die computergestützte Technische Mechanik

Introduction to computational engineering mechanics

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Einführung in die computergestützte Technische Mechanik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Einführung in die computergestützte Technische Mechanik</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Studierende haben am Beispiel einfacher Probleme der Technischen Mechanik eine grundlegende Herangehensweise im Rahmen der computergestützten Berechnung mechanischer Anfangs- und Randwertprobleme kennen gelernt. Sie kennen grundlegende numerische Methoden, zum Beispiel die eindimensionale Finite-Elemente-Methode, und sind in der Lage, diese auf einfache Probleme der Technischen Mechanik anzuwenden.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 2 SWS</td>
</tr>
<tr>
<td></td>
<td>Ü 1 SWS</td>
</tr>
<tr>
<td></td>
<td>Pr 1 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>- Vermittlung grundlegender Zusammenhänge der numerischen Mechanik
 - Analytische und numerische Berechnung einfacher mechanischer Probleme
 - Aufstellen von Elementsteifigkeitsmatrizen für Stab- und Balkenelemente
 - Numerische Integration
 - Einflussfaktoren auf numerische Ergebnisse und deren Bewertung</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Einführung in die computergestützte Technische Mechanik</td>
</tr>
<tr>
<td>(Lehr-/ Lernformen) Lehr- und Lernmethoden (Zeva)</td>
<td>Vorlesung, Übung, Rechnerpraktikum</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Mechatronik</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Technische Mechanik 1 und 2, Technische Mechanik 3 (optional), Mathematik 1–3, Mathematik (Numerik, optional)</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>-</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS VL (30 Std.)</td>
</tr>
<tr>
<td></td>
<td>1 SWS Pr (15 Std.)</td>
</tr>
<tr>
<td></td>
<td>1 SWS Ü (15 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbstdstudium 120 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>-</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß §7 Absätze 7 und 8</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Schriftliche Prüfung (120 Min.) oder mündliche Prüfung</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Dr.-Ing. Stephan Lange</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Dr.-Ing. Stephan Lange</td>
</tr>
<tr>
<td>Medienformen</td>
<td>–</td>
</tr>
<tr>
<td>Literatur</td>
<td>–</td>
</tr>
<tr>
<td>Stefan Hartmann, Technische Mechanik, 1. Auflage Wiley–VCH 2015</td>
<td></td>
</tr>
</tbody>
</table>
Einführung in die Mechatronik

Multibody Dynamics 1 – Introduction to Mechatronics

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Einführung in die Mechatronik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Einführung in die Mechatronik</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Der/die Studierende kann
- mechanische und elektronische Prinzipien kombinieren zu mechatronischen Systemen
- selbst steuernde oder regelnde Systeme entwerfen und bewerten
- Synergien und Analogien zwischen Maschinenbau und Elektrotechnik entdecken.

Lehrveranstaltungsarten

<table>
<thead>
<tr>
<th>Lehrveranstaltungsarten</th>
<th>VLmP 4 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ü 2 SWS</td>
</tr>
</tbody>
</table>

Lehrinhalte

- Mechanische Sensoren: Wirkung und Verwendung
- Elektrische Sensoren: Wirkung und Verwendung
- Mechanische Aktuatoren: Wirkung und Verwendung
- Elektrische Aktuatoren: Wirkung und Verwendung
- Signalaufbereitung
- Pneumatische und hydraulische Aktuatoren: Wirkung und Verwendung
- Grundlegende Systemmodelle
- Linearisierung
- Übergangsverhalten von Systemen
- Übertragungsfunktionen von Systemen

Titel der Lehrveranstaltungen

Einführung in die Mechatronik

(Lehr-/Lernformen) Vorlesung, Übung

(Lern- und Lernmethoden (ZEVA))

Verwendbarkeit des Moduls

<table>
<thead>
<tr>
<th>B. Sc. Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Sc. Mechatronik</td>
</tr>
<tr>
<td>M. Sc. Maschinenbau</td>
</tr>
</tbody>
</table>

Dauer des Angebotes des Moduls

Ein Semester

Häufigkeit des Angebotes des Moduls

Jedes Wintersemester

Sprache

Deutsch

Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul

-

Voraussetzungen für die Teilnahme am Modul

-

Studentischer Arbeitsaufwand

<table>
<thead>
<tr>
<th>2 SWS VL (30 Std.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS Ü (30 Std.)</td>
</tr>
<tr>
<td>Selbststudium 180 Std.</td>
</tr>
</tbody>
</table>

Studienleistungen

-
<table>
<thead>
<tr>
<th>Voraussetzung für Zulassung zur</th>
<th>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 180 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Michael Fister</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Michael Fister</td>
</tr>
<tr>
<td>Medienformen</td>
<td>• Beamer</td>
</tr>
<tr>
<td></td>
<td>• Tafel</td>
</tr>
<tr>
<td></td>
<td>• ausgeführte Beispiele</td>
</tr>
<tr>
<td>Literatur</td>
<td>• Bolton, William, „Bausteine mechatronischer Systeme“, Pearson Studium, 2006</td>
</tr>
<tr>
<td></td>
<td>• Isermann, Rolf, „Mechatronische Systeme“, Springer, 2007</td>
</tr>
<tr>
<td></td>
<td>Weitere Literatur wird in der Vorlesung bzw. auf der Homepage des Fachgebiets bekannt gegeben.</td>
</tr>
<tr>
<td>Nummer/Code</td>
<td>Mehrkörperdynamik</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Die Studierenden</td>
</tr>
<tr>
<td></td>
<td>• kennen kinematische und kinetische Grundlagen zur Beschreibung von MKS in Minimalkoordinaten (Gelenkkoordinaten) und als DAE</td>
</tr>
<tr>
<td></td>
<td>• überblicken die Modellierung von Starrkörpersystemen sowie modale Ansätze für elastische MKS (Craig–Bampton)</td>
</tr>
<tr>
<td></td>
<td>• kennen grundlegende numerische Algorithmen zur Behandlung von MKS in Minimalkoordinaten und DAE</td>
</tr>
<tr>
<td></td>
<td>• haben durch selbständiges analytisches Rechnen vertiefte Einblicke in die Grundlagen gewonnen und darüber hinaus durch selbständiges Programmieren (Matlab/Maple/wxMaxima) kleiner Beispielprogramme grundsätzlichen Einblick in die algorithmische Umsetzung erworben</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 3 SWS</td>
</tr>
<tr>
<td></td>
<td>Ü 1 SWS</td>
</tr>
<tr>
<td></td>
<td>Pr 1 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>• Einführung, Motivation</td>
</tr>
<tr>
<td></td>
<td>• Kinematische Grundlagen: Notation (Vektoren/Matrizen), Koordinatensysteme, Ableitung von Vektoren bzgl. eines KS, allgemeine Bewegung des starren Körpers (Lage, Orientierung, Drehmatrix/-tensor, Euler–Parameter)</td>
</tr>
<tr>
<td></td>
<td>• Kinetische Grundlagen: Impuls-/Drehimpulssatz, Schwerpunktsätze für den starren Körper, Trägheitstensor, kinetische Energie des starren Körpers</td>
</tr>
<tr>
<td></td>
<td>• Systeme starrer Körper: Kinematik, Bindungsgleichungen (holonom/nicht-holonom, implizit/explicit / DH–Parameter), Freiheitsgrade, Lagrangesche Gleichungen 1. Art (Zwangskräfte): Bewegungsgleichungen (Newton/Euler), Formulierung als DAE / mit Minimalkoordinaten,</td>
</tr>
<tr>
<td></td>
<td>• Numerik: Grundlagen der Numerik für ODE–Systeme und DAE–Systeme</td>
</tr>
<tr>
<td></td>
<td>• Prinzip von d’Alembert – Lagrange, Jourdain und Gauss</td>
</tr>
<tr>
<td></td>
<td>• Kinematik und Dynamik elastischer MKS</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Mehrkörperdynamik</td>
</tr>
<tr>
<td>(Lehr–/ Lernformen) Lehr– und Lernmethoden (ZEVA)</td>
<td>Vortrag in Vorlesung und Übung (jew. Präsentation + Tafel); Selbststudium, strukturiert und unterstützt durch Übungsaufgaben; Die Inhalte werden begleitend durch selbständig zu bearbeitende Rechnerbeispiele (Matlab/Octave) veranschaulicht und vertieft (der Programmierterei ist nicht prüfungsrelevant).</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Maschinenbau</td>
</tr>
</tbody>
</table>

Einführung in die Mehrkörperdynamik

Introduction to Multibody Dynamics
<table>
<thead>
<tr>
<th>Modulhandbuch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer des Angebotes des Moduls</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
</tr>
<tr>
<td>Sprache</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
</tr>
<tr>
<td>Studienleistungen</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
</tr>
<tr>
<td>Lehreinheit</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
</tr>
<tr>
<td>Medienformen</td>
</tr>
</tbody>
</table>
Energieeffiziente Produktion Grundlagen
energy efficient production basics

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Energieeffiziente Produktion Grundlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Energieeffiziente Produktion Grundlagen</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Lehrveranstaltungsarten
VLmP 2 SWS

Lehrinhalte
- Berechnung von Energieflüssen auf Basis von thermodynamischen Grundgleichungen
- Bilanzierung von Energieflüssen an Maschinen, Anlagen und Pro-duktionsgebäuden
- Energiewandlungs- und Wärmegeführte Technologien
- Lüftungs- und Klimatechnik
- Druckluft
- Beleuchtung
- Kraft-Wärme-Kopplung / Blockheizkraftwerke
- Heizung, Wärme- und Dampftechnik
- Kältetechnik
- Elektrische Antriebe und Pumpen
- Wärmeverfahren
- Betriebswirtschaftliche Bewertung von Energieeffizienzmaßnahmen

Titel der Lehrveranstaltungen
Energieeffiziente Produktion Grundlagen

Verwendbarkeit des Moduls
B.Sc. Maschinenbau
B.Sc. Wirtschaftsingenieurwesen, Fachrichtung Maschinenbau

Dauer des Angebotes des Moduls
Ein Semester

Häufigkeit des Angebotes des Moduls
Jedes Sommersemester

Sprache
Deutsch

Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul
Grundlagen Thermodynamik, Grundlagen Wärmeübertragung, Grundlagen Mathematik

Studentischer Arbeitsaufwand
2 SWS VL (30 Std.)
Selbststudium 60 Std.
<table>
<thead>
<tr>
<th>Studienleistungen</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 60 Min.; in Sonderfällen: mündl. Prüfung 20 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Jens Hesselbach</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Jens Hesselbach</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Folien (Power Point)</td>
</tr>
<tr>
<td>Literatur</td>
<td>• Vorlesungsskript, • Übungsaufgaben, Buch „Energie- und klimaeffiziente Produktion“</td>
</tr>
<tr>
<td>Nummer/Code</td>
<td>Energiemanagementsysteme</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Modulname</td>
<td>Energiemanagementsysteme</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Lehrveranstaltungsarten

VLmP 2 SWS

Lehrinhalte

Energiemanagementsystem (EnMS) auf Basis der ISO 50001:

- Rahmenbedingungen: Energiepolitik, Klimaschutz und Energieziele
- Grundlagen des EnMS im Rahmen eines integrierten Managementsystems
- Grundsätzliche Anforderungen an ein EnMS
- Aspekte des Energieverbrauchs der Verbrauchsanalyse Messung sowie die Bildung von Kennzahlen und Energieleistungsindikatoren
- Rechtskonformität auch unter steuerrechtlichen Gesichtspunkten
- Kommunikation, Bewusstseinsbildung im Unternehmen
- Verbesserungsprozess aus technischer und managementspezifischer Sicht
- Synergien zu Umweltmanagementsystemen
- Projektplanung und Implementierung

Rechtliche Fragestellungen:

- Europäischer Rechtsrahmen Energieeffizienz
- Deutsche Gesetzgebung
- Energieeffizienz im Steuerrecht mit Bezug auf Einsatz von EnMS
- Geschäftsmodelle zur Optimierung der Energieeffizienz (Contracting)

Vertiefung technische Umsetzung von Energieeffizienz:

- Praxisbeispiele aus verschiedenen Branchen
- Monitoringsysteme und Kennzahlen

Titel der Lehrveranstaltungen

Energiemanagementsysteme

(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)

Vorlesung, Hörsaalübung

Verwendbarkeit des Moduls

B. Sc. Maschinenbau
M. Sc. Maschinenbau
M. Sc. Regenerative Energien und Energieeffizienz
<table>
<thead>
<tr>
<th>Modulhandbuch</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Sc./M. Sc. Wirtschaftsingenieurwesen</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
</tr>
<tr>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
</tr>
<tr>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Sprache</td>
</tr>
<tr>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
</tr>
<tr>
<td>Energieeffiziente Produktion</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
</tr>
<tr>
<td>Abgelegte Prüfung Energieeffiziente Produktion Grundlagen oder Energieeffiziente Produktion Vertiefung</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
</tr>
<tr>
<td>2 SWS VL (25 Std.)</td>
</tr>
<tr>
<td>Selbststudium 65 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
</tr>
<tr>
<td>–</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
</tr>
<tr>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
</tr>
<tr>
<td>Klausur 60 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
</tr>
<tr>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
</tr>
<tr>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
</tr>
<tr>
<td>Prof. Jens Hesselbach</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
</tr>
<tr>
<td>Dr.-Ing. Alexander Schlüter</td>
</tr>
<tr>
<td>Dr.-Ing. Matthias Philipp</td>
</tr>
<tr>
<td>M.Sc. Florian Schlosser</td>
</tr>
<tr>
<td>Medienformen</td>
</tr>
<tr>
<td>Folien (PowerPoint)</td>
</tr>
<tr>
<td>Literatur</td>
</tr>
<tr>
<td>Entsprechende Normen: ISO 50001</td>
</tr>
</tbody>
</table>
Energiemonitoring in der Praxis (Messen, Verarbeiten, Überwachen)

Energie Monitoring in Practice (Measuring, Processing, Monitoring)

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Energiemonitoring in der Praxis (Messen, Verarbeiten, Überwachen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Energiemonitoring in der Praxis (Messen, Verarbeiten, Überwachen)</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Die Studierenden haben die Bestandteile eines Energiemonitoring-systems kennen gelernt. Im Zuge dessen sind Sie in der Lage, Sensoren auszulegen und an verschiedene Monitoringsysteme anzubinden. Sie entwickeln ein fundiertes Verständnis für eine automatisierte Datenerfassung und -verarbeitung im Kontext der Energieeffizienz technischer Anlagen.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>P 2 SWS Blockveranstaltung</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Die Studierenden arbeiten im Laborpraktikum an verschiedenen Geräten und technischen Anlagen unterschiedlicher Größe. Die Studierenden sollen sämtliche für die Umsetzung des Energiemonitoringsystems notwendigen Schritte selbst durchführen, u.a. die Auswahl und Auslegung der Messsensorik, den Messaufbau, die Durchführung der Messungen, die Übertragungstechnik und die Plausibilisierung sowie Visualisierung der Messdaten. Der Hauptfokus liegt auf elektrischer Leistungsmessung, Temperaturmessung und Durchflussmessung.</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Energiemonitoring in der Praxis (Messen, Verarbeiten, Überwachen)</td>
</tr>
<tr>
<td>(Lehr- / Lernformen) Lehr- und Lernmethoden (Zeva)</td>
<td>Laborpraktika, Praktikum, praktische Arbeiten, Blockveranstaltung, Präsentationen, Vorträge.</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
M. Sc. Maschinenbau
M. Sc. Mechatronik
M. Sc. Regenerative Energien und Energieeffizienz |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Sommersemester |
| Sprache | Deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Energiemonitoringsysteme |
| Voraussetzungen für die Teilnahme am Modul | – |
| Studentischer Arbeitsaufwand | 2 SWS Pr (30 Std.)
Selbststudium 60 Std. |
| Studienleistungen | Teilnahme an den praktischen Arbeiten |
| Voraussetzung für Zulassung zur Prüfungsleistung | Studienleistung
Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
<p>| Prüfungsleistung | Seminarbericht mit Abschlusspräsentation |</p>
<table>
<thead>
<tr>
<th>Anzahl Credits für das Modul</th>
<th>3 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Jens Hesselbach</td>
</tr>
</tbody>
</table>
| Lehrende des Moduls | Heiko Dunkelberg, M.Sc.
| | Jan-Peter Seevers, M.Sc. |
| Medienformen | Folienvortrag, Praxis im Labor |
| Literatur | Vgl. Info des Dozenten in der ersten UE |
Energiemonitoringsysteme
Energy Monitoring Systems

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Energiemonitoringsysteme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Energiemonitoringsysteme</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 2 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td></td>
</tr>
</tbody>
</table>
 - Grundlagen Energiemonitoring
 - Anwendungsbekannte Energiedatenanwendungen und messdatengetriebene Modellbildung
 - Grundlagen der Messtechnik
 - Temperaturmessung/Thermographie
 - Druckmessung
 - Durchflussmessung
 - Leistungsprüfung |
| Titel der Lehrveranstaltungen | Energiemonitoringsysteme |
| (Lehr- / Lernformen) Lehr- und Lernmethoden (ZEVA) | Vorlesung, Hörsaalübungen |
| Verwendbarkeit des Moduls |
 - B. Sc. Maschinenbau
 - M. Sc. Maschinenbau
 - M. Sc. Mechatronik
 - M. Sc. Regenerative Energien und Energieeffizienz |
<p>| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Wintersemester |
| Sprache | Deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Grundlagen Statistik und Thermodynamik |
| Voraussetzungen für die Teilnahme am Modul | – |
| Studentischer Arbeitsaufwand | 2 SWS VL (30 Std.) Selbststudium 60 Std. |
| Studienleistungen | Teilnahme an den praktischen Arbeiten |
| Voraussetzung für Zulassung zur Prüfungsleistung | Studienleistung |
| Prüfungsleistung | Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
| Prüfungsleistung | Klausur 60 Min. |</p>
<table>
<thead>
<tr>
<th>Anzahl Credits für das Modul</th>
<th>3 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Jens Hesselbach</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Jens Hesselbach</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Folienvortrag</td>
</tr>
<tr>
<td>Literatur</td>
<td>Vgl. Info des Dozenten in der ersten UE</td>
</tr>
<tr>
<td>Nummer/Code</td>
<td>Energiewandlungsverfahren</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>
| Lernergebnisse, Kompetenzen (Qualifikationsziele) | Der/die Studierende kann:
 - die wichtigsten Energiewandlungsverfahren mit ihren jeweiligen Energiewandlungsstufen strukturieren und erläutern
 - Energiewandlungsstufen und deren Effizienz berechnen
 - Softwaretools zur Auslegung und Simulation regenerativer Energiewandler bedienen |
| Lehrveranstaltungsarten | VLmP 2 SWS
 Ü 2 SWS |
| Lehrinhalte | Im Rahmen der Vorlesung werden systematisch verschiedene Energiewandlungsverfahren zur Erzeugung elektrischer Energie differenziert nach ihren Energiewandlungsstufen behandelt.
 Dazu gehören regenerative Energiewandler, welche die Sonnenenergie direkt oder indirekt nutzen (Solarenergie, Windenergie, Wasserenergie, Bioenergie) sowie thermodynamische Energiewandler auf Basis von Kernenergie, Geothermie und verschiedenen Brennstoffen.
 Bei der Berechnung der Energiewandlungsstufen findet deren Effizienz besondere Berücksichtigung.
 In der Übung werden diese Berechnungsverfahren vertieft und zusätzlich Softwaretools zur Auslegung und Simulation regenerativer Energiewandler eingesetzt. |
| Titel der Lehrveranstaltungen | Energiewandlungsverfahren |
| (Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA) | Vorlesungen, Hörsaalübungen, Simulationsübungen |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Sommersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Mathematik–Grundvorlesungen, Grundlagen der Elektrotechnik, Einführung in die Programmierung |
| Voraussetzungen für die Teilnahme am Modul | – |
| Studentischer Arbeitsaufwand | 2 SWS VL (30 Std.)
 2 SWS Ü (30 Std.)
 Selbststudium 120 Std. |
<p>| Studienleistungen | – |</p>
<table>
<thead>
<tr>
<th>Voraussetzung für Zulassung zur Prüfungsleistung</th>
<th>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 90 Min. oder mündliche Prüfung 30 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 16</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Martin Braun</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Martin Braun und Mitarbeiter</td>
</tr>
<tr>
<td>Medienformen</td>
<td>• Beamer (Vorlesung)</td>
</tr>
<tr>
<td></td>
<td>• Tafel (Herleitungen, Erklärungen)</td>
</tr>
<tr>
<td></td>
<td>• Papier (Übungen)</td>
</tr>
<tr>
<td></td>
<td>• Simulationstools (Übungen)</td>
</tr>
<tr>
<td>Literatur</td>
<td>• Volker Quaschning: „Regenerative Energiesysteme“</td>
</tr>
<tr>
<td></td>
<td>Weitere Literatur wird in der Vorlesung benannt.</td>
</tr>
</tbody>
</table>
Faserverbundwerkstoffe und deren Verarbeitungsverfahren

Fibre-reinforced composites and their Processing Methods

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Faserverbundwerkstoffe und deren Verarbeitungsverfahren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Faserverbundwerkstoffe und deren Verarbeitungsverfahren</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 2 SWS</td>
</tr>
</tbody>
</table>
| Lehrinhalte | - Grundlagen im Bereich Faserverbundwerkstoffe
- Thermoplastische und duroplastische Matrixwerkstoffe
- Verstärkungsfasern
- Verarbeitungsverfahren (für duroplastische und thermoplastische Systeme)
- Auslegung
- Anwendungsbeispiele |
| Titel der Lehrveranstaltungen | Faserverbundwerkstoffe und deren Verarbeitungsverfahren |
| (Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA) | Vorlesung |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
B. Sc. Mechatronik
M. Sc. Maschinenbau
M. Sc. Mechatronik |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Wintersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Fertigungstechnik 3, (Werkstoffkunde der Kunststoffe) |
| Voraussetzungen für die Teilnahme am Modul | - |
| Studentischer Arbeitsaufwand | 2 SWS VL (30 Std.)
Selbststudium 60 Std. |
<p>| Studienleistungen | - |
| Voraussetzung für Zulassung zur Prüfungsleistung | Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
| Prüfungsleistung | Klausur 90 Min. oder mündliche Prüfung 30 Min. |
| Anzahl Credits für das Modul | 3 Credits |</p>
<table>
<thead>
<tr>
<th>Lehreinheit</th>
<th>Fachbereich 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Dr.-Ing. Maik Feldmann</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Dr.-Ing. Maik Feldmann</td>
</tr>
<tr>
<td>Medienformen</td>
<td>• Tafel</td>
</tr>
<tr>
<td></td>
<td>• PowerPoint-Präsentation</td>
</tr>
<tr>
<td></td>
<td>• Filme</td>
</tr>
<tr>
<td>Literatur</td>
<td>Vorlesungunterlagen werden herausgegeben</td>
</tr>
</tbody>
</table>
Festigkeit und Versagen von Konstruktionswerkstoffen
Strength and Failure of Structural Materials

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Festigkeit und Versagen von Konstruktionswerkstoffen</td>
<td></td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
<td></td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Kenntnisse: Die Studierenden kennen die unterschiedlichen Beanspruchungszustände, sowie die relevanten Prüfverfahren zur Beurteilung mechanischer Eigenschaften von Werkstoffen und aus ihnen gefertigten Bauteilen. Sie kennen die grundlegenden Theorien über Verformung und Bruch sowie die Grundlagen der Bauteildimensionierung.

Fertigkeiten: Die Studierenden sind in der Lage, Beanspruchungszustände zu beurteilen und Bauteile versagenssicher zu dimensionieren. Sie sind in der Lage, Gefügezustände von Werkstoffen im Hinblick auf ihre Auswirkungen auf Festigkeit und Zähigkeit zu beurteilen.

Kompetenzen: Die Studierenden sind in der Lage, Werkstoffe für bestimmte Anwendungsfälle auszuwählen, Gefügezustände zu optimieren, Schadensfälle zu beurteilen, Bauteile zu dimensionieren und Problemlösungen zu erarbeiten.

Lehrveranstaltungsarten
VLmP 3 SWS
Ü 1 SWS

Lehrinhalte

- Überblick über die wichtigsten Versagensphänomene
- Elastizitätstheoretische Grundlagen,
- Eigenspannungen
- Werkstoffwiderstandsgrößen,
- die wichtigen Beanspruchungsfälle,
- Zusammenhang zwischen Mikrostruktur und Festigkeit,
- Behandlung kerbwirkungsfreier, gekerber, rissbehafteter und eigenspannungsbehafteter Bauteile,
- Einführung in die Bruchmechanik.

Titel der Lehrveranstaltungen

Festigkeit und Versagen von Konstruktionswerkstoffen

(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)

Vorlesung, Hörsaalübungen

Verwendbarkeit des Moduls

B. Sc. Maschinenbau
M. Sc. Maschinenbau

Dauer des Angebotes des Moduls

Ein Semester

Häufigkeit des Angebotes des Moduls

Jedes Sommersemester

Sprache

deutsch

Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul

Werkstofftechnik 1 + 2

Voraussetzungen für die Teilnahme am Modul

-
| Studentischer Arbeitsaufwand | 3 SWS VL (45 Std.)
| | 1 SWS Ü (15 Std.)
	Selbststudium 120 Std.
Studienleistungen	–
Voraussetzung für Zulassung zur Prüfungsleistung	Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8
Prüfungsleistung	Klausur 60–90 Min. oder mündliche Prüfung 30 Min.
Anzahl Credits für das Modul	6 Credits
Lehreinheit	Fachbereich 15
Modulverantwortliche/r	Prof. Thomas Niendorf
Lehrende des Moduls	Prof. Thomas Niendorf
Medienformen	Tafelanschrieb
	Overheadfolien
	PowerPoint-Präsentationen
Literatur	Dowling, Mechanical Behavior of Materials
Formgedächtniswerkstoffe

Shape Memory Alloys

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Formgedächtniswerkstoffe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Formgedächtniswerkstoffe</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)
- Kenntnisse: Die Studierenden kennen die wichtigsten Legierungssysteme.
- Fertigkeiten: Die Studierenden können die Eigenschaften und Einsatzgrenzen der Legierungen bewerten.
- Kompetenzen: Die Studierenden sind in der Lage, anhand einer Anforderungsliste einen optimalen Werkstoff auszuwählen und einen entsprechenden Aktor zu entwickeln.

Lehrveranstaltungsarten
- VLmP 2 SWS

Lehrinhalte
- Martensitische Phasenumwandlungen
- Vorstellung der verwendeten Legierungen
- Einsatzgrenzen und Schädigungsmechanismen
- Anwendungsbeispiele

Titel der Lehrveranstaltungen
- Formgedächtniswerkstoffe

Verwendbarkeit des Moduls
- B. Sc. Maschinenbau
- M. Sc. Maschinenbau

Dauer des Angebotes des Moduls
- Ein Semester

Häufigkeit des Angebotes des Moduls
- Jedes Wintersemester

Sprache
- deutsch

Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul
- Werkstofftechnik 1 + 2

Studentischer Arbeitsaufwand
- 2 SWS VL (30 Std.)
- Selbststudium 60 Std.

Studienleistungen
- –

Voraussetzung für Zulassung zur Prüfungsleistung
- Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8

Prüfungsleistung
- Mündliche Prüfung 30 Min.

Anzahl Credits für das Modul
- 3 Credits

Lehreinheit
- Fachbereich 15

Modulverantwortliche/r
- Prof. Thomas Niendorf

** Lehrende des Moduls**
- Dr.-Ing. Philipp Kroeß

Medienformen
- Tafelanschrieb
<table>
<thead>
<tr>
<th>Literatur</th>
<th>Literaturliste wird in der Vorlesung bekanntgegeben</th>
</tr>
</thead>
</table>

- pptx-Projektion
Formula Student Competition

Formulierung des Moduls

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Formula Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td></td>
</tr>
<tr>
<td>Lernergebnisse,</td>
<td>Die Studierenden haben die Fähigkeit des koordinierten Arbeitens innerhalb eines Projektes verbessert. Sie sind in der Lage, selbständig innerhalb der Arbeitsgruppen zu arbeiten bzw. selbstständig Arbeitspakete zu erarbeiten.</td>
</tr>
<tr>
<td>Kompetenzen (</td>
<td></td>
</tr>
<tr>
<td>Qualifikationsziele)</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>PrM 1–6 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Teamarbeit / Projektarbeit</td>
</tr>
<tr>
<td></td>
<td>Praktische Anwendung des theoretischen Wissens</td>
</tr>
<tr>
<td></td>
<td>Teilnahme an internationalem Wettbewerb</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Formula Student Competition – Projektarbeit</td>
</tr>
<tr>
<td>(Lehr-/ Lernformen)</td>
<td>Teamarbeit, Gruppenarbeit, Projektarbeit, Laborarbeiten, praktische Arbeiten, Rechner- und Simulationsaufgaben, Gruppendiskussionen, Erörterungen, Demonstrationen, Präsentationen, Vorträge</td>
</tr>
<tr>
<td>Lehr- und Lernmethoden (Zefa)</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Mechatronik</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Mechatronik</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td></td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Je nach CP-Umfang ist eine flexible Verteilung über mehrere Semester möglich.</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Semester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Vorgespräch mit Modulverantwortlichen zur Definition des konkreten Projektes / Arbeitspakets</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>30 h – 180 h</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Werden zu Beginn vom Modulverantwortlichen festgelegt. In der Regel 3 Zwischenstandpräsentation.</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>–</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Vortrag (Präsentation dient gleichzeitig als Dokumentation) Kolloquium</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>1–6 CP</td>
</tr>
</tbody>
</table>
- Kann nicht im selben Semester wie Schlüsselkompetenz „Formula Student Competition erbracht werden.
- Wahlpflicht- und Schlüsselkompetenzmodul dürfen in Summe nur 8 CP ergeben.

<table>
<thead>
<tr>
<th>Lehreinheit</th>
<th>Fachbereich 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Hesselbach, Prof. Dr. Hetzler, Dr. Wallenta</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Dr. Hesselbach, Prof. Dr. Hetzler, Dr. Wallenta</td>
</tr>
<tr>
<td>Medienformen</td>
<td>–</td>
</tr>
<tr>
<td>Literatur</td>
<td>Abhängig vom Arbeitspaket</td>
</tr>
</tbody>
</table>
Fortgeschrittenenpraktikum Mess- und Automatisierungstechnik

Advanced measurement and control laboratory

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Fortgeschrittenenpraktikum Mess- und Automatisierungstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Fortgeschrittenenpraktikum Mess- und Automatisierungstechnik</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Die Studierenden sind in der Lage, fortgeschrittene mess- und automatisierungstechnische Probleme zu bearbeiten.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>Pr 2 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Das Praktikum enthält in Kleingruppen zu bearbeitende Versuche zu Anwendungen der Mess- und Automatisierungstechnik.</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Fortgeschrittenenpraktikum Mess- und Automatisierungstechnik</td>
</tr>
<tr>
<td>(Lehr-/Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Praktikum, Laborarbeit in Kleingruppen</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Semester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Matlab-Grundkenntnisse, LabView-Kenntnisse, MRT-E, RT-1</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS Pr (30 Std.) Selbststudium 60 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Fachgespräch und Praktikumsbericht</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Andreas Kroll</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Andreas Kroll und Mitarbeiter</td>
</tr>
<tr>
<td>Medienformen</td>
<td>• Experimentalaufbauten • Computersimulationen • Skript</td>
</tr>
<tr>
<td>Literatur</td>
<td>• Skript zur Vorlesung Einführung in die Mess- und Regelungstechnik</td>
</tr>
</tbody>
</table>
Modulhandbuch

Funktionale Oberflächentechnik in der Praxis
Functional surface technology in practice

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Funktionale Oberflächentechnik in der Praxis</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Im Rahmen der Lehrveranstaltung werden fundierte Kenntnisse aus dem Bereich der Werkstoff- und Oberflächentechnik vermittelt.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 2 SWS</td>
</tr>
</tbody>
</table>

Lehrinhalte

- **Theoretischer Teil:**
 - Einführung in die Oberflächentechnik (Funktionen von Oberflächen, Haftungsmechanismen, Tribologie, Verfahren)
 - Dünnschichttechnologien / Vakuumabscheidung PVD/CVD
 - Thermochemische Diffusionsverfahren – Randschichthärten
 - Vom Hochofen zum oberflächenveredelten Feinblech (Metallische Überzüge, Schmelztauchveredelung, Elektrolytische Verzinkung, Coil Coating)
 - Korrosion (Elektrochemische Korrosion, Hochtemperatur Korrosion, Metallphysikalische Korrosion, Duplex-Systeme, Automobilackierung und Korrosionsschutz
 - Grundlagen Karosseriebau

Exkursion VW–Kassel: Metallische Überzüge, Warmumformung, Karbonitrieren von Getriebekomponenten, Gleitphosphatierung

<table>
<thead>
<tr>
<th>Titel der Lehrveranstaltungen</th>
<th>Funktionale Oberflächentechnik in der Praxis</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Vorlesung, Präsentationen, Vorträge, Anwendungsbeispiele aus der Praxis, Exkursion VW Baunatal</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
M. Sc. Maschinenbau |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Wintersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Fertigungstechnik, Schweißtechnik, Strahltechnische Fertigungsverfahren |
| Voraussetzungen für die Teilnahme am Modul | – |
| Studentischer Arbeitsaufwand | 2 SWS VL (30 Std.)
Selbststudium 60 Std. |
<p>| Studienleistungen | – |
| Voraussetzung für Zulassung zur Prüfungsleistung | Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |</p>
<table>
<thead>
<tr>
<th>Prüfungsleistung</th>
<th>Mündliche Prüfung (30 Min.) und ggf. schriftliche Ausarbeitung (15 Seiten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Stefan Böhm</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Dr. Andreas Gebauer-Teichmann</td>
</tr>
<tr>
<td></td>
<td>Dr. Michael Alsmann</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Rechner mit lizensierter Software (begrenzte Plätze)</td>
</tr>
<tr>
<td></td>
<td>PowerPoint–Präsentation (Computer+Beamer)</td>
</tr>
<tr>
<td>Literatur</td>
<td>Müller, Klaus–Peter, Praktische Oberflächentechnik, JOT–Fachbuch, 2003</td>
</tr>
<tr>
<td></td>
<td>Müller, Klaus–Peter, Lehrbuch für Oberflächentechnik, Viewegs Fachbücher der Technik, 1996</td>
</tr>
<tr>
<td></td>
<td>Bobzin, Kirstin, Oberflächentechnik für den Maschinenbau, Wiley–VCH, 1996</td>
</tr>
<tr>
<td></td>
<td>www.stahl–online.de</td>
</tr>
</tbody>
</table>
Gefüge und Eigenschaften metallischer Werkstoffe

Gefüge und Eigenschaften metallischer Werkstoffe
Microstructure and Properties of Metallic Materials

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Gefüge und Eigenschaften metallischer Werkstoffe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td></td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Kenntnisse: Die Studierenden kennen den strukturellen Aufbau metallischer und keramischer Werkstoffe und die strukturmecanische Begründung für die Zusammenhänge zwischen Gefüge und mechanischen Eigenschaften. Sie kennen die grundlegenden Theorien über Verformung und Bruch.

Fertigkeiten: Die Studierenden sind in der Lage, mechanische Eigenschaften und Gefügezustände im Hinblick auf ihre Auswirkungen zu beurteilen.

Kompetenzen: Die Studierenden sind in der Lage, Werkstoffe für bestimmte Anwendungsfälle auszuwählen, Gefügezustände zu optimieren, Schadensfälle zu beurteilen und Problemlösungen zu erarbeiten.

Lehrveranstaltungsarten

<table>
<thead>
<tr>
<th>Lehrveranstaltungsarten</th>
<th>VLmP 3 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ü 1 SWS</td>
</tr>
</tbody>
</table>

Lehrinhalte

- Phasendiagramme, Umwandlungen, Stabilität von Werkstoffzuständen
- Struktureller Aufbau metallischer und keramischer Werkstoffe
- Gitterstörungen und ihre Bedeutung
- Elastische und plastische Verformung ein- und vielkristalliner Werkstoffe
- Mechanische Eigenschaften
- Diffusion
- Kriechprozesse und Hochtemperaturwerkstoffe

Titel der Lehrveranstaltungen

Gefüge und Eigenschaften metallischer Werkstoffe

(Lehr-/ Lernformen)

Vorlesung, Hörsaalübungen

Verwendbarkeit des Moduls

B. Sc. Maschinenbau
M. Sc. Bauingeneieurwesen

Dauer des Angebotes des Moduls

Ein Semester

Häufigkeit des Angebotes des Moduls

Jedes Wintersemester

Sprache

deutsch

Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul

Werkstofftechnik 1 + 2

Voraussetzungen für die Teilnahme am Modul

|- |

Studentischer Arbeitsaufwand

<table>
<thead>
<tr>
<th>3 SWS VL (45 Std.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 SWS Ü (15 Std.)</td>
</tr>
<tr>
<td>Selbststudium 120 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
</tr>
<tr>
<td>Lehreinheit</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
</tr>
</tbody>
</table>
| Medienformen | • Tafelanschrieb
• Overheadfolien
• ppt-Präsentation |
| Literatur | • Skript zur Vorlesung
• Macherauch: Praktikum in Werkstoffkunde, Vieweg
• Hornbogen, Warlimont: Metallkunde, Springer |
<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Getriebetechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Getriebetechnik</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Der/die Studierende kann</td>
</tr>
<tr>
<td></td>
<td>• Verzahnungen entwerfen und Festigkeitsberechnungen durchführen.</td>
</tr>
<tr>
<td></td>
<td>• kinematische Zusammenhänge von Umlaufgetrieben verstehen.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 2 SWS</td>
</tr>
<tr>
<td></td>
<td>Ü 2 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Getriebeverzahnungen</td>
</tr>
<tr>
<td></td>
<td>• Bauformen von Zahnradgetrieben</td>
</tr>
<tr>
<td></td>
<td>• Geometrischen Anforderungen an eine Verzahnung</td>
</tr>
<tr>
<td></td>
<td>• Konstruktion einer Evolventenverzahnung</td>
</tr>
<tr>
<td></td>
<td>• Kinematische und geometrische Zusammenhänge</td>
</tr>
<tr>
<td></td>
<td>• Profilverschiebung, Zahneingriffe, Überdeckung</td>
</tr>
<tr>
<td></td>
<td>• Auslegung von Getrieben: Kräfte, Tragfähigkeit</td>
</tr>
<tr>
<td></td>
<td>Umlaufgetriebe</td>
</tr>
<tr>
<td></td>
<td>• Bauformen, Übersetzungen</td>
</tr>
<tr>
<td></td>
<td>• Drehmomente, Leistungsflüsse, Wirkungsgrade</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Getriebetechnik</td>
</tr>
<tr>
<td>(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Vorlesung, Übungen</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Konstruktionstechnik 1 bis 3</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS VL (30 Std.)</td>
</tr>
<tr>
<td></td>
<td>2 SWS Ü (30 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 120 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 90 Min. oder mündliche Prüfung 30 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Michael Fister</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Michael Fister</td>
</tr>
<tr>
<td>Medienformen</td>
<td>▪ Beamer</td>
</tr>
<tr>
<td></td>
<td>▪ Tafel</td>
</tr>
<tr>
<td></td>
<td>▪ Internet</td>
</tr>
<tr>
<td></td>
<td>▪ ausgeführte Beispiele</td>
</tr>
<tr>
<td>Literatur</td>
<td>▪ Roloff/Matek, Maschinenelemente, vieweg</td>
</tr>
<tr>
<td></td>
<td>▪ Niemann/Winter, Maschinenelemente I-III, Springer Verlag</td>
</tr>
<tr>
<td></td>
<td>▪ Dubbel, Taschenbuch für den Maschinenbau, Springer Verlag</td>
</tr>
<tr>
<td></td>
<td>▪ DIN 3990</td>
</tr>
</tbody>
</table>
Lehrveranstaltungsarten

<table>
<thead>
<tr>
<th>Lehrveranstaltungsarten</th>
<th>Lehrinhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLmP 4 SWS</td>
<td>• Unterkühlung, Keimbildung, Erstarrung metallischer NE-Schmelzen</td>
</tr>
<tr>
<td></td>
<td>• Gussgefügeausbildung und Gefügebeeinflussung</td>
</tr>
<tr>
<td></td>
<td>• Zusammenhänge: Prozess-Gefüge-Eigenschaften</td>
</tr>
<tr>
<td></td>
<td>• Metallkundliche Phänomene, Temperaturgradienten, G/v-Kriterium</td>
</tr>
<tr>
<td></td>
<td>• Schmelzmetallurgie und Schmelzebehandlung</td>
</tr>
<tr>
<td></td>
<td>• Schmelz-, Warmhalte- und Vergießeinrichtungen</td>
</tr>
<tr>
<td></td>
<td>• Gießeigenschaften technischer Legierungen</td>
</tr>
<tr>
<td></td>
<td>• Technologie der Dauerformgießverfahren (Druckguss, Kokillenguss, Niederdruckguss, Sonderverfahren, Trennmittel, Schlichte)</td>
</tr>
<tr>
<td></td>
<td>• Produkt- und Anlagenbeispiele</td>
</tr>
<tr>
<td></td>
<td>• Werkzeugtechnologie</td>
</tr>
<tr>
<td></td>
<td>• Anschchnittauslegung und Formengestaltung</td>
</tr>
<tr>
<td></td>
<td>• Prozessauslegung und Gussnachbehandlung</td>
</tr>
<tr>
<td></td>
<td>• Qualitätssicherung in Gießereien</td>
</tr>
<tr>
<td></td>
<td>• Simulationstools und Anwendung in Gießereien</td>
</tr>
<tr>
<td></td>
<td>• PDP-Produktenstehungsprozess gegossener Komponenten</td>
</tr>
<tr>
<td></td>
<td>• Leichtbaupotential v. Gusswerkstoffen für modernste Anwendungen</td>
</tr>
</tbody>
</table>

Titel der Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gießereitechnik I – Automobil- und Fahrzeugguss (Gussleichtbau)</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Die Studierenden erhalten grundlegende Kenntnisse der Unterkühlung, Keimbildung und Erstarrung met. Schmelzen, der Gussgefügeausbildung und -beeinflussung, der Schmelzmetallurgie, der Gießeigenschaften technischer Leichtmetallegierungen und deren Verarbeitungsprozesse (Druckguss, Kokillenguss, Sonderverfahren etc.) sowie des Verständnisaufbaus bez. des Leichtbaupotentials von Gusswerkstoffen für modernste Automobil- und Fahrzeuganwendungen im Spannungsfeld Mensch-Technologie-Umwelt (Verkehr, Mobilität).

Die Studierenden werden zudem in die Lage versetzt, Optimierungs- und Entwicklungspotentiale von gießtechnischen Fertigungsprozessen und Werkstoffen als wichtigen Beitrag zur Beantwortung aktueller ökonomischer und ökologischer Fragestellungen zu erkennen und sich damit wichtige Fähigkeiten für ihr späteres berufliches Tätigkeitssfeld im internationalen Wettbewerb anzueignen.

<table>
<thead>
<tr>
<th>(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)</th>
<th>Vorlesung, Präsentationen, Fallstudien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltsliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Werkstofftechnik 1 und ggf. 2, Konstruktionstechnik 1</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td></td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>4 SWS VL (60 Std.) Selbststudium 90 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Mündliche Studienleistung 15 Min.</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 120 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Martin Fehlbier</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Martin Fehlbier</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Folienpräsentation, Tafelanschrieb, Kurzvideos</td>
</tr>
<tr>
<td></td>
<td>Exponate</td>
</tr>
<tr>
<td></td>
<td>Skript</td>
</tr>
<tr>
<td>Literatur</td>
<td>Fundamentals of Solidification: W. Kurz, D. J. Fisher, 1998</td>
</tr>
<tr>
<td></td>
<td>Schmelze, Erstarrung, Grenzflächen – Einführung in die Physik und Technologie flüssiger und fester Metalle, Sahm, Egry, Volkmann, Vieweg Verlag</td>
</tr>
<tr>
<td></td>
<td>Theorie und Praxis des Druckgusses, B. Nogowizin, Verlag Schiele & Schön</td>
</tr>
<tr>
<td></td>
<td>Handbuch Leichtbau – Methoden, Werkstoffe, Fertigung, Henning, Moeller, Hanser Verlag</td>
</tr>
<tr>
<td></td>
<td>Gießerei-Lexikon, Verlag Schiele & Schön</td>
</tr>
</tbody>
</table>
Gießereitechnik II – Maschinen- und Anlagenguss

Foundry-Technology II: “Casting technologies for engines and machinery with high melting alloys”

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Gießereitechnik II – Maschinen- und Anlagenguss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td></td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Die Studierenden werden in die Lage versetzt, Optimierungs- und Entwicklungspotentiale von gießtechnischen Fertigungsprozessen und Werkstoffen als wichtigen Beitrag zur Beantwortung aktueller ökonomischer und ökologischer Fragestellungen zu erkennen und sich damit wichtige Fähigkeiten für ihr späteres berufliches Tätigkeitssfeld im internationalen Wettbewerb anzueignen.

Weitere Lernziele liegen der selbständigen Interpretation phänomenologischer Schadensfälle sowie in der Beurteilung der Anwendungs-möglichkeiten und Grenzen analytischer Methoden sowie numerischer Gießsimulationsanwendungen. Das zur Urformtechnik dazu gehörige Fachgebiet der Pulvermetallurgie wird ebenfalls vorgestellt.

Lehrveranstaltungsarten

VLM P 4 SWS

Lehrinhalte

- Unterkühlung, Keimbildung, Erstarrung metallischer Fe-Schmelzen: Gusseisen, Stahlguss
- Kupferguss- und Sonderwerkstoffe (Bronze, Messing, Rotguss)
- Eisenkohlenstoffdiagramm für Gusswerkstoffe
- Metallkundliche Grundlagen
- Schmelzmetallurgie/Schmelzebehandlung/Anlagen und Konverter
- Gefügeausbildung in Gusseisen- und Gefügebeeinflussung
- Moderne Sandgussverfahren (verlorene Formen und Feinguss)
- Kernherstellungsverfahren/Bindermechanismen, Sandaufbereitung
- Eingießen, Umgießen – Herstellung hybrider und graderter Bauteile
- Anschnitt- und Speisertechnik
- Analyse von Bauteildefekten/Gussfehlererkennung
- Produkt- und Anlagenbeispiele
- Bauteilanforderungen/Produktauslegung im Maschinenbau
- Prozessauslegung und Gussnachbehandlung

Titel der Lehrveranstaltungen

Gießereitechnik II – Maschinen- und Anlagenguss

(Lehr-/ Lernformen)

Vorlesung, Präsentationen, Fallstudien
<table>
<thead>
<tr>
<th>Lehr- und Lernmethoden (ZEVA)</th>
<th></th>
</tr>
</thead>
</table>
| **Verwendbarkeit des Moduls** | B. Sc. Maschinenbau
M. Sc. Maschinenbau |
| **Dauer des Angebotes des Moduls** | Ein Semester |
| **Häufigkeit des Angebotes des Moduls** | Jedes Sommersemester |
| **Sprache** | deutsch |
| **Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul** | Werkstofftechnik 1 und ggf. 2, Konstruktionstechnik 1 |
| **Voraussetzungen für die Teilnahme am Modul** | – |
| **Studentischer Arbeitsaufwand** | 4 SWS VL (60 Std.)
Selbststudium 90 Std. |
| **Studienleistungen** | Mündliche Studienleistung 15 Min. |
| **Voraussetzung für Zulassung zur Prüfungsleistung** | Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
| **Prüfungsleistung** | Klausur 120 Min. |
| **Anzahl Credits für das Modul** | 6 Credits |
| **Lehreinheit** | Fachbereich 15 |
| **Modulverantwortliche/r** | Prof. Martin Fehlbier |
| **Lehrende des Moduls** | Prof. Martin Fehlbier |
| **Medienformen** | • Folienpräsentation
• Tafelanschrieb
• Kurzvideos
• Exponate
• Skript |
| **Literatur** | • Fundamentals of Solidification, W. Kurz, D. J. Fisher, 1998
• Schmelze, Erstarrung, Grenzflächen – Einführung in die Physik und Technologie flüssiger und fester Metalle, Sahm, Egry, Volkmann, Vieweg Verlag
• Formstoffe und Formverfahren, E. Flemming, W. Tilch, Deutscher Verlag für Grundstoffindustrie, Leipzig Stuttgart, 1993
• Duktiles Gusseisen, Stefan Hasse, Verlag Schiele & Schön
• Gießerei-Lexikon, Verlag Schiele & Schön, ASM Handbooks |
Grundlagen Antriebsaggregate im Kraftfahrzeug

Principle of Power Trains in Automobiles

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Grundlagen Antriebsaggregate im Kraftfahrzeug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Grundlagen Antriebsaggregate im Kraftfahrzeug</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele):

Der/die Studierende kann

- die Funktionsprinzipien der unterschiedlichen Aggregate wie Hubkolbenmotor, elektrische Maschine und deren Kombination (Hybrid-Antrieb) verstehen,
- Vor- und Nachteile der unterschiedlichen Aggregate identifizieren,
- Einblick in die Grundlagen der Betriebsführung bekommen.

Lehrveranstaltungsarten:

VLMp 3 SWS

Ü 1 SWS

Lehrinhalte:

- Hubkolbenmotor, Kurbeltriebmechanik, Kreisprozesse,
- Emission, Verbrennungsablauf,
- Abgasnachbehandlung,
- Elektrische Maschine, Umrichter,
- Batterie, Brennstoffzelle,
- Hybrid-Antrieb,
- Motormanagement: Sensorik, Aktorik, Regelkreise

Titel der Lehrveranstaltungen:

Grundlagen Antriebsaggregate im Kraftfahrzeug

Verwendbarkeit des Moduls:

B. Sc. Maschinenbau

B. Sc. Mechatronik

M. Sc. Maschinenbau

M. Sc. Mechatronik

Dauer des Angebotes des Moduls:

Ein Semester

Häufigkeit des Angebotes des Moduls:

Jedes Sommersemester

Sprache:

deutsch

Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul:

-

Voraussetzungen für die Teilnahme am Modul:

-

Studentischer Arbeitsaufwand:

<table>
<thead>
<tr>
<th>3 SWS VL (45 Std.)</th>
<th>1 SWS Ü (15 Std.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selbststudium 120 Std.</td>
<td></td>
</tr>
</tbody>
</table>

Studienleistungen:

-

Voraussetzung für Zulassung zur Prüfungsleistung:

Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8

Prüfungsleistung:

Klausur 120 Min. oder mündliche Prüfung 30 Min.
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl Credits für das</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Modul</td>
<td></td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Michael Fister</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Michael Fister</td>
</tr>
<tr>
<td></td>
<td>Dr.-Ing. Christian Spieker</td>
</tr>
<tr>
<td>Medienformen</td>
<td>• Beamer</td>
</tr>
<tr>
<td></td>
<td>• Tafel</td>
</tr>
<tr>
<td></td>
<td>• ausgeführte Beispiele</td>
</tr>
<tr>
<td></td>
<td>• Simulationsoftware (Matlab/Simulink)</td>
</tr>
<tr>
<td>Literatur</td>
<td>• v. Basshuysen, Schäfer (Hrsg.); „Handbuch Verbrennungsmotor“</td>
</tr>
<tr>
<td></td>
<td>(2014)</td>
</tr>
<tr>
<td></td>
<td>• Bosch Fachbücher, Bosch Fachinformation Automobil, Konrad</td>
</tr>
<tr>
<td></td>
<td>Reif: „Dieselmotor–Management“ (2012)</td>
</tr>
<tr>
<td></td>
<td>• Konrad Reif (Hrsg.): „Kraftfahrzeug–Hybridantriebe“, (2012)</td>
</tr>
<tr>
<td></td>
<td>• P. Hofmann: „Hybridfahrzeuge“ (2014)</td>
</tr>
<tr>
<td></td>
<td>Weitere Literatur wird in der Vorlesung bzw. auf der Homepage des</td>
</tr>
<tr>
<td></td>
<td>Fachgebiets bekannt gegeben.</td>
</tr>
</tbody>
</table>
Gussgerechtes Konstruieren und virtuelle Produkt- u. Prozessentwicklung

Cast–construction and virtual product and processes development

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Gussgerechtes Konstruieren und virtuelle Produkt– u. Prozessentwicklung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Gussgerechtes Konstruieren und virtuelle Produkt– u. Prozessentwicklung</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>
| Lehrveranstaltungsarten | VLMp 2 SWS
Ü 2 SWS |
| Titel der Lehrveranstaltungen | Gussgerechtes Konstruieren und virtuelle Produkt– u. Prozessentwicklung |
| (Lehr–/ Lernformen) | Vorlesung, Rechnerübungen, Simulationsübungen, Demonstrationen |
Lehr- und Lernmethoden (ZEVA)

| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
B. Sc. Mechatronik |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Semester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltsliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Vorkenntnisse in Maschinenelementen und Konstruktionstechnik, Vorkenntnisse in Fertigungstechnik</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
</tbody>
</table>
| Studentischer Arbeitsaufwand | 2 SWS VL (30 Std.)
2 SWS Ü (30 Std.)
Selbststudium 120 Std. |
| Studienleistungen | – |
| Voraussetzung für Zulassung zur Prüfungsleistung | Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
| Prüfungsleistung | Klausur 90 Min. |
| Anzahl Credits für das Modul | 6 Credits |
| Lehreinheit | Fachbereich 15 |
| Modulverantwortliche/r | Prof. Martin Fehlbier |
| Lehrende des Moduls | Prof. Martin Fehlbier
Olaf Nölke |
| Medienformen | PowerPoint-Vortrag, Demonstrationen am Rechner, Filme mit Simulationen, Manuskripte |
Braß, E.: Konstruieren mit CATIA V5, Hanser Verlag, München, 2002
Nogowwizin, B.: Theorie und Praxis des Druckgusses, Schiele & Schön Verlag, 2011 |
Hochtemperaturwerkstoffe

High-temperature materials

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Hochtemperaturwerkstoffe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Hochtemperaturwerkstoffe</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLMp 2 SWS</td>
</tr>
</tbody>
</table>
| Lehrinhalte | - Beurteilung und Quantifizierung unterschiedlicher Last-Zeit-Verläufe sowie Umgebungsbedingungen
- Diffusion
- Durchführung von Kriechversuchen
- Materialien für Hochtemperaturanwendungen
- Ermittlung von Werkstoffwiderstandsklassen
- Rissbildung und Schädigung
- Oxidationsprozesse |
<p>| Titel der Lehrveranstaltungen | Hochtemperaturwerkstoffe |
| (Lehr-/ Lernformen) | Vorlesung |
| Lehr- und Lernmethoden (ZEVA) | Vorlesung |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau / M. Sc. Maschinenbau |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Sommersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Werkstofftechnik 1 + 2 |
| Voraussetzungen für die Teilnahme am Modul | – |
| Studentischer Arbeitsaufwand | 2 SWS VL (30 Std.) Selbststudium 60 Std. |
| Studienleistungen | – |</p>
<table>
<thead>
<tr>
<th>Voraussetzung für Zulassung zur Prüfungsleistung</th>
<th>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 60–90 Min. oder mündliche Prüfung 30 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Thomas Niendorf</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Thomas Niendorf</td>
</tr>
<tr>
<td>Medienformen</td>
<td>• Tafelanschrieb</td>
</tr>
<tr>
<td></td>
<td>• PowerPoint–Projektion</td>
</tr>
<tr>
<td></td>
<td>• Besichtigung der Labore,</td>
</tr>
<tr>
<td></td>
<td>• Experimentelle Versuchseinheiten</td>
</tr>
<tr>
<td>Literatur</td>
<td>Skript zur Vorlesung mit Angabe weiterführender Literatur</td>
</tr>
</tbody>
</table>
Höhere Mathematik 4 – Numerische Mathematik für Ingenieure
Numerical Mathematics for Engineers

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Höhere Mathematik 4 – Numerische Mathematik für Ingenieure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Höhere Mathematik 4 – Numerische Mathematik für Ingenieure</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Die Studierenden sind in der Lage, die mathematische Fachsprache im Rahmen der numerischen Mathematik angemessen zu verwenden. Die Studierenden können Inhalte aus verschiedenen Themenbereichen der numerischen Mathematik sinnvoll verknüpfen.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 3 SWS</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>HÜ 1 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>• Verfahren zur Lösung linearer und nicht linearer Gleichungssysteme</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>• Interpolation</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>• Numerische Integration</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>• Numerische Methoden für Differentialgleichungen</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Höhere Mathematik 4 – Numerische Mathematik für Ingenieure</td>
</tr>
<tr>
<td>(Lehr-/Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Vorlesung, Hörsaalübungen</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Pflichtmodul</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Wahlpflichtmodul</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>M. Sc. Mechatronik</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>M. Sc. Regenerative Energien und Energieeffizienz</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Fundierte Kenntnisse der Inhalte der Module Höhere Mathematik 1 und 2</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Empfohlen: Fundierte Kenntnisse der Inhalte der Module Höhere Mathematik 1 und 2</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>3 SWS VL (45 Std.)</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>1 SWS HÜ (15 Std.)</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>Selbststudium 120 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Studienleistungen werden vom jeweiligen Dozenten zu Beginn der Lehrveranstaltung festgelegt.</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistung</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 120–180 Min.</td>
</tr>
</tbody>
</table>
Modulhandbuch

<table>
<thead>
<tr>
<th>Anzahl Credits für das Modul</th>
<th>6 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 10</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Andreas Meister</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Alle Dozenten des Institutes Mathematik</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Tafel, Beamer, elektronische Lernplattform</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Übungsaufgabe</th>
<th>Klausur 60–90 Min. oder mündliche Prüfung 30 Min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Thomas Niendorf</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Thomas Niendorf</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Tafelanschrieb, PowerPoint-Projektion, Besichtigung der Labore, Experimentelle Versuchseinheiten</td>
</tr>
<tr>
<td>Literatur</td>
<td>Skript zur Vorlesung mit Angabe weiterführender Literatur</td>
</tr>
</tbody>
</table>
Klebetechnische Fertigungsverfahren
Technology of Adhesive Bonding

<table>
<thead>
<tr>
<th>Nummer/Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>------------</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klebetechnische Fertigungsverfahren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Art des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernergebnisse, Kompetenzen (Qualifikationsziele)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden erlernen in dieser Veranstaltung theoretische und praktische Grundlagen der Klebtechnik. So wird es den Studierenden möglich, Potentiale aber auch Probleme der Klebtechnik besser einschätzen zu können.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsarten</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLmP 2 SWS</td>
</tr>
<tr>
<td>Ü 2 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrinhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Inhalte der Vorlesung untergliedern sich in die folgenden Bereiche:</td>
</tr>
<tr>
<td>1. Einführung in die Klebtechnik</td>
</tr>
<tr>
<td>2. Polymerchemie und Bindungsmechanismen</td>
</tr>
<tr>
<td>3. Klebstoffarten</td>
</tr>
<tr>
<td>4. Oberflächenvorbehandlung</td>
</tr>
<tr>
<td>5. Fügeteilwerkstoffe</td>
</tr>
<tr>
<td>6. Prüfverfahren</td>
</tr>
<tr>
<td>7. Klebgerechte Konstruktion</td>
</tr>
<tr>
<td>8. Hybridfügen</td>
</tr>
<tr>
<td>9. Prozesstechnik</td>
</tr>
<tr>
<td>10. Arbeitssicherheit</td>
</tr>
<tr>
<td>Die theoretischen erlernten Inhalte werden durch praktische Versuche ergänzt und gefestigt.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Titel der Lehrveranstaltungen (Lehr–/ Lernformen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung und Laborpraktikum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehr- und Lernmethoden (ZEVA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td>M. Sc. Maschinenbau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td>M. Sc. Maschinenbau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer des Angebotes des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ein Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Häufigkeit des Angebotes des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jedes Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse Fertigungstechnik und Chemie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen für die Teilnahme am Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studentischer Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS VL (30 Std.)</td>
</tr>
<tr>
<td>2 SWS Ü (30 Std.)</td>
</tr>
<tr>
<td>Selbststudium 120 Std.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studienleistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Übungsaufgaben</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
</tr>
<tr>
<td>Lehreinheit</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
</tr>
<tr>
<td>Medienformen</td>
</tr>
<tr>
<td>Literatur</td>
</tr>
</tbody>
</table>
Kontinuumsmechanik
Continuum mechanics

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Kontinuumsmechanik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Kontinuumsmechanik</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)
Die Studierenden haben sich folgende Fähigkeiten angeeignet:
- Kenntnisse: Theoretische Kenntnisse auf dem Gebiet der nichtlinearen Kontinuumsmechanik und ihrer Anwendungen.
- Fertigkeiten: numerische Strukturanalyse bei großen Deformationen
- Kompetenzen: Verständnis der Kinematik und Kinetik des nichtlinearen Kontinuums, Modellentwicklung und Interpretation der Ergebnisse.
- Die Studierenden sind in der Lage, sich anhand von Literatur in verwandte Spezialprobleme einarbeiten.
- Einbindung in die Berufsvorbereitung: Kenntnisse in der Kontinuumsmechanik sind der theoretische Hintergrund für strukturmechanische Berechnungen.

Lehrveranstaltungsarten
VLmP 3 SWS
Ü 1 SWS

Lehrinhalte
- Einführung in die Tensoralgebra und -analysis,
- Beschreibung der finiten Deformation materieller Körper,
- Kinetik des Kontinuums,
- Bilanzgleichungen der Thermodynamik und Mechanik,
- Einführung in die Materialtheorie.

Titel der Lehrveranstaltungen
Kontinuumsmechanik

(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)
Vorlesung, Übungen

Verwendbarkeit des Moduls
B. Sc. Maschinenbau
M. Sc. Maschinenbau

Dauer des Angebotes des Moduls
Ein Semester

Häufigkeit des Angebotes des Moduls
Jedes Wintersemester

Sprache
deutsch

Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul
Technische Mechanik 1 + 2

Voraussetzungen für die Teilnahme am Modul
-

Studentischer Arbeitsaufwand
3 SWS VL (45 Std.)
1 SWS Ü (15 Std.)
Selbststudium 120 Std.

Studienleistungen
-

Voraussetzung für Zulassung zur Prüfungsleistung
Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8
<table>
<thead>
<tr>
<th>Prüfungsleistung</th>
<th>Mündliche Prüfung 45 Min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Andreas Ricoeur</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Andreas Ricoeur</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Tafelanschrieb</td>
</tr>
<tr>
<td></td>
<td>Skript</td>
</tr>
<tr>
<td>Literatur</td>
<td>J. Betten: Kontinuumsmechanik, Springer, 2001;</td>
</tr>
</tbody>
</table>
Kunststoffprüfung
Testing of Plastic Materials

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Kunststoffprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 2 SWS (inkl. Pr)</td>
</tr>
</tbody>
</table>
| Lehrinhalte | • Notwendigkeit der Prüfung von Kunststoffen
| | • Probekörperherstellung
| | • Physikalische Eigenschaften
| | • Mechanische Eigenschaften
| | • Prüfung elektrischer Eigenschaften
| | • Prüfung thermischer Eigenschaften
| | • Prüfung optischer Eigenschaften
| | • Prüfung olfaktorischer Eigenschaften (Geruch)
| | • Sonderprüfmethoden
| | • Praxisbeispiele der Kunststoff–Schadensanalyse |
| Titel der Lehrveranstaltungen | Kunststoffprüfung |
| (Lehr–/ Lernformen) Lehr– und Lernmethoden (ZEVA) | Vorlesung, praktische Versuche |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
| | M. Sc. Maschinenbau |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Sommersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Grundkenntnisse über Kunststoffe |
| Voraussetzungen für die Teilnahme am Modul | – |
| Studentischer Arbeitsaufwand | 2 SWS VL (30 Std.)
<p>| | Selbststudium 60 Std. |
| Studienleistungen | – |
| Voraussetzung für Zulassung zur Prüfungsleistung | Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
| Prüfungsleistung | Klausur 90 Min. oder mündliche Prüfung 30 Min. |
| Anzahl Credits für das Modul | 3 Credits |</p>
<table>
<thead>
<tr>
<th>Lehreinheit</th>
<th>Fachbereich 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Hans-Peter Heim</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Dr.-Ing. Maik Feldmann</td>
</tr>
<tr>
<td>Medienformen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Grellmann, W.; Seidler, S.: Kunststoffprüfung; Hanser Verlag, 2005</td>
</tr>
<tr>
<td>• Reuter, M.: Methodik der Werkstoffauswahl; Hanser Verlag, 2007</td>
</tr>
<tr>
<td>• Ehrenstein, G.W.: Kunststoff-Schadensanalyse; Hanser Verlag, 2010</td>
</tr>
</tbody>
</table>
Kunststoffverarbeitungsprozesse 1
Processing of Plastic Materials 1

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Kunststoffverarbeitungsprozesse 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Kunststoffverarbeitungsprozesse 1</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)
Die Studenten haben vertiefende Kenntnisse über die in der Kunststoffverarbeitung wichtigen Prozesse erworben. Sie kennen die Urform- und Umformverfahren (Maschinenaufbau, Werkzeuge, Prozessabläufe) und die wichtigen Grundlagen für das Verständnis der Prozessabläufe (z. B. Strömungsverhältnisse, Temperaturentwicklung).

Lehrveranstaltungsarten
VLmP 2 SWS

Lehrinhalte
Die Vorlesung behandelt im Wesentlichen die Grundlagen und die Schneckenverarbeitung (Extrusion und Spritzgießen). Es werden die Urform- und Umformverfahren dargestellt (Maschinenaufbau, Werkzeuge, Prozessabläufe) und die wichtigen Grundlagen für das Verständnis der Prozessabläufe vermittelt (z. B. Strömungsverhältnisse, Temperaturentwicklung).

Titel der Lehrveranstaltungen
Kunststoffverarbeitungsprozesse 1

(Lehr-/ Lernformen)
Vorlesung

Verwendbarkeit des Moduls
B. Sc. Maschinenbau
B. Sc. Mechatronik
M. Sc. Maschinenbau
M. Sc. Mechatronik

Dauer des Angebotes des Moduls
Ein Semester

Häufigkeit des Angebotes des Moduls
Jedes Wintersemester

Sprache
deutsch

Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul
Fertigungstechnik 3, (Werkstoffkunde der Kunststoffe), Kunststoffverarbeitungsprozesse 1 ist Voraussetzung für Kunststoffverarbeitungsprozesse 2

Voraussetzungen für die Teilnahme am Modul
-

Studentischer Arbeitsaufwand
2 SWS VL (30 Std.)
Selbststudium 60 Std.

Studienleistungen
-

Voraussetzung für Zulassung zur Prüfungsleistung
Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8

Prüfungsleistung
Klausur 90 Min. oder mündliche Prüfung 30 Min.

Anzahl Credits für das Modul
3 Credits

Lehreinheit
Fachbereich 15

Modulverantwortliche/r
Prof. Hans–Peter Heim
<table>
<thead>
<tr>
<th>Lehrende des Moduls</th>
<th>Prof. Hans-Peter Heim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen</td>
<td>Tafel</td>
</tr>
<tr>
<td></td>
<td>PowerPoint-Präsentation</td>
</tr>
<tr>
<td></td>
<td>Filme</td>
</tr>
<tr>
<td>Literatur</td>
<td>Vorlesungsunterlagen werden herausgegeben.</td>
</tr>
</tbody>
</table>
LabVIEW – Fundamentals and applications

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>LabVIEW – Grundlagen und Anwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>LabVIEW – Grundlagen und Anwendung</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Die Studierenden können eine Software mit PC und standardisierter Hardware als Instrument für die Lösung einfacher Mess-, Steuerungs- und Prüfaufgaben einsetzen. Sie besitzen die Grundkenntnisse zur Anwendung der industriell weit verbreiteten Software LabVIEW zur Erstellung einfacher endlicher Automaten und können damit selbstständig einfache virtuelle Instrumente (VIs) erstellen, die für die Erfassung, Darstellung, Auswertung, Analyse und Speicherung von Messdaten sowie zur Simulation von einfachen technischen Prozessen und die Steuerung einfacher lokaler Prüfstände genutzt werden kann.

<table>
<thead>
<tr>
<th>Lehrveranstaltungsarten</th>
<th>VLmP 1 SWS Ü 1 SWS</th>
</tr>
</thead>
</table>

Lehrinhalte

- Einführung in die Erstellung virtueller Instrumentierung
- Schnittstellen zwischen den virtuellen Instrumenten und der realen Welt (Datenerfassung, Weiterverarbeitung, Datenausgabe)
- Einführung in die Entwicklungsumgebung von LabVIEW (Frontpanel, Blockschaltbild, Symbolleisten, Paletten etc.)
- Bearbeitungstechniken (Elementtypen, Bedien- und Anzeigelemente, Verbindungstechniken)
- Grundlagen der LabVIEW-Programmierung (Datenflussprinzip, Datentypen, Bibliotheken, SubVIs etc.)
- Techniken der Fehlerbeseitigung (Debugging, Haltepunkte, Sonden etc.)
- Automatenarchitektur zur Datenerfassung, -auswertung und -speicherung
- Anwendung anhand von Beispielen (z. B. Temperaturmessung, Kennlinienaufnahme, etc.)

Titel der Lehrveranstaltungen

LabVIEW – Grundlagen und Anwendung, Auswertung von praktischen Experimenten

(Lehr–/Lernformen) Lehr– und Lernmethoden (ZEVA)

Frontalunterricht, Rechnerübungen, Auswertung von praktischen Experimenten

Verwendbarkeit des Moduls

B. Sc. Maschinenbau
B. Sc. Mechatronik

Dauer des Angebotes des Moduls

Ein Semester

Häufigkeit des Angebotes des Moduls

Jedes Wintersemester

Sprache

defutsch

Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul

Allgemeine Programmierkenntnisse
<table>
<thead>
<tr>
<th>Voraussetzungen für die Teilnahme am Modul</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>1 SWS VL (15 Std.)</td>
</tr>
<tr>
<td></td>
<td>1 SWS Ü (15 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 60 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur (60 Min.) oder schriftliche Ausarbeitung</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Andreas Kroll</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Dr.-Ing. Robert Schmoll</td>
</tr>
<tr>
<td>Medienformen</td>
<td>• Beamer, Tafel</td>
</tr>
<tr>
<td></td>
<td>• PC-Pool mit Messwerterfassungshardware für praktische Übungen und Anwendung mit LabVIEW</td>
</tr>
</tbody>
</table>
Life Cycle Engineering
Life Cycle Engineering 1

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Life Cycle Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Lehrveranstaltungsarten</td>
</tr>
</tbody>
</table>
| Lehrinhalte | • Übersicht bezüglich Umweltwirkungen (Ozonloch, Treibhaus- effekt, Photosmog, Ressourcenverknappung, Waldsterben, Überdüngung, Toxizität)
• Staatliche und betriebliche Instrumente zur Umsetzung von Umweltschutzmaßnahmen
• Life Cycle Engineering, Vorgehensweise bei Erstellung von Ökobilanzen
• Ausgewählte Beispiele von Ökobilanzen
• Handlungsmöglichkeiten zum Schutz der Umwelt
• Softwaresysteme zur Erstellung von Umweltbilanzen |
| Titel der Lehrveranstaltungen | Life Cycle Engineering |
| (Lehr- / Lernformen) Lehr- und Lernmethoden (ZEVA) | Vorlesung, Hörsaalübungen |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
B. Sc. Mechatronik
B. Sc. Bauingenieurwesen
B. Sc. Umwelt ingenieurwesen
B. Sc. Wirtschafts ingenieurwesen |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Wintersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Grundkenntnisse der Technik, Mathematik und Chemie |
| Voraussetzungen für die Teilnahme am Modul | – |
| Studentischer Arbeitsaufwand | 2 SWS VL (30 Std.)
Selbststudium 60 Std. |
<table>
<thead>
<tr>
<th>Studienleistungen</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 60 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Jens Hesselbach</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Jens Hesselbach</td>
</tr>
</tbody>
</table>
| Medienformen | • Power Point
• Vorlesungsumdruck |
| Literatur | Eyerer, Peter: Ganzheitliche Bilanzierung; Springer Verlag 1996 |
Life Cycle Engineering – Praktikum
Life Cycle Engineering 2

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Life Cycle Engineering – Praktikum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Life Cycle Engineering – Praktikum</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Praktische Anwendung der in LCE erlernten Inhalte</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>Pr 2 SWS</td>
</tr>
</tbody>
</table>
| Lehrinhalte | • Zerlegen eines Produktes
• Aufschlüsseln der Bauteile
• Abbildung des Produktes in einer Bilanzierungssoftware
• Erstellung einer Life Cycle Bilanz für das Produkt |
| Titel der Lehrveranstaltungen | Life Cycle Engineering – Praktikum |
| (Lehr-/Lernformen) Lehr- und Lernmethoden (ZEVA) | Praktikum, Präsentationen |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
B. Sc. Mechatronik
B. Sc. Bauingenieurwesen
B. Sc. Umweltingenieurwesen
B. Sc. Wirtschaftsingenieurwesen |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Sommersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Life Cycle Engineering |
| Voraussetzungen für die Teilnahme am Modul | Um an diesem Praktikum teilnehmen zu dürfen, müssen Sie die Klausur zur Lehrveranstaltung Life Cycle Engineering bestanden haben. |
| Studentischer Arbeitsaufwand | 2 SWS Pr (30 Std.)
Selbststudium 60 Std. |
| Studienleistungen | Anwesenheitspflicht |
| Voraussetzung für Zulassung zur Prüfungsleistung | Studienleistung
Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
<p>| Prüfungsleistung | Ausarbeitung der Praktikumsergebnisse (Abschlussbericht) mit Abschlusspräsentation 20 Min. |
| Anzahl Credits für das Modul | 3 Credits |
| Lehreinheit | Fachbereich 15 |
| Modulverantwortliche/r | Prof. Jens Hesselbach |
| Lehrende des Moduls | Prof. Jens Hesselbach |
| Medienformen | • Power Point |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Excel, Bilanzierungssoftware</td>
</tr>
<tr>
<td></td>
<td>Software GABI 4.0</td>
</tr>
<tr>
<td>Literatur</td>
<td>Eyerer, Peter: Ganzheitliche Bilanzierung; Springer Verlag 1996</td>
</tr>
</tbody>
</table>
Lineare Schwingungen
Linear Vibrations

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Lineare Schwingungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 3 SWS</td>
</tr>
<tr>
<td></td>
<td>Ü 1 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>1) invariante lineare Systeme der Form MDGKN</td>
</tr>
</tbody>
</table>

- b) erzwungene Schwingungen von MK–, MDK, MDGK– und MDGKN–Systemen mittels Frequenzgangmatrix und modaler Entkopplung
 Technische Beispiele

2) zeitinvariante lineare Systeme in Zustandsform:
- b) partikuläre Lösung: Frequenzgangmatrix, Faltungssintegral, Variation der Konstanten
3) Zeitvariante Systeme: Floquet-Normalform

<table>
<thead>
<tr>
<th>Titel der Lehrveranstaltungen</th>
<th>Lineare Schwingungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Vortrag in Vorlesung und Übung; Selbststudium, strukturiert und unterstützt durch Übungsaufgaben; Teilweise rechnergestützte Bearbeitung</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
M. Sc. Maschinenbau |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Wintersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Mathematik 1–3, TM 1–3, Schwingungstechnik und Maschinendynamik / Technische Schwingungslehre |
| Voraussetzungen für die Teilnahme am Modul | – |
| Studentischer Arbeitsaufwand | 3 SWS VL (45 Std.)
1 SWS Ü (15 Std.)
Selbststudium 120 Std. |
| Studienleistungen | – |
| Voraussetzung für Zulassung zur Prüfungsleistung | Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
| Prüfungsleistung | Mündliche Prüfung 45 Min. |
| Anzahl Credits für das Modul | 6 Credits |
| Lehreinheit | Fachbereich 15 |
| Modulverantwortliche/r | Prof. Hartmut Hetzler |
| Lehrende des Moduls | Prof. Hartmut Hetzler |
| Medienformen | • Vortrag (Folienpräsentation, Tafelanschrieb)
• Übung |
| Literatur | • Literaturliste wird zu Beginn der Veranstaltung ausgegeben
• Vorlesungsfolien werden bereitgestellt |
Maschinen- und Rotordynamik

Machine Dynamics and Rotor Dynamics

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Modulname</th>
<th>Art des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maschinen- und Rotordynamik</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Die Studierenden
- kennen wesentliche dynamische Effekte und Phänomene der Maschinen und Rotordynamik – insbesondere aus den Bereichen Aufstellung/Fundamentierung, Antriebsstrang-/Torsions-Schwingungen, Hubkolbenmaschine, Dynamik von Rotor- systemen, Auswuchten starrer und elast. Rotoren
- kennen geeignete Ersatzmodelle zur analytischen Erfassung der wesentlichen Effekte und können diese analysieren.
- können die in den Grundvorlesungen (HM, TM, STMD) erlernten Methoden routiniert anwenden und haben die Fähigkeit zur Interpretation abstrakter Aussagen im Hinblick auf praktische Fragestellungen vertieft.

Lehrveranstaltungsarten

- VLmP 3 SWS
- Ü 1 SWS

Lehrinhalte

- Einführung & Motivation
- Schwingungsisolation (Aufstellung und Fundamentierung): aktive / passive Isolation, harmonische und periodische Erregerkräfte, instationäre Anregung
- Hubkolbenmaschinen (Bsp.: Verbrennungsmotor):
- Bewegungs- und Zwangskraftgleichungen, Lagerlasten, Massen- und Leistungsausgleich; Einzelkolben & Mehrkolbenmaschinen
- Antriebsstrang: typische Bauformen (Kfz, verzweigt), Torsionsstab, 2-Fhg–Torsionsschwinger, N–Fhg–Torsions- schwinger, Randbedingungen (An-/Abtrieb), Dämpfer, Tilger (ZMS, Fliehkraftpendel)
- Rotordynamik:
- Lavalrotor (Selbstzentrierung, Hochlauf/Auslauf, System-/Antriebskennlinie, Sommerfeld-Effekt
- orthotrop–anisotrope Lager: Gleichlauf, Gegenlauf
- Laufstabilität: unrunde Welle, inner/äußere Dämpfung
- Kreiseleffekte: fliegend gel. Rotor, Eigenfrequenzen, Resonanz je nach Erregerart, Kontinuumsrotor
- Rotor–Fluid–Interaktion: Fluid–Lager (Reynoldsgleichung, Gaslager), Spaltdichtungen, etc.
- Auswuchten: statische / dynamische Unwucht, Auswuchten starrer Rotoren, Ausblick: Auswuchten elastischer Rotoren
- Bewegte Kontinua: bewegte Saite (Einfluss auf Eigenfrequenzen, Stabilität), Schaufselschwingungen unter Fliehkrafteinfluss

Titel der Lehrveranstaltungen

Maschinen- und Rotordynamik
<table>
<thead>
<tr>
<th>(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)</th>
<th>Präsentation und Tafelvortrag in Vorlesung und Übung; Selbststudium, strukturiert und unterstützt durch Übungsaufgaben</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Mathematik 1–3, Schwingungstechnik und Maschinendynamik</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>-</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>3 SWS VL (45 Std.)</td>
</tr>
<tr>
<td></td>
<td>1 SWS Ü (15 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 120 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>-</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Mündliche Prüfung 45 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Hartmut Hetzler</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Hartmut Hetzler und Mitarbeiter</td>
</tr>
<tr>
<td>Medienformen</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>• Präsentation (Folien)</td>
</tr>
<tr>
<td></td>
<td>• Tafelanschrieb</td>
</tr>
<tr>
<td></td>
<td>• e-learning</td>
</tr>
<tr>
<td></td>
<td>• Unterlagen</td>
</tr>
<tr>
<td>Literatur</td>
<td>Zu Beginn der Veranstaltungen werden umfangreiche Literaturempfehlungen gegeben.</td>
</tr>
<tr>
<td>Nummer/Code</td>
<td>Materialermüdung und Randschichtheigenschaften</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Modulname</td>
<td>Materialermüdung und Randschichtheigenschaften</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>
| Lernergebnisse, Kompetenzen (Qualifikationsziele) | Kenntnisse: Die Studierenden kennen die Verfahren zur Material- und Bauteilprüfung unter schwingender Beanspruchung und die material-wissenschaftlichen Grundlagen der auftretenden Schädigungen. Sie kennen darüber hinaus Verfahren, die zur Festigkeitssteigerung schwingbeanspruchter Bauteile eingesetzt werden können.
Fertigkeiten: Die Studierenden sind in der Lage, Beanspruchungszustände zu beurteilen und Maßnahmen zur Festigkeitssteigerung zu treffen
Kompetenzen: Die Studierenden sind in der Lage, Komponenten hinsichtlich ihrer Beanspruchbarkeit zu beurteilen, zu dimensionieren und Problemlösungen für Schadensfälle zu erarbeiten. |
| Lehrveranstaltungsarten | VLmP 2 SWS |
| Lehrinhalte | - Beurteilung und Quantifizierung unterschiedlicher Last-Zeit-Verläufe
- Durchführung von Schwingfestigkeitsversuchen
- Streuung von Schädigung und Versagen
- Ermittlung von Werkstoffwiderstandsgrößen
- Schädigungsverlauf
- Rissbildung und Rissausbreitung
- Verfahren zur Randschichtoptimierung und Lebensdauersteigerung |
<p>| Titel der Lehrveranstaltungen | Materialermüdung und Randschichtheigenschaften |
| (Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA) | Vorlesung |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau / M. Sc. Maschinenbau |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Sommersemester |
| Sprache | deutsch |
| Empfohlene (Inhaltliche) Voraussetzungen für die Teilnahme am Modul | Werkstofftechnik 1 + 2 |
| Voraussetzungen für die Teilnahme am Modul | - |
| Studentischer Arbeitsaufwand | 2 SWS VL (30 Std.) Selbststudium 60 Std. |
| Studienleistungen | - |
| Voraussetzung für Zulassung zur Prüfungsleistung | Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |</p>
<table>
<thead>
<tr>
<th>Prüfungsleistung</th>
<th>Klausur 60–90 Min. oder mündliche Prüfung 30 Min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Thomas Niendorf</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Thomas Niendorf</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Tafelanschrieb</td>
</tr>
<tr>
<td>Literatur</td>
<td>Skript zur Vorlesung mit Angabe weiterführender Literatur</td>
</tr>
</tbody>
</table>
Materialflussysteme

Material Flow Systems

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Materialflussysteme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Materialflussysteme</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Lehrveranstaltungsarten

<table>
<thead>
<tr>
<th>Lehrveranstaltungsarten</th>
<th>VLmP 2 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ü 2 SWS</td>
<td></td>
</tr>
</tbody>
</table>

Lehrinhalte

Innerhalb der Veranstaltung erfolgt eine systematische Einführung in die Materialflusstechnik und die Auslegung logistischer Systeme. Im Einzelnen werden folgende Themen behandelt:

- Stetig- und Unstetigfördersysteme
- Lagersysteme
- Kommissioniersysteme
- Umschlagstechnik, Sortier- und Verteilsysteme
- Materialflusskenngrößen wie beispielsweise Verfügbarkeit, Durchsatz, Bestand
- Wirkungsweisen der Vernetzung von Materialflussystemen
- Methoden der logistischen Planung
- Aspekte der Materialflusssteuerung

Mittels obiger Grundlagen werden die Studierenden in den Übungen dazu angeleitet, ihr erworbenes Wissen in der Auslegung logistischer Anlagen zu festigen.

Titel der Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Titel der Lehrveranstaltungen</th>
<th>Materialflussysteme</th>
</tr>
</thead>
</table>

(Lehr- / Lernformen) Lehr- und Lernmethoden (ZEVA)

<table>
<thead>
<tr>
<th>(Lehr- / Lernformen) Lehr- und Lernmethoden (ZEVA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung, Übungen, Gruppenarbeit</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td>B. Sc. Mechatronik</td>
</tr>
<tr>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td>M. Sc. Mechatronik</td>
</tr>
<tr>
<td>B. Sc. Wirtschaftsingenieurwesen</td>
</tr>
<tr>
<td>M. Sc. Wirtschaftsingenieurwesen</td>
</tr>
</tbody>
</table>

Dauer des Angebotes des Moduls

<table>
<thead>
<tr>
<th>Dauer des Angebotes des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ein Semester</td>
</tr>
</tbody>
</table>

Häufigkeit des Angebotes des Moduls

<table>
<thead>
<tr>
<th>Häufigkeit des Angebotes des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jedes Sommersemester</td>
</tr>
</tbody>
</table>

Sprache

<table>
<thead>
<tr>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
</tr>
<tr>
<td>Studienleistungen</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
</tr>
<tr>
<td>Lehreinheit</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
</tr>
</tbody>
</table>
| Medienformen | • Tafel
• Rechner und Beamer
• vorlesungsbegleitende Unterlagen |
| Literatur | Die folgende Literaturliste ist Grundlage der Veranstaltung, sie wird jedoch laufend aktualisiert und ergänzt:
Materialien unter komplexen Belastungsbedingungen

Materials under complex loading conditions

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Materialien unter komplexen Belastungsbedingungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Materialien unter komplexen Belastungsbedingungen</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>
| Lernergebnisse, Kompetenzen (Qualifikationsziele) | Kenntnisse: Die Studierenden kennen die relevanten elementaren Prozesse, welche das Materialverhalten bei hohen Temperaturen, unter zyklischer Belastung und unter komplexer thermo-mechanischer Belastung prägen. Sie kennen darüber hinaus alle Möglichkeiten, die zur Optimierung entsprechend komplex belasteter Bauteile eingesetzt werden können.
Fertigkeiten: Die Studierenden sind in der Lage, Beanspruchungszustände zu beurteilen und Maßnahmen zur Festigkeitssteigerung, Randschichtoptimierung sowie dem Korrosionsschutz abzuleiten.
Kompetenzen: Die Studierenden sind in der Lage Komponenten hinsichtlich ihrer Beanspruchbarkeit zu beurteilen, zu dimensionieren und Problemlösungen bei Schadensfällen zu erarbeiten. Zudem können die Studierenden eine geeignete Materialauswahl treffen. |
| Lehrveranstaltungsarten | VLMp 4 SWS |
| Lehrinhalte |
- Beurteilung und Quantifizierung komplexer thermo-mechanischer Last-Zeit-Verläufe sowie Umgebungsbedingungen
- Elementare Mechanismen der Verformung
- Durchführung von Untersuchungen unter thermo-mechanischer Last
- Materialauswahl unter gegebenen Belastungsbedingungen
- Oberflächenmodifikation
- Schädigung und Versagen |
| Titel der Lehrveranstaltungen | Materialien unter komplexen Belastungsbedingungen |
| (Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA) | Vorlesung |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau / M. Sc. Maschinenbau |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Sommersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Werkstofftechnik 1 + 2 |
| Voraussetzungen für die Teilnahme am Modul | |
| Studentischer Arbeitsaufwand | 4 SWS VL (60 Std.)
Selbststudium 120 Std. |
<p>| Studienleistungen | |</p>
<table>
<thead>
<tr>
<th>Voraussetzung für Zulassung zur Prüfungsleistung</th>
<th>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 90–150 Min. oder mündliche Prüfung 45–60 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Thomas Niendorf</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Thomas Niendorf</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Tafelanschrieb</td>
</tr>
<tr>
<td></td>
<td>PowerPoint–Projektion</td>
</tr>
<tr>
<td></td>
<td>Besichtigung der Labore,</td>
</tr>
<tr>
<td></td>
<td>Experimentelle Versuchseinheiten</td>
</tr>
<tr>
<td>Literatur</td>
<td>Skript zur Vorlesung mit Angabe weiterführender Literatur</td>
</tr>
<tr>
<td>Nummer/Code</td>
<td>Matlab – Grundlagen und Anwendungen</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Modulname</td>
<td>Matlab – Grundlagen und Anwendungen</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Die Studierende sind in der Lage, das PC-Programm MATLAB/Simulink und die Control Toolbox zu bedienen und zum Lösen einfacher regelungstechnischer Probleme einzusetzen.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>Pr 2 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Einführung in Matlab:</td>
</tr>
<tr>
<td></td>
<td>- Eingaben im Kommandofenster,</td>
</tr>
<tr>
<td></td>
<td>- Programmierung von Skript-Dateien und Funktionen,</td>
</tr>
<tr>
<td></td>
<td>- Erstellung von 2D/3D-Grafiken</td>
</tr>
<tr>
<td></td>
<td>- Einführung in Simulink:</td>
</tr>
<tr>
<td></td>
<td>- grafische Realisierung regelungstechnischer Systeme (Blockschaltbild),</td>
</tr>
<tr>
<td></td>
<td>- Simulation dynamischer Systeme</td>
</tr>
<tr>
<td></td>
<td>- Matlab Control Toolbox:</td>
</tr>
<tr>
<td></td>
<td>- Systemdarstellungen im Frequenz- und Zeitbereich,</td>
</tr>
<tr>
<td></td>
<td>- Linearisierung,</td>
</tr>
<tr>
<td></td>
<td>- Wurzelortskurven,</td>
</tr>
<tr>
<td></td>
<td>- Reglerentwurf für lineare SISO-Systeme</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Matlab – Grundlagen und Anwendungen</td>
</tr>
<tr>
<td>(Lehr-/Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Frontalunterricht, Rechnerübungen</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Mechatronik</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Regenerative Energien und Energieeffizienz</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>PC-Kenntnisse, Mess- und Regelungstechnik</td>
</tr>
<tr>
<td></td>
<td>Programmier-Erfahrung</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Anmeldung erforderlich, Teilnehmerzahl ist auf 30 beschränkt.</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS Pr (30 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 60 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Anwesenheitspflicht</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistung</td>
</tr>
<tr>
<td></td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Schriftliche Ausarbeitung</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Andreas Kroll</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Dipl.-Ing. Axel Dürrbaum</td>
</tr>
</tbody>
</table>

Medienformen
- Matlab-Live Scripte
- Moodle-Kurs mit Skript zum Download und Zusatzinformationen
- Beamer, PC

Literatur
- Basisliteratur: Skript / Moodle-Kurs
- Zu Matlab existiert zahlreiche Sekundärliteratur, die teilweise in der Uni-Bibliothek als Online-Ressource verfügbar sind:
Mechatronische Systeme

Mechatronic Systems

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Mechatronische Systeme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse,</td>
<td>Lernergebnis: Der/die</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>PS 3 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Simulation eines komplexen mechatronischen Systems</td>
</tr>
<tr>
<td></td>
<td>- Aufgabenstellung eines mechatronischen Systems verstehen</td>
</tr>
<tr>
<td></td>
<td>- Konzept zur technischen Beschreiben eines mechatronischen Systems erstellen</td>
</tr>
<tr>
<td></td>
<td>- Definition der benötigten Komponenten</td>
</tr>
<tr>
<td></td>
<td>- Modellbeschreibung der mechanischen und elektrischen Komponenten</td>
</tr>
<tr>
<td></td>
<td>- Regelgrößen und Regelstrecken identifizieren</td>
</tr>
<tr>
<td></td>
<td>- Programmieren des Modells im Matlab und Simulink</td>
</tr>
<tr>
<td></td>
<td>- Regler implementieren</td>
</tr>
<tr>
<td></td>
<td>- Regler abstimmen</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Mechatronische Systeme</td>
</tr>
<tr>
<td>(Lehr-/ Lernformen)</td>
<td>Vorlesung und Projektarbeit mit Simulationsübungen</td>
</tr>
<tr>
<td>Lehr- und Lernmethoden (ZEVA)</td>
<td>Vorlesung und Projektarbeit mit Simulationsübungen</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Mechatronik</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Veranstaltung „Einführung in die Mechatronik“, Kenntnisse in Regelungstechnik oder zeitgleicher Besuch der Veranstaltung „Grundlagen Regelungstechnik“, Grundlegende Matlab/Simulinkkenntnisse vorteilhaft.</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Empfohlen: Einführung in die Mechatronik, Regelungskenntnisse, Matlab/Simulink Kenntnisse</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>3 SWS PS (45 Std.) Selbststudium 75 Std.</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Anwesenheitspflicht</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 120 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>4 Credits, davon 2 Credits integrierte Schlüsselkompetenzen</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Michael Fister</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Michael Fister, Wissenschaftliche Bedienstete</td>
</tr>
<tr>
<td>Medienformen</td>
<td>- Rechnerpool, - Beamer, - Tafel</td>
</tr>
</tbody>
</table>
Menschliche Zuverlässigkeit 1 – Analyse und Bewertung

Human Reliability 1 – Analysis and Assessment

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Menschliche Zuverlässigkeit 1 – Analyse und Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Ferner sind die Studierenden in der Lage, sich kritisch mit den Theorien, Prinzipien und Methoden auseinanderzusetzen und besitzen entsprechende kommunikative Kompetenzen, um Ergebnisse und Problemlösungen zu formulieren und zu vertreten.

Die Studierenden wissen, in welche Berufsfelder sie mit der Vorlesung einsteigen können und besitzen eine Basisqualifikation, um diese Berufsfelder zu besetzen.

Die Studierenden erlangen die Möglichkeit der Vertiefung auf Master- und Promotions-Ebene sowie der weiteren Anwendung von Verfahren. Es wird angestrebt, den Studierenden bei Eignung auch eine Perspektive zu internationaler Qualifikation zu geben.

Lehrveranstaltungsarten

<table>
<thead>
<tr>
<th>Lehrveranstaltungsarten</th>
<th>VLM 2 SWS</th>
</tr>
</thead>
</table>

Lehrinhale

Inhalte:

- Methoden der Systemanalyse, Fehler- und Ereignisauswahlanalysen, Ansätze der dynamischen Risikomodellierung
- Grundlagen der Systemzuverlässigkeit: Ausfallarten, Verteilungen, Modellierung und Bewertung der Zuverlässigkeit eines Gesamtsystems
- Analyse und Bewertung menschlicher Zuverlässigkeit
- Wechselwirkungen von Automation und Mensch
- Ereignisanalyse hinsichtlich menschlicher und organisatorischer Aspekte
<table>
<thead>
<tr>
<th>Titel der Lehrveranstaltungen</th>
<th>Menschliche Zuverlässigkeit 1 – Analyse und Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lehr- / Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Vorlesung</td>
</tr>
</tbody>
</table>
| **Verwendbarkeit des Moduls** | B. Sc. Maschinenbau
B. Sc. Mechatronik
M. Sc. Maschinenbau |
| **Dauer des Angebotes des Moduls** | Ein Semester |
| **Häufigkeit des Angebotes des Moduls** | Jedes Wintersemester |
| **Sprache** | deutsch/englisch |
| **Empfohlene (inhalitliche) Voraussetzungen für die Teilnahme am Modul** | Arbeits- und Organisationspsychologie 1 |
| **Voraussetzungen für die Teilnahme an Modul** | |
| **Studentischer Arbeitsaufwand** | 2 SWS VL (30 Std.)
Selbststudium 60 Std. |
| **Studienleistungen** | |
| **Voraussetzung für Zulassung zur Prüfungsleistung** | Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
| **Prüfungsleistung** | Klausur 90 Min. oder mündliche Prüfung 30 Min. |
| **Anzahl Credits für das Modul** | 3 Credits |
| **Lehreinheit** | Fachbereich 15 |
| **Modulverantwortliche/r** | Prof. Oliver Sträter
Dr. Jürgen Pfitzmann |
| **Lehrende des Moduls** | Prof. Oliver Sträter
M. Sc. Marcus Arenius |
| **Medienformen** | |
Menschliche Zuverlässigkeit 2 – Resiliente Systemgestaltung
Human Reliability 2 – Resilience System Design

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Menschenliche Zuverlässigkeit 2 – Resiliente Systemgestaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 2 SWS</td>
</tr>
</tbody>
</table>
„scharfen Ende" (Reason, 1997) von komplexen, dynamischen Systemen arbeiten, wie z. B. die Cockpitcrew eines Flugzeugs.

Im Rahmen des Seminars werden die Studierenden mit den wichtigsten nicht technischen Fertigkeiten und ihrer Bedeutung für die menschliche Zuverlässigkeit und die Systemgestaltung vertraut gemacht, wie diese aus der einschlägigen Literatur und aus der Praxis zu entnehmen sind. Darüber hinaus wird den Studierenden die Möglichkeit geboten, sich mit Methoden der Datenerfassung und der Analyse des sicherheitsrelevanten kognitiven und sozialen Verhaltens im Kontext eines komplexen technischen Systems durch praktische Übung vertraut zu machen.

<table>
<thead>
<tr>
<th>Titel der Lehrveranstaltungen</th>
<th>Menschliche Zuverlässigkeit 2 – Resiliente Systemgestaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lehr-/ Lernformen)</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Mechatronik</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch/englisch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Arbeits- und Organisationspsychologie 2</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS VL (30 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 60 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 90 Min. oder mündliche Prüfung 30 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Oliver Sträter</td>
</tr>
<tr>
<td></td>
<td>Dr. Jürgen Pfitzmann</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Oliver Sträter</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Marcus Arenius</td>
</tr>
<tr>
<td>Medienformen</td>
<td>–</td>
</tr>
</tbody>
</table>
Mensch–Maschine–Systeme 1
Human–Machine Systems 1

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Mensch–Maschine–Systeme 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Die Studierenden haben ein breites und integriertes Wissen und Verstehen der Grundlagen für die Analyse, den Entwurf und die Bewertung von Mensch–Maschine–Systemen.</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>VLmP 2 SWS</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>Vorlesung, Fallstudien, Demonstrationen</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Technologisch–technische Gestaltung</td>
</tr>
<tr>
<td></td>
<td>Ergonomische Gestaltung und Anthropometrie</td>
</tr>
<tr>
<td></td>
<td>Menschliche Informationsverarbeitung und informations–technische Gestaltung</td>
</tr>
<tr>
<td></td>
<td>Regler–Mensch–Modell</td>
</tr>
<tr>
<td></td>
<td>Cognitive Engineering und menschliche Fehler</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Titel der Lehrveranstaltungen</th>
<th>Mensch–Maschine–Systeme 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lehr–/ Lernformen) Lehr– und Lernmethoden (ZEVA)</td>
<td>Vorlesung, Fallstudien, Demonstrationen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
<th>B. Sc. Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td></td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>B. Sc. Mechatronik</td>
<td>Schlüsselkompetenz</td>
</tr>
<tr>
<td>M. Sc. Maschinenbau</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>B. Sc. Informatik</td>
<td></td>
</tr>
<tr>
<td>B. Sc. Psychologie</td>
<td></td>
</tr>
<tr>
<td>B. Sc./M. Sc. Wirtschaftsingenieurwesen</td>
<td></td>
</tr>
<tr>
<td>Diplom Produkt–Design</td>
<td></td>
</tr>
<tr>
<td>Interdisziplinäres Ergänzungsstudium Innovationsmanagement</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer des Angebotes des Moduls</th>
<th>Ein Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache</th>
<th>deutsch</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>-</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS VL (30 Std.) Selbststudium 60 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>-</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
</tbody>
</table>
Prüfungsleistung
Klausur 90 Min. oder mündliche Prüfung 20 Min.

Anzahl Credits für das Modul
3 Credits

Lehreinheit
Fachbereich 15

Modulverantwortliche/r
Prof. Ludger Schmidt

Lehrende des Moduls
Prof. Ludger Schmidt

Medienformen
Mensch–Maschine–Systeme 1 (mit Seminarteil)
Human–Machine Systems 1

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Mensch–Maschine–Systeme 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td></td>
</tr>
<tr>
<td>Lernergebnisse,</td>
<td>Die Studierenden haben ein breites und integriertes Wissen und Verstehen der Grundlagen für die Analyse, den Entwurf und die Bewertung von Mensch–Maschine–Systemen.</td>
</tr>
<tr>
<td>Kompetenzen (</td>
<td></td>
</tr>
<tr>
<td>Qualifikationsziele)</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 2 SWS</td>
</tr>
<tr>
<td></td>
<td>S 2 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Technologisch–technische Gestaltung</td>
</tr>
<tr>
<td></td>
<td>• Ergonomische Gestaltung und Anthropometrie</td>
</tr>
<tr>
<td></td>
<td>• Menschliche Informationsverarbeitung und informations–technische Gestaltung</td>
</tr>
<tr>
<td></td>
<td>• Regler–Mensch–Modell</td>
</tr>
<tr>
<td></td>
<td>• Cognitive Engineering und menschliche Fehler</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Mensch–Maschine–Systeme 1 (mit Seminarteil)</td>
</tr>
<tr>
<td>(Lehr–/ Lernformen)</td>
<td>Vorlesung, Fallstudien, Demonstrationen</td>
</tr>
<tr>
<td>Lehr- und Lernmethoden (ZEVA)</td>
<td>Projektarbeit, Seminar, Präsentationen, Vorträge</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>• Schlüsselkompetenz</td>
</tr>
<tr>
<td></td>
<td>• Wahlpflichtmodul</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>• Schlüsselkompetenz</td>
</tr>
<tr>
<td></td>
<td>• Wahlpflichtmodul</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Informatik</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Psychologie</td>
</tr>
<tr>
<td></td>
<td>B. Sc./M. Sc. Wirtschaftsingenieurwesen</td>
</tr>
<tr>
<td></td>
<td>Diplom Produkt–Design</td>
</tr>
<tr>
<td></td>
<td>Interdisziplinäres Ergänzungsstudium Innovationsmanagement</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS VL (30 Std.)</td>
</tr>
<tr>
<td></td>
<td>2 SWS S (30 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 120 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Anwesenheitspflicht für Seminarteil</td>
</tr>
</tbody>
</table>
| Voraussetzung für Zulassung zur Prüfungsleistung | Studienleistung
| | Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
| Prüfungsleistung | Klausur 90 Min. oder mündliche Prüfung 20 Min.; Seminarvortrag oder Hausarbeit |
| Anzahl Credits für das Modul | 6 Credits |
| Lehreinheit | Fachbereich 15 |
| Modulverantwortliche/r | Prof. Ludger Schmidt |
| Lehrende des Moduls | Prof. Ludger Schmidt |
| Medienformen | – |
Mensch–Maschine–Systeme 2
Human–Machine Systems 2

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Mensch–Maschine–Systeme 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Die Studierenden verfügen über ein kritisches Verständnis der wichtigsten Theorien, Prinzipien und Methoden für die Mensch–Maschine–Systemgestaltung und sind in der Lage, ihr Wissen selbstständig zu vertiefen.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 2 SWS</td>
</tr>
</tbody>
</table>
| Lehrinhalte | • Benutzerorientierter Gestaltungsprozess und Analyse des Nutzungskontextes
• Aufgabenanalyse
• Randbedingungen bei der prototypischen Realisierung
• Prototypische Entwicklung am Beispiel Mensch–Roboter–Interaktion
• Design–Methoden und Werkzeuge für Benutzungsschnittstellen
• User Interface Design Patterns
• Evaluationsmethodenüberblick sowie theorie- und expertenbasierte Methoden
• Nutzerbasierte Evaluationsmethoden für objektive Bewertung
• Nutzerbasierte Evaluationsmethoden für subjektive Bewertung
• Statistische Methoden
• Planung, Durchführung und Auswertung experimenteller Untersuchungen |
| Titel der Lehrveranstaltungen | Mensch–Maschine–Systeme 2 |
| (Lehr-/Lernformen) | Vorlesung, Fallstudien |
| Lehr- und Lernmethoden (ZEVA) | B. Sc. Mechatronik
• Schlüsselkompetenz Pflichtmodul
B. Sc./M. Sc. Maschinenbau
B. Sc. Informatik
B. Sc. Psychologie
B. Sc./M. Sc. Wirtschaftsingenieurwesen
Diplom Produkt–Design
Interdisziplinäres Ergänzungsstudium Innovationsmanagement |
<p>| Verwendbarkeit des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Sommersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | – |
| Voraussetzungen für die Teilnahme am Modul | – |</p>
<table>
<thead>
<tr>
<th>Studentischer Arbeitsaufwand</th>
<th>2 SWS VL (30 Std.) Selbststudium 60 Std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistungen</td>
<td>-</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 90 Min. oder mündliche Prüfung 20 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Ludger Schmidt</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Ludger Schmidt</td>
</tr>
<tr>
<td>Medienformen</td>
<td>-</td>
</tr>
</tbody>
</table>
Mensch–Maschine–Systeme 2 (mit Seminarteil)

Human–Machine Systems 2

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Mensch–Maschine–Systeme 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Die Studierenden verfügen über ein kritisches Verständnis der wichtigsten Theorien, Prinzipien und Methoden für die Mensch–Maschine–Systemgestaltung und sind in der Lage, ihr Wissen selbstständig zu vertiefen.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmp 2 SWS, S 2 SWS</td>
</tr>
</tbody>
</table>
| Lehrinhalte | • Benutzerorientierter Gestaltungsprozess und Analyse des Nutzungskontextes
• Aufgabenanalyse
• Randbedingungen bei der prototypischen Realisierung
• Prototypische Entwicklung am Beispiel Mensch–Roboter–Interaktion
• Design–Methoden und Werkzeuge für Benutzungsschnittstellen
• User Interface Design Patterns
• Evaluationsmethodenüberblick sowie theorie– und expertenbasierte Methoden
• Nutzerbasierte Evaluationsmethoden für objektive Bewertung
• Nutzerbasierte Evaluationsmethoden für subjektive Bewertung
• Statistische Methoden
• Planung, Durchführung und Auswertung experimenteller Untersuchungen |
| Titel der Lehrveranstaltungen | Mensch–Maschine–Systeme 2 |
| (Lehr–/ Lernformen) Lehr– und Lernmethoden (ZEVA) | Vorlesung, Fallstudien
Projektarbeit, Seminar, Präsentationen, Vorträge |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
M. Sc. Maschinenbau
B. Sc. Informatik
B. Sc. Psychologie
B. Sc./M. Sc. Wirtschaftsingenieurwesen
Diplom Produkt–Design
Interdisziplinäres Ergänzungsstudium Innovationsmanagement |
<p>| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Sommersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | – |</p>
<table>
<thead>
<tr>
<th>Voraussetzungen für die Teilnahme am Modul</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS VL (30 Std.)</td>
</tr>
<tr>
<td></td>
<td>2 SWS S (30 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 120 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Anwesenheitspflicht für Seminarteil</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistung</td>
</tr>
<tr>
<td></td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 90 Min. oder mündliche Prüfung 20 Min.;</td>
</tr>
<tr>
<td></td>
<td>Seminarvortrag oder Hausarbeit</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Ludger Schmidt</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Ludger Schmidt</td>
</tr>
<tr>
<td>Medienformen</td>
<td>–</td>
</tr>
</tbody>
</table>
Modellbildung von Systemen

Modelling of Systems

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Modellbildung von Systemen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Modellbildung von Systemen</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmp 2 SWS
Ü 1 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>• Anleitung zum Problemlösen,
• Konzepte zur Systemdarstellung,
• Methode der Bilanzgleichungen,
• Lagrangeformalismus,
• Beispiele zur Modellbildung von Systemen mit konzentrierten Komponenten,
• Grundlagen zum Verstehen von Systemen mit verteilten Parametern (Part. Dgln.)
• Fallstudie: Regelung eines mehrachsigen Roboters</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Modellbildung von Systemen</td>
</tr>
<tr>
<td>(Lehr–/ Lernformen) Lehr– und Lernmethoden (ZEVA)</td>
<td>Frontalunterricht, Tafelübungen</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau
B. Sc. Mechatronik</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS VL (30 Std.)
1 SWS Ü (15 Std.)
Selbststudium 75 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 120 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>4 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Andreas Kroll</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Dr. Hanns Sommer</td>
</tr>
<tr>
<td>Medienformen</td>
<td>• Skript,</td>
</tr>
<tr>
<td></td>
<td>• Tafel,</td>
</tr>
<tr>
<td></td>
<td>• Handout</td>
</tr>
<tr>
<td>Literatur</td>
<td>Orginalarbeiten aus der Zeitschrift: Mechatronics</td>
</tr>
</tbody>
</table>
Modellierung von Fertigungsprozessen

Modelling of Forming Processes

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Modellierung von Fertigungsprozessen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Modellierung von Fertigungsprozessen</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

| Lehrveranstaltungsarten | VLmP 2 SWS
Pr 2 SWS |
|------------------------|-----------|

In begleitenden Übungen werden mit Hilfe von kommerziell verfügbaren FEM-Softwaresystemen Prozesssimulationen durchgeführt mit zunehmenden Komplexitätsgrad und zunehmender Relevanz für die Praxis. Dabei liegt der Schwerpunkt dieser Übungen auf der interpretatorischen Umsetzung der Simulationsergebnisse in die reale Prozessgestaltung. Hierfür werden bestimmte, ausgewählte Problemszenarien in Gruppen vollkommen selbständig bearbeitet und präsentiert. |

<table>
<thead>
<tr>
<th>Titel der Lehrveranstaltungen</th>
<th>Modellierung von Fertigungsprozessen</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lehr- / Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Blockveranstaltung, Vorlesung, Gruppenarbeit, Simulationsübungen, Präsentationen, Lehrgespräch</td>
</tr>
</tbody>
</table>

| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
M. Sc. Maschinenbau |
<table>
<thead>
<tr>
<th>Dauer des Angebotes des Moduls</th>
<th>Ein Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Mechanik, Kenntnisse in der Finite Elemente Methode, Fertigungstechnik 1 + 2</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Anmeldung erforderlich, Teilnehmerzahl ist auf 30 beschränkt. Bestandenes Antestat (Multiple-Choice-Fragen, 20 Min., Literatur s. u.)</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS VL (30 Std.) 2 SWS Pr (30 Std.) Selbststudium 120 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Anwesenheitspflicht</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistung Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 60 Min., Hausarbeit</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Kurt Steinhoff</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Kurt Steinhoff</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Rechner mit lizensierter Software (begrenzte Plätze) PowerPoint-Präsentation (Computer und Beamer)</td>
</tr>
<tr>
<td>Literatur</td>
<td>Literatur für Antestat: FT-2 Skript Teil Umformtechnik: Kapitel 3.2, 3.3, 3.4 und 7</td>
</tr>
</tbody>
</table>
Moderne Stahlwerkstoffe

Modern Steels

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Moderne Stahlwerkstoffe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Moderne Stahlwerkstoffe</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Kenntnisse: Die Studierenden kennen die wichtigsten Stahlwerkstoffe und die zugrundeliegenden Herstellungsverfahren.

Fertigkeiten: Die Studierenden können die Eigenschaften von Stahlwerkstoffen bewerten.

Kompetenzen: Die Studierenden sind in der Lage, anhand einer Anforderungsliste einen optimalen Stahlwerkstoff auszuwählen und ein entsprechend hergestelltes Bauteil zielgerichtet zu bewerten.

<table>
<thead>
<tr>
<th>Lehrveranstaltungsarten</th>
<th>VLmP 2 SWS</th>
</tr>
</thead>
</table>
| Lehrinhalte | • Verfahren der Stahlherstellung
 | • Einfluss von Legierungselementen
 | • Wärmebehandlung
 | • Mechanische und mikrostrukturelle Eigenschaften
 | • Metastabile Stähle
 | • Moderne Fertigungsprozesse
 | • Anwendungsbeispiele |

Verwendbarkeit des Moduls

B. Sc. Maschinenbau
M. Sc. Maschinenbau

Dauer des Angebotes des Moduls

Ein Semester

Häufigkeit des Angebotes des Moduls

Jedes Sommersemester

Sprache

deutsch

Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul

Werkstofftechnik 1 + 2

Voraussetzungen für die Teilnahme am Modul

–

Studentischer Arbeitsaufwand

2 SWS VL (30 Std.)
Selbststudium 60 Std.

Studienleistungen

–

Voraussetzung für Zulassung zur Prüfungsleistung

Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8

Prüfungsleistung

Mündliche Prüfung 30 Min.

Anzahl Credits für das Modul

3 Credits

Lehrteinheit

Fachbereich 15
<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Prof. Thomas Niendorf</th>
</tr>
</thead>
</table>
| Lehrende des Moduls | Dr.-Ing. Martin Holzweißig
 | Dr.-Ing. Hans-Gerd Lambers |
| Medienformen | |
| - Tafelanschrieb | |
| - pptx-Projektion | |
| Literatur | Literaturliste wird in der Vorlesung bekanntgegeben. |
Moderne thermo–mechanische Behandlungsverfahren

Moderne Thermomechanical Treatments

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Moderne thermo–mechanische Behandlungsverfahren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 2 SWS</td>
</tr>
<tr>
<td></td>
<td>Pr 2 SWS</td>
</tr>
</tbody>
</table>
dokumentiert. Hierbei gilt es die Einflüsse von Prozessparametern auf bestimmte Bauteileigenschaften durch die thermo-mechanische Behandlung zu erarbeiten und darzustellen.

<table>
<thead>
<tr>
<th>Titel der Lehrveranstaltungen</th>
<th>Moderne thermo-mechanische Behandlungsverfahren</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lehr-/ Lernformen)</td>
<td>Vorlesung, Demonstrationen, Laborarbeit, Gruppenarbeit, Präsentationen, Gruppendiskussionen</td>
</tr>
<tr>
<td>Lehr- und Lernmethoden (ZEVA)</td>
<td>B. Sc. Maschinenbau, M. Sc. Maschinenbau</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche)</td>
<td>Fertigungstechnik 1 + 2, Werkstofftechnik 1 + 2</td>
</tr>
<tr>
<td>Voraussetzungen für die</td>
<td>Anmeldung erforderlich, Teilnehmerzahl ist auf 45 beschränkt.</td>
</tr>
<tr>
<td>Teilnahme am Modul</td>
<td></td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS VL (30 Std.), 2 SWS Pr (30 Std.), Selbststudium 120 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Anwesenheitspflicht</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistung, Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 90 Min., schriftliche Hausarbeit (Praktikumsbericht)</td>
</tr>
<tr>
<td></td>
<td>Bei entsprechender Ankündigung durch den Dozenten zu Beginn der Lehrveranstaltung können Teilleistungen der abschließenden Prüfung in vorgezogenen lehrveranstaltungsbegleitenden Leistungen in Form von schriftl. Testaten à 3x10 Min. erbracht werden.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Kurt Steinhoff</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Kurt Steinhoff</td>
</tr>
<tr>
<td>Medienformen</td>
<td>PowerPoint-Präsentation (Computer + Beamer)</td>
</tr>
<tr>
<td>Literatur</td>
<td>Literaturliste wird in der Vorlesung bekannt gegeben.</td>
</tr>
</tbody>
</table>
Modernes Druckgießen im Kontext von Industrie 4.0, Smart Technologies und praktischer Anwendung

Modern High-Pressure-Die-Casting in the context of Industry 4.0, Smart Technologies and Practical Course

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Modernes Druckgießen im Kontext von Industrie 4.0, Smart Technologies und praktischer Anwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Modernes Druckgießen im Kontext von Industrie 4.0, Smart Technologies und praktischer Anwendung</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Theoretische und praktische Übungen an Datenprotokollen sowie selbst abgegossenen Werkstoff- und Bauteilproben im Mg-Warmkammerdruckguss (auch Fehlerdetektion) runden den Vorlesungsteil gezielt ab.

Lehrveranstaltungsarten

<table>
<thead>
<tr>
<th>Lehrveranstaltungsarten</th>
<th>VLmp 1 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ü 1 SWS</td>
</tr>
</tbody>
</table>

Lehrinhalte

- Grundlagende Zusammenhänge: Werkstoffe, Druckgießprozess, Bauteileigenschaften, Messtechnik, Datenmanagement
- Zur hochwertigen Prozessführung und Qualitätssicherung werden Prozessdaten erfasst und Abläufe automatisiert. Es werden die Kenntnisse und Zusammenhänge hierzu vermittelt
- Messtechnik beim Standarddruckgießen
- Daten und Zusammenhänge im Verfahrensprozess
- Qualitätsnachweise (Werkstoffeigenschaften)
- Netzwerke zur automatisierten Datenerfassung an Druckgießmaschinen / Automatisierung
- In Abgrenzung zur Standard-Datenerfassung werden die Aspekte von Industrie 4.0 beleuchtet und die Möglichkeiten von Smart Technologies aufgezeigt. Dies umfasst
 - Industrie 4.0 (heutige und zukünftige Anforderungen)
 - Prozessrelevante Messtechnik, Materialtests
 - Smart Foundry (aus Daten werden Informationen)
 - Praktische Bedienung Anligentechnik Warmkammer-Druckguss, Rüsten, Inbetriebnahme, Gießversuche mit FGS-Technologie, Werkstoff- und Bauteilcharakterisierung, Messtechnik,
<table>
<thead>
<tr>
<th>Titel der Lehrveranstaltungen</th>
<th>Modernes Druckgießen im Kontext von Industrie 4.0, Smart Technologies und praktischer Anwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lehr-/ Lernformen) Lehre- und Lernmethoden (ZEVA)</td>
<td>Vorlesung, Übung</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
M. Sc. Maschinenbau |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Sommersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Fertigungstechnik 2
Gießereitechnik I: Automobil- und Fahrzeugguss |
| Voraussetzungen für die Teilnahme am Modul | – |
| Studentischer Arbeitsaufwand | 1 SWS VL (15 Std.)
1 SWS Ü (15 Std.)
Selbststudium 60 Std. |
| Studienleistungen | – |
| Voraussetzung für Zulassung zur Prüfungsleistung | Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
| Prüfungsleistung | mündliche Prüfung 30 Min. oder Klausur 60 Min. |
| Anzahl Credits für das Modul | 3 Credits |
| Lehreinheit | Fachbereich 15 |
| Modulverantwortliche/r | Prof. Dr.-Ing. Martin Fehlbier |
| Lehrende des Moduls | Dr.-Ing. Norbert Erhard
Prof. Dr.-Ing. Martin Fehlbier |
| Medienformen | Powerpoint, Animationen, Filme
Manuskripte
Gießtechnikum Metakushalle mit Gießzelle |
<p>| Literatur | Nogowizin, B.: Theorie und Praxis des Druckgusses, Schiele & Schön Verlag, 2011 |</p>
<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Nutzung der Windenergie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Nutzung der Windenergie</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmp 2 SWS</td>
</tr>
</tbody>
</table>
| Lehrinhalte | • Historische Entwicklung und Stand der Technik
• Meteorologische und geographische Einflüsse
• Windturbinen: Systematik, Berechnungsgrundlagen, Aufbau und Verhalten der Komponenten
• Mechanisch–elektrische Energiewandlung: Gleichstrom–, Synchron– und Asynchrongeneratoren, Sondermaschinen, Triebstrang, Netzanbindung
• Windenergieanlagen zur Stromerzeugung: Einsatzmöglichkeiten, Anlagenbeispiele, Funktionsstrukturen, Betriebsarten, Regelungskonzepte
• Speicher
• Wirtschaftlichkeitsbetrachtung
• Rechtliche Aspekte |
| Titel der Lehrveranstaltungen | Nutzung der Windenergie |
| (Lehr–/ Lernformen) Lehr– und Lernmethoden (ZEVA) | Vorlesung, Hörsaalübungen, Übungen, Seminare |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
M. Sc. Regenerative Energien und Energieeffizienz
M. Sc. Umweltingenieurwesen |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Wintersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Grundkenntnisse in der Technischen Mechanik, Grundlagen der Elektrotechnik I + II, Grundlagen der Energietechnik |
| Voraussetzungen für die Teilnahme am Modul | – |
| Studentischer Arbeitsaufwand | 2 SWS VL (30 Std.)
Selbststudium 60 Std. |
<table>
<thead>
<tr>
<th>Studienleistungen</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Bewertung der Studienleistung durch mündliche (30 Minuten) und/oder schriftliche Prüfung (120 Minuten)</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr.-Ing. Martin Lawerenz</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Dr.-Ing. habil. Peter Zacharias N. N.</td>
</tr>
</tbody>
</table>
| Medienformen | • Tafel
| | • elektronische Medien
| | • schriftliche Arbeitsunterlagen |
| Literatur | • HEIER, S.: Nutzung der Windenergie. 5. Auflage, Verlag Solarpraxis AG, Berlin 2007;
| | Weitere Angaben zu begleitender und vertiefender Literatur werden den Studierenden mit den Arbeitsunterlagen zur Verfügung gestellt. |
Optimale Versuchsplanung

Design of experiment

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Optimale Versuchsplanung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 2 SWS Ü 2 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Stochastische Grundlagen, Prüfung von statistischen Hypothesen, Versuchsplanung: vollfaktorielle und teilverkettete Versuchspläne, zentralzusammengesetzte Versuchspläne, optimale Versuchspläne, Regressionsanalyse</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Optimale Versuchsplanung</td>
</tr>
<tr>
<td>(Lehr-/Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Vorlesung, Übung</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Mathematik 1–3 Grundlagen der Statistik</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>-</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS VL (30 Std.) 2 SWS Ü (30 Std.) Selbststudium 120 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>-</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 100 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 16</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Ludwig Brabetz</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Dr. Mohamed Ayeb</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Beamer</td>
</tr>
<tr>
<td></td>
<td>Skript</td>
</tr>
<tr>
<td></td>
<td>Tafel</td>
</tr>
<tr>
<td>Literatur</td>
<td>H. Petersen, „Grundlagen der deskriptiven und mathematischen Statistik“, ecomed, Lech, 1991</td>
</tr>
<tr>
<td></td>
<td>H. Petersen, „Grundlagen der statistischen Versuchsplanung“, ecomed, Lech, 1991</td>
</tr>
</tbody>
</table>
Praktikum FIRST

FIRST practical course

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Praktikum FIRST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse,</td>
<td>Die Studenten können tribologische Baugruppen modellieren, simulieren und Ergebnisse bewerten. Anhand der gewählten Beispiele wird die Kopplung flexibler Strukturen in Interaktion mit Schmierfilmen verdeutlicht sowie die Vorgehensweise an Praxisbeispielen demonstriert.</td>
</tr>
<tr>
<td>Kompetenzen (Qualifikationsziele)</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>Pr 2 SWS Blockveranstaltung</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Einführung in das FEM/MKS Programmpaket FIRST mit Bearbeitung, Berechnung und Auswertung ausgewählter Beispiele.</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Praktikum FIRST</td>
</tr>
<tr>
<td>(Lehr-/ Lernformen)</td>
<td>Vorlesung, Übungen, rechnerunterstützte Tutorien in Kleingruppen (im CEC– Computational Engineering Center), Gruppendiskussionen</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Mechatronik</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Mechatronik</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>FEM, Tribologie</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Anmeldung erforderlich, Teilnehmerzahl ist auf 15 beschränkt.</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS Pr (30 Std.) Selbststudium 60 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Schriftliche Ausarbeitung 15–20 Seiten</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Adrian Rienäcker</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Adrian Rienäcker</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Vorlesungs- und Übungsfolien im PDF-Format</td>
</tr>
<tr>
<td></td>
<td>Lehrveranstaltungsplattform Moodle</td>
</tr>
<tr>
<td>Literatur</td>
<td>–</td>
</tr>
</tbody>
</table>
Praktikum Gießereitechnik I: Automobil- und Fahrzeugguss (Gussleichtbau)

Practical-Courses Foundry-Technology I: “Automotive lightweight casting technologies”

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Modulname</th>
<th>Art des Moduls</th>
<th>Lernergebnisse, Kompetenzen (Qualifikationsziele)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsarten</th>
<th>Lehrveranstaltungsart</th>
<th>Lehrinhalte</th>
</tr>
</thead>
</table>
| Pr 2 SWS Blockveranstaltung | | • Schmelzmetallurgie / Warmhalte- und Vergießereinrichtungen
• Keimbildung, Erstarrung metallischer NE-Schmelzen
• Zusammenhang: Prozess-Gefüge-Eigenschaften
• Gießeigenschaften technischer Legierungen
• Technologie der Dauerformgießverfahren (Druckguss, Kokillen guss, Niederdruckguss, Sonderverfahren, Trennmittel, Schlichte)
• Produkt- und Anlagenbeispiele
• Werkzeugtechnologie
• Darstellung des Leichtbaupotentials von Gusseisenwerkstoffen für modernste Anwendungen |

<table>
<thead>
<tr>
<th>Titel der Lehrveranstaltungen</th>
<th>Lehrveranstaltungsart</th>
<th>Verwendbarkeit des Moduls</th>
<th>Dauer des Angebotes des Moduls</th>
<th>Häufigkeit des Angebotes des Moduls</th>
<th>Sprache</th>
</tr>
</thead>
</table>
| Praktikum Gießereitechnik I: Automobil- und Fahrzeugguss (Gussleichtbau) | | B. Sc. Maschinenbau
M. Sc. Maschinenbau | Ein Semester | Jedes Wintersemester | deutsch |
<table>
<thead>
<tr>
<th>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</th>
<th>Werkstofftechnik 1 und ggf. 2, Konstruktionstechnik 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Teilnahme an der parallel laufenden Vorlesung „Automobil- und Fahrzeugguss“</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS Pr (30 Std.) Selbststudium 30 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Anwesenheitspflicht</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistung Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Praktikumsausarbeitung und Kurzvortrag</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Martin Fehlbier</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Martin Fehlbier</td>
</tr>
<tr>
<td>Medienformen</td>
<td>· Exponate · Skript</td>
</tr>
</tbody>
</table>
Praktikum Gießereitechnik II: Maschinen- und Anlagenguss

Practical-Courses Foundry-Technology II: “Casting technologies for engines and machinery with high melting alloys”

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Praktikum Gießereitechnik II: Maschinen- und Anlagenguss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Praktikum Gießereitechnik II: Maschinen- und Anlagenguss</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>Pr 2 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Das Praktikum schließt an die gleichnamige Vorlesung (Gießereitechnik II – Maschinen- und Anlagenguss) an.</td>
</tr>
<tr>
<td></td>
<td>- Schmelzmetallurgie/Warmhalte- und Vergießeinrichtungen (Öfen)</td>
</tr>
<tr>
<td></td>
<td>- Keimbildung, Erstarrung metallischer Stahl- u. Eisen-Schmelzen</td>
</tr>
<tr>
<td></td>
<td>- Beurteilung der Schmelze-, Formstoff- und Bauteilqualität</td>
</tr>
<tr>
<td></td>
<td>- Zusammenhang: Prozess-Gefüge-Eigenschaften</td>
</tr>
<tr>
<td></td>
<td>- Gießegenschaften technischer Legierungen</td>
</tr>
<tr>
<td></td>
<td>- Technologie der Sandformgießverfahren (Formherstellung, Kerne, Filter, Speiser, Angüsse, Formüberzugsstoffe/Schlichten usw.)</td>
</tr>
<tr>
<td></td>
<td>- Produkt- und Anlagenbeispiele</td>
</tr>
<tr>
<td></td>
<td>- Werkzeugtechnologie zur Formherstellung</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Praktikum Gießereitechnik II: Maschinen- und Anlagenguss</td>
</tr>
<tr>
<td>(Lehr- / Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Laborpraktika, Blockveranstaltung, praktische Arbeiten</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Werkstofftechnik 1 und ggf. 2, Konstruktionstechnik 1</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Teilnahme an der parallel laufenden Vorlesung „Maschinen- und Anlagenguss“</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS Pr (30 Std.) Selbststudium 30 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Anwesenheitspflicht</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistung Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Praktikumsausarbeitung / Kurzvortrag</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Martin Fehlbier</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Martin Fehlbier</td>
</tr>
<tr>
<td>Medienformen</td>
<td>• Exponate • Skript</td>
</tr>
</tbody>
</table>
Praktikum Numerische Simulation gießtechnologischer Prozesse für Leichtbauanwendungen
Practical-Courses for Metal-Casting-Simulation

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Praktikum Numerische Simulation gießtechnologischer Prozesse für Leichtbauanwendungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Praktikum Numerische Simulation gießtechnologischer Prozesse für Leichtbauanwendungen</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>Pr 2 SWS</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Praktikum Numerische Simulation gießtechnologischer Prozesse für Leichtbauanwendungen</td>
</tr>
<tr>
<td>(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Laborpraktika, Simulationsübungen, Fallstudien, praktische Arbeiten</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
M. Sc. Maschinenbau |
<p>| Dauer des Angebotes des Moduls | Ein Semester |</p>
<table>
<thead>
<tr>
<th>Häufigkeit des Angebotes des Moduls</th>
<th>Jedes Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Automobil- und Fahrzeugguss (Gussleichtbau), Maschinen- und Anlagenguss</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS Pr (30 Std.) Selbststudium 30 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Anwesenheitspflicht</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Praktikumsausarbeitung, Kurzvortrag oder Test am Rechner</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Martin Fehlbier</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Martin Fehlbier Olaf Nölke</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Skript</td>
</tr>
</tbody>
</table>
| Literatur | · "Theorie und Praxis des Druckgusses", B. Nogowizin, Verlag Schiele&Schön;
· "Vom Gießprozess zur Festigkeitsberechnung", Roland Treitler, Universitätsverlag Karlsruhe;
· "Untersuchungen zum Wärmetransport bei der Erstarrung", S. Findeisen, VDM Verlag;
Praktikum Mensch–Maschine–Interaktion

Practical Course Human–Machine Interaction

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Praktikum Mensch–Maschine–Interaktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Praktikum Mensch–Maschine–Interaktion</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Vertiefte Wissensbestände hinsichtlich Mensch–Maschine–Interaktionsprinzipien werden von den Studierenden durch experimentell erfahrungsgeleitetes Lernen erarbeitet.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>Pr 2 SWS</td>
</tr>
</tbody>
</table>
| Lehrinhalte | - Visuelle Wahrnehmung: Sehschärfe, Farbsehen und räumliches Sehen
- Auditive Wahrnehmung: Hörschwelle und Maskierungseffekte, Richtungshören,
- Haptische Wahrnehmung
- Vestibuläre Wahrnehmung
- Grundlagen der menschlichen Informationsverarbeitung
- Blickbewegungsmessung
- Manuelle Regelung einer kritischen Regelungsaufgabe
- Fahrer–Fahrzeug–Interaktion bei Nebenaufgaben
- Physiologische Belastungs– und Beanspruchungsanalyse
- Touchscreen–Interaktion |
| Titel der Lehrveranstaltungen | Praktikum Mensch–Maschine–Interaktion |
| (Lehr–/Lernformen) Lehr– und Lernmethoden (ZEVA) | Laborpraktika, Simulationsübungen |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
B. Sc. Mechatronik
M. Sc. Maschinenbau
M. Sc. Mechatronik
B. Sc. Informatik
B. Sc. Psychologie
B. Sc./M. Sc. Wirtschaftsingenieurwesen
Diplom Produkt–Design
Interdisziplinäres Ergänzungsstudium Innovationsmanagement |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Sommersemester |
| Sprache | deutsch |
| Empfohlene (inhaltsliche) Voraussetzungen für die Teilnahme am Modul | Mensch–Maschine–Systeme 1 und/oder 2 |
| Voraussetzungen für die Teilnahme am Modul | - |
| Studentischer Arbeitsaufwand | 2 SWS Pr (30 Std.)
Selbststudium 60 Std. |
| Studienleistungen | Anwesenheitspflicht |
| **Voraussetzung für Zulassung zur Prüfungsleistung** | Studienleistung
Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>Praktikumsberichte</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Ludger Schmidt</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Ludger Schmidt</td>
</tr>
<tr>
<td>Medienformen</td>
<td>–</td>
</tr>
</tbody>
</table>
Präsentation und Moderation

Presentation and Moderation

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Modulname</th>
<th>Art des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Präsentation und Moderation</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Lehrveranstaltungsarten

<table>
<thead>
<tr>
<th>Lehrveranstaltungsarten</th>
<th>S 2 SWS Blockveranstaltung</th>
</tr>
</thead>
</table>

Lehrinhalte

Präsentation:
- Zielsetzung von Präsentationen
- Einsatz visueller Hilfsmittel
- Foliengestaltung
- Vorbereitung und Durchführung einer eigenen Präsentation
- Zeitmanagement

Moderation:
- Ziele einer Moderation
- Moderationsmethoden
- Moderationszyklus
- Metaplantechnik
- Die Rolle des Moderators

Titel der Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehr- und Lernmethoden (ZEVA)</th>
<th>Blockveranstaltung, Vorträge, Gruppendiskussion</th>
</tr>
</thead>
</table>

Verwendbarkeit des Moduls

<table>
<thead>
<tr>
<th>B. Sc. Maschinenbau</th>
</tr>
</thead>
</table>

Dauer des Angebotes des Moduls

<table>
<thead>
<tr>
<th>Ein Semester</th>
</tr>
</thead>
</table>

Häufigkeit des Angebotes des Moduls

<table>
<thead>
<tr>
<th>Jedes Semester</th>
</tr>
</thead>
</table>

Sprache

<table>
<thead>
<tr>
<th>deutsch</th>
</tr>
</thead>
</table>

Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul

<table>
<thead>
<tr>
<th>Arbeits- und Organisationspsychologie 1 + 2</th>
</tr>
</thead>
</table>

Voraussetzungen für die Teilnahme am Modul

<table>
<thead>
<tr>
<th>Anmeldung ab B.Sc. 5 / Teilnehmerzahl auf 16 pro Gruppe beschränkt (es gibt zwei Gruppen)</th>
</tr>
</thead>
</table>

Studentischer Arbeitsaufwand

<table>
<thead>
<tr>
<th>2 SWS S (30 Std.)</th>
</tr>
</thead>
</table>

Studienleistungen

<table>
<thead>
<tr>
<th>Anwesenheitspflicht</th>
</tr>
</thead>
</table>
| Voraussetzung für Zulassung zur Prüfungsleistung | Studienleistung
| Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
| Prüfungsleistung | Präsentation und schriftliche Ausarbeitung |
| Anzahl Credits für das Modul | 3 Credits |
| Lehreinheit | Fachbereich 15 |
| Modulverantwortliche/r | Prof. Oliver Sträter
| Dr. Jürgen Pfitzmann |
| Lehrende des Moduls | Dipl.-Psych. Markus Unger
| Dipl.-Oec. Stephanie Schmidt, M.A. |
| Medienformen | – |
| Literatur | Wird am Anfang des Semesters angegeben |
Produktions-/Innovationscontrolling
Production-/Innovation-Management

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Produktions-/Innovationscontrolling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>
| Lehrveranstaltungsarten | VLmp 2 SWS
 Ü 2 SWS |
| Titel der Lehrveranstaltungen | Produktions-/Innovationscontrolling |
| (Lehr-/Lernformen) | Vorlesung, Gruppenarbeit, Simulationsübungen, Fallstudien, Präsentationen, Praxisspiele |
| Lehr- und Lernmethoden (ZEVA) | B. Sc. Maschinenbau
 M. Sc. Maschinenbau
 B. Sc. Wirtschaftsingenieurwesen
 M. Sc. Wirtschaftsingenieurwesen |
| Verwendbarkeit des Moduls | Zwei Semester |
| Dauer des Angebotes des Moduls | Jedes Wintersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | – |
| Voraussetzungen für die Teilnahme am Modul | – |
| **Studentischer\nArbeitsaufwand** | 2 SWS VL (30 Std.)
2 SWS Ü (30 Std.)
Selbststudium 60 Std. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistungen</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzung für\nZulassung zur\nPrüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 90 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das\nModul</td>
<td>4 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Jochen Deiwiks</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Dr. Jochen Deiwiks</td>
</tr>
<tr>
<td>Medienformen</td>
<td>–</td>
</tr>
<tr>
<td>Literatur</td>
<td>–</td>
</tr>
</tbody>
</table>
Produktionstechnik für Wirtschaftsingenieure – Teilmodul 1

Nummer/Code
- Modulname: Produktionstechnik für Wirtschaftsingenieure – Teil 1
- Art des Moduls: Wahlpflichtmodul

Lernergebnisse, Kompetenzen (Qualifikationsziele)
- Kenntnisse: Information über verschiedene Verfahren und Anlagen zur Herstellung von Einzel-, Serien-, und Massenartikeln
- Kompetenzen: Integration der Kenntnisse aus dem wirtschaftlichen, arbeitswissenschaftlichen und productionstechnischen Bereich. Die Studierenden sollen in die Lage versetzt werden, Arbeitsinhalte zu erfassen und zu bewerten sowie einfache Fertigungsaufgaben zu planen, zu koordinieren und zu überwachen.

Lehrveranstaltungsarten
- VLM 2 SWS

Lehrinhalte
- Statistische Informationen über die aktuelle Produktionstechnik
- Einführung in die Produktionstechnik der Serienfertigung
- Typische Bearbeitungsmaschinen der spanenden, abtragenden und generierenden Fertigungstechnik
- Möglichkeiten der Komplettbearbeitung zur Steigerung der Produktgenauigkeit und Formenvielfalt, Reduzierung der Durchlaufzeit, des Platzbedarfs und Reduzierung der Kosten
- Materialfluss in der flexibel automatisierten Fertigung, Verkettung von Fertigungsanlagen, Schnittstellenproblematic
- Werkzeug- und Betriebsmittelwesen
- Werkzeughandhabung und Werkzeugspeicherung Schneidstoffe, Beschichtungen, Werkzeuggeometrien, Werkzeugaufnahmen, Schnittstellen, Trennstellen, Aufbereitung, Werkzeugkreislauf
- Integrierte Qualitätssicherung zur Aufrechterhaltung der Bauteilqualität und als Voraussetzung zur Automatisierung
- CNC-Steuerungstechnik als Grundlage der flexibel automatisierten Fertigungstechnik
- Informationsfluss in der Produktion, Hierarchisch verteilte Steuerungs- und Überwachungsebene, CNC- und SPS Steuerungen, Leitsysteme, DNC-Systeme, Netzwerke
- Moderne Instandhaltungskonzepte zur Sicherstellung der Fertigungsqualität und zur Reduzierung der Maschinenausfallzeiten, Maschinenüberwachung, Berechnung von Anlagenverfügbarkeiten
- Generierende Fertigungsverfahren

Titel der Lehrveranstaltungen
- Produktionstechnik für Wirtschaftsingenieure – Teil 1

(Lehr-/ Lernformen)
- Lehr- und Lernmethoden (ZEVA): Vortrag, Vorlesung

Verwendbarkeit des Moduls
- B. Sc. Maschinenbau
- M. Sc. Regenerative Energien und Energieeffizienz
- B. Sc. Wirtschaftsingenieurwesen, Fachrichtung Maschinenbau
<table>
<thead>
<tr>
<th>Modulhandbuch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer des Angebotes des Moduls</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
</tr>
<tr>
<td>Sprache</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
</tr>
<tr>
<td>Studienleistungen</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
</tr>
<tr>
<td>Lehreinheit</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
</tr>
<tr>
<td>Medienformen</td>
</tr>
</tbody>
</table>
| **Literatur** | Eversheim, W.: Produktionstechnik
Weck, M., Brecher, C.: Werkzeugmaschinen
Lotter, B.: wirtschaftliche Montage
Koether, R.: technische Logistik |
Produktionstechnik für Wirtschaftsingenieure – Teilmodul 2
production technology – module 2

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Produktionstechnik für Wirtschaftsingenieure – Teil 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Weiterhin lernen die Studierenden Handhabungsfunktionen und deren geräte-technische Realisierungen kennen. Sie sind in der Lage, Handhabungsaufgaben in den Bereichen Fertigung und Montage zu bewerten und automatisierungstechnische Lösungen hierfür zu entwerfen.

Zudem lernen die Studierenden anhand von zwei Übungen die Vorrangplanung und die Bewertung von Montagesystemen. Sie sind in der Lage, eine Produktmontage zu planen und die wesentlichen Kennzahlen des Montagesystems zu bestimmen.

<table>
<thead>
<tr>
<th>Lehrveranstaltungsarten</th>
<th>VLMp 2 SWS</th>
</tr>
</thead>
</table>

Lehrinhalte

- Montagegerechte Produktkonstruktion
- Werkstücke und deren Handhabung
- Zuführ-, Förder- und Lagersysteme
- Manuelle Montage
- Ergonomische Gestaltung von manuellen Montagearbeitsplätzen
- Arbeitsplatzgestaltung
- Automatisierung in der Montage
- Aufbau und Einsatz von Industrieroboter
- Planung und Organisation des Montageablaufs und Planungs-hilfsmittel
- Grundformen der Montagesysteme
- Beispiele ausgeführter Montagesysteme
- Funktionen und Systeme für die Werkstück-Handhabung in der Montage
- Wirtschaftlichkeit alternativer Montagesysteme

Titel der Lehrveranstaltungen

Produktionstechnik für Wirtschaftsingenieure – Teil 2

Verwendbarkeit des Moduls

B. Sc. Maschinenbau
M. Sc. Regenerative Energien und Energieeffizienz
B. Sc. Wirtschaftsingenieurwesen, Fachrichtung Maschinenbau

Dauer des Angebotes des Moduls

Ein Semester
<table>
<thead>
<tr>
<th>Häufigkeit des Angebotes des Moduls</th>
<th>Jedes Sommersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Fertigungstechnik 1</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS VL (30 Std.)</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 90 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Stefan Böhm</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Stefan Böhm</td>
</tr>
<tr>
<td>Medienformen</td>
<td>PowerPoint–Vortrag</td>
</tr>
<tr>
<td>Literatur</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lotter, Bruno: Montage in der industriellen Fertigung, Springer–Verlag, Berlin 2005</td>
</tr>
<tr>
<td></td>
<td>Spur, Günter: Handbuch der Fertigungstechnik, Bd. 5: Fügen Handhaben und Montieren, Hanser–Verlag München 1986</td>
</tr>
<tr>
<td></td>
<td>Landau, Kurt: Montageprozesse gestalten, Fallbeispiele aus Ergonomie und Organisation ergonomia Verlag Stuttgart 2004</td>
</tr>
<tr>
<td></td>
<td>Bullinger/Lung: Planung der Materialbereitstellung in der Montage, Teubner Verlag Wiesbaden 1994</td>
</tr>
</tbody>
</table>
Programmiermethodik
Systematic Programming

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Programmiermethodik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Programmiermethodik</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>
| Lehrveranstaltungsarten | VLM 2 SWS
Ü 2 SWS |
| Lehrinhalte | Einfache Vorgehensweise, Anforderungsmodellierung (Usecases), Objektorientierte Modellierung, Analyse (Szenariodiagramme), Ableitung des Designs (Klassendiagramme, Statecharts), systematische Implementierung |
| Titel der Lehrveranstaltungen | Programmiermethodik |
| (Lehr-/-Lernformen) Lehr- und Lernmethoden (ZEVA) | Vorlesungen, Übungen |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Wintersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Einführung in die Programmierung |
| Voraussetzungen für die Teilnahme am Modul | – |
| Studentischer Arbeitsaufwand | 2 SWS VL (30 Std.)
2 SWS Ü (30 Std.)
Selbststudium ? Std. |
| Studienleistungen | Hausaufgaben |
| Voraussetzung für Zulassung zur Prüfungsleistung | Studienleistung
Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
| Prüfungsleistung | Klausur 100–140 Min. |
| Anzahl Credits für das Modul | 6 Credits |
| Lehreinheit | Fachbereich 16 |
| Modulverantwortliche/r | Prof. Albert Zündorf |
| Lehrende des Moduls | Prof. Albert Zündorf |
| Medienformen | – |
| Literatur | – |
Projektarbeit Mess- und Automatisierungstechnik (Bachelor)

Measurement and control project (Bachelor)

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Projektarbeit Mess- und Automatisierungstechnik (Bachelor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Projektarbeit Mess- und Automatisierungstechnik (Bachelor)</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>PrM 2 oder 4 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Informationsrecherche</td>
</tr>
<tr>
<td></td>
<td>• Auswerten technischer Literatur</td>
</tr>
<tr>
<td></td>
<td>• Erstellen eines technischen Berichtes</td>
</tr>
<tr>
<td></td>
<td>• Präsentation technischer Inhalte</td>
</tr>
<tr>
<td></td>
<td>• Lösung mess- und automatisierungstechnischer Teilaufgaben insbesondere im Zusammenhang mit Entwurf, Auslegung, Konstruktion, Aufbau, Inbetriebnahme, Test von experimentellen Laboraufbauten oder Teilsystemen</td>
</tr>
<tr>
<td></td>
<td>• Entwurf, Auslegung, Test und Fallstudienerstellung simulierter Systeme</td>
</tr>
<tr>
<td></td>
<td>• Die konkreten Themen / Aufgabenstellungen werden zu Beginn des Semesters bekannt gegeben.</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Projektarbeit Mess- und Automatisierungstechnik (Bachelor)</td>
</tr>
<tr>
<td>(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>angeleitete Lösung einer Projektaufgabe im kleinen Projektteam oder durch Einzelbearbeiter</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Mechatronik</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Semester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Je nach zu bearbeitendem Einzelthema: Grundkenntnisse Regelungstechnik, Sensorik/Messtechnik, Konstruktionstechnik oder/und EDV-Kenntnisse. Die Aufgabenstellung wird in der Abhängigkeit des Fachsemesterstatus/Kenntnisstand des Bearbeiters definiert.</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 oder 4 SWS PrM (30 oder 60 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 60–120 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Schriftliche Ausarbeitung und Präsentation (falls 6 Credits)</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 oder 6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Andreas Kroll</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Andreas Kroll und Mitarbeiter</td>
</tr>
<tr>
<td>Medienformen</td>
<td>• technische Literatur</td>
</tr>
<tr>
<td></td>
<td>• Rechnerwerkzeuge wie Matlab/Simulink oder LabView</td>
</tr>
<tr>
<td>Literatur</td>
<td>Wird in der Veranstaltung aufgabenbezogen bekannt gegeben.</td>
</tr>
</tbody>
</table>
Projektmanagement 3 – Vertiefung

Project Management 3

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Projektmanagement 3 – Vertiefung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>(Qualifikationsziele)</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>HS 4 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>u. a. Risiko und Krisenmanagement im Projekt</td>
</tr>
<tr>
<td></td>
<td>Projektkultur</td>
</tr>
<tr>
<td></td>
<td>Projekt–Controlling</td>
</tr>
<tr>
<td></td>
<td>Vertragsmanagement</td>
</tr>
<tr>
<td></td>
<td>Personal und PM</td>
</tr>
<tr>
<td></td>
<td>Kommunikation und Information im Projekt</td>
</tr>
<tr>
<td></td>
<td>Projektpräsentation</td>
</tr>
<tr>
<td></td>
<td>Teamführung und Konfliktbewältigung im Projekt</td>
</tr>
<tr>
<td></td>
<td>Behandlung von Fallbeispielen</td>
</tr>
<tr>
<td></td>
<td>Projektbearbeitung im Team</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Projektmanagement 3 – Vertiefung</td>
</tr>
<tr>
<td>(Lehr–/ Lernformen) Lehr– und Lernmethoden (ZEVA)</td>
<td>Vorlesung, Gruppenarbeit, Seminarvorträge</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>PM 2, Grundlagen des Projektmanagements, Teil 2</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>PM 1, Grundlagen des Projektmanagements, Teil 1, Anmeldung erforderlich, Teilnehmerzahl ist beschränkt.</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>4 SWS HS (60 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 120 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Anwesenheitspflicht</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistung</td>
</tr>
<tr>
<td></td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Vortrag und Ausarbeitung (Gruppenleistung), Klausur 45 Min. oder mündliche Prüfung 20 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr.-Ing. Konrad Spang</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Dr.-Ing. Konrad Spang</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Folien (PowerPoint)</td>
</tr>
<tr>
<td></td>
<td>Skript</td>
</tr>
<tr>
<td>Literatur</td>
<td>Wird in der Lehrveranstaltung bekannt gegeben.</td>
</tr>
</tbody>
</table>
Projektmanagement 5 – Projektmanagement von Infrastrukturprojekten

Project Management for Infrastructure Projects

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Projektmanagement 5 – Projektmanagement von Infrastrukturprojekten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Projektmanagement 5 – Projektmanagement von Infrastrukturprojekten</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Behandlung spezieller Themen des Projektmanagements von Infrastrukturprojekten (Straßen und Schienenwege). Auf der Basis der Grundvorlesungen in Projektmanagement werden Besonderheiten des PM bei Planung und Bau von Infrastrukturprojekten behandelt.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>S 4 SWS</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Projektmanagement 5 – Projektmanagement von Infrastrukturprojekten</td>
</tr>
<tr>
<td>(Lehr-/Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Seminar, Seminararbeit, Präsentation von Fallbeispielen, Vorträge externer Referenten</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau, M. Sc. Maschinenbau</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Projektmanagement 2 – Grundlagen des Projektmanagements, Teil 2, Grundkenntnisse oder mindestens Interesse an Bauthemen</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Projektmanagement 1 – Grundlagen des Projektmanagements, Teil 1</td>
</tr>
<tr>
<td>Anmeldung erforderlich, Teilnehmerzahl ist beschränkt.</td>
<td></td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>4 SWS S (60 Std.), Selbststudium 120 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Anwesenheitspflicht</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistung</td>
</tr>
<tr>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
<td></td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 90–120 Min. oder mündliche Prüfung 45–60 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr.-Ing. Konrad Spang</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Dr.-Ing. Konrad Spang</td>
</tr>
<tr>
<td>Medienformen</td>
<td>• Folien (PowerPoint)</td>
</tr>
<tr>
<td></td>
<td>• Skript</td>
</tr>
</tbody>
</table>
Projektmanagement 6 – Internationales Projektmanagement

International Project Management

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Projektmanagement 6 – Internationales Projektmanagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Schlüsselkompetenz</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Lehrveranstaltungsarten

S 2 SWS

Lehrinhalte

Formen internationaler Projekte, Besonderheiten internationaler Projekte, Erfolgsfaktoren internationaler Projekte, Teambildung und Teamentwicklung internationaler Projekte, Organisation und O-Formen internationaler Projekte.

Differenzierung nach unterschiedlichen Typen internationaler Projekte, nationalen Besonderheiten, branchenspezifischen Aspekten.

Wie bereitet man sich optimal auf ein internationales Projekt vor? Besondere Aspekte wie Angebotsbearbeitung, Verhandlungen, Vertragsgestaltung.

Titel der Lehrveranstaltungen

Projektmanagement 6 – Internationales Projektmanagement

(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)

Gruppenarbeit, Seminarvorträge, Präsentationen

Verwendbarkeit des Moduls

B. Sc. Maschinenbau
- Schlüsselkompetenz
- Wahlpflichtmodul

M. Sc. Maschinenbau
- Schlüsselkompetenz
- Wahlpflichtmodul

Dauer des Angebotes des Moduls

Ein Semester

Häufigkeit des Angebotes des Moduls

Jedes Wintersemester

Sprache

deutsch

Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul

PM 2, Grundlagen des Projektmanagements, Teil 2
Voraussetzungen für die Teilnahme am Modul

PM 1, Grundlagen des Projektmanagements, Teil 1, Anmeldung erforderlich, Teilnehmerzahl ist beschränkt.

<table>
<thead>
<tr>
<th>Studentischer Arbeitsaufwand</th>
<th>2 SWS S (30 Std.) Selbststudium 60 Std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistungen</td>
<td>Anwesenheitspflicht</td>
</tr>
</tbody>
</table>
| Voraussetzung für Zulassung zur Prüfungsleistung | Studienleistung
Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
| Prüfungsleistung | Schriftliche Ausarbeitung (Hausarbeit) oder Klausur 60 Min. oder mündliche Prüfung 20 Min., ggf. gekoppelt mit Vortrag/Präsentation |
| Anzahl Credits für das Modul | 3 Credits |
| Lehreinheit | Fachbereich 15 |
| Modulverantwortliche/r | Prof. Dr.-Ing. Konrad Spang |
| Lehrende des Moduls | Prof. Dr.-Ing. Konrad Spang |
| Medienformen | Folien (Powerpoint, Projektor), Skript |
| Literatur | Wird in der Lehrveranstaltung bekannt gegeben. |
Projektmanagement 7 – Teammanagement in interdisziplinären Projektteams

Project Team Management

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Projektmanagement 7 – Teammanagement in interdisziplinären Projektteams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Projektmanagement 7 – Teammanagement in interdisziplinären Projektteams</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>
 * ihre Fähigkeit verbessert, aus eigener Erfahrung zu lernen
 * Fertigkeiten der gezielten Beobachtung und Auswertung von Gruppenprozessen erworben
 * Techniken für systematisches und effizientes Bearbeiten von Aufgaben im Team kennengelernt (Zielklärung, Planung und Steuerung, Zeitmanagement, Erfolgsmessung durch Indikatoren)
 * wichtige Funktionen in der Teamarbeit erkannt und ausgeübt, vor allem Moderation, Entscheidungsfindung, Koordination, Visualisierung und Präsentation. |
| Lehrveranstaltungsarten | S 4 SWS Blockveranstaltung |
| Lehrinhalte | Alle Elemente und Stufen des PM und der Projektabwicklung
 * U.a. Bearbeitung eines Angebotes
 * Projektstart
 * Projektsteuerung
 * Risikomanagement im Projekt
 * Projekt–Controlling
 * Termin– und Ressourcenplanung
 * Kommunikation und Information im Projekt
 * Projektpräsentation |
| Titel der Lehrveranstaltungen | Projektmanagement 7 – Teammanagement in interdisziplinären Projektteams |
| (Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA) | Seminar, Gruppenarbeit, Projektarbeit, Präsentationen |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
 M. Sc. Maschinenbau |
<p>| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Sommersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Grundlagen des Projektmanagements, Teil 1 und 2 |
| Voraussetzungen für die Teilnahme am Modul | PM 1, Anmeldung erforderlich, Teilnehmerzahl ist beschränkt. |</p>
<table>
<thead>
<tr>
<th>Studentischer Arbeitsaufwand</th>
<th>4 SWS S (60 Std.) Selbststudium 120 Std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistungen</td>
<td>Anwesenheitspflicht</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistung Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Hausarbeit und Seminarvortrag</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr.-Ing. Konrad Spang</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Dr.-Ing. Konrad Spang und wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Medienformen</td>
<td>• Folien (PowerPoint)</td>
</tr>
<tr>
<td></td>
<td>• Skript</td>
</tr>
<tr>
<td>Literatur</td>
<td>Wird in der Lehrveranstaltung bekannt gegeben.</td>
</tr>
</tbody>
</table>
Prozessmanagement

Modulhandbuch

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Prozessmanagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Prozessmanagement</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse,</td>
<td>Kenntnisse: Grundverständnis der modernen Strategien und Methoden zur Prozessgestaltung und -optimierung im Unternehmen</td>
</tr>
<tr>
<td>Kompetenzen</td>
<td></td>
</tr>
<tr>
<td>(Qualifikationsziele)</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 2 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>In der Veranstaltung werden die relevanten Strategien und Methoden zum Prozessmanagement behandelt. Dazu gehören Themen wie</td>
</tr>
<tr>
<td></td>
<td>• Prozessbesprechung;</td>
</tr>
<tr>
<td></td>
<td>• Prozessanalyse;</td>
</tr>
<tr>
<td></td>
<td>• Prozessgestaltung;</td>
</tr>
<tr>
<td></td>
<td>• Prozessbewertung/Prozesskennzahlen;</td>
</tr>
<tr>
<td></td>
<td>• Prozesssimulation;</td>
</tr>
<tr>
<td></td>
<td>• Prozessintegration;</td>
</tr>
<tr>
<td></td>
<td>• Change Management / Organisationsentwicklung.</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Prozessmanagement</td>
</tr>
<tr>
<td>(Lehr- / Lernformen)</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Lehr- und Lernmethoden (ZEVA)</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>• Schlüsselkompetenz</td>
</tr>
<tr>
<td></td>
<td>• Wahlpflichtmodul</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>• Schlüsselkompetenz</td>
</tr>
<tr>
<td></td>
<td>• Wahlpflichtmodul</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc./MSc. Wirtschaftsingenieurwesen</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS VL (30 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 60 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>–</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 60 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Robert Refflinghaus</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Robert Refflinghaus</td>
</tr>
</tbody>
</table>
| Medienformen | • Folienvortrag
• Skript (ergänzend)
• Office-Tools
• Flipcharts
• Metaplantafeln
• MindMap
• Prozessmodellierungswerkzeuge |
| Literatur | Wird zu Beginn der Veranstaltung bekanntgegeben. |
Prozessmanagement Übung

Process Management – Exercise

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Prozessmanagement Übung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Prozessmanagement Übung</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>
| Lernergebnisse, Kompetenzen (Qualifikationsziele) | Kenntnisse: Grundverständnis der modernen Strategien und Methoden zur Prozessgestaltung und -optimierung im Unternehmen
Fertigkeiten: selbständiger Einsatz von modernen Prozessmanagement-Methoden anhand von computergestützten Instrumenten und Werkzeugen
Kompetenz: interdisziplinäres Arbeiten in Kleingruppen, Anwendung von Methoden auf praktische Probleme |
| Lehrveranstaltungsarten | Ü 2 SWS |
| Lehrinhalte | In der Veranstaltung werden die relevanten Strategien und Methoden zum Prozessmanagement behandelt.
Dazu gehören Themen wie
- Prozessbeschreibung;
- Prozessanalyse;
- Prozessgestaltung;
- Prozessbewertung/Prozesskennzahlen;
- Prozesssimulation;
- Prozessintegration;
- Change Management / Organisationsentwicklung.
| Titel der Lehrveranstaltungen | Prozessmanagement Übung |
| (Lehr- / Lernformen) Lehr- und Lernmethoden (ZEVA) | Übungen, Gruppenarbeit, Projektarbeit, Rechnerübungen, Gruppendiskussionen, Fallstudien |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
M. Sc. Maschinenbau
B. Sc./MSc. Wirtschaftsingenieurwesen |
<p>| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Wintersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Prozessmanagement-Vorlesung |
| Voraussetzungen für die Teilnahme am Modul | Die Teilnehmerzahl ist auf 25 beschränkt. |</p>
<table>
<thead>
<tr>
<th>Studentischer Arbeitsaufwand</th>
<th>2 SWS Ü (30 Std.) Selbststudium 60 Std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistungen</td>
<td>-</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Bewertung von Übungsaufgaben, die in Kleingruppen bearbeitet werden</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Robert Refflinghaus</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Robert Refflinghaus</td>
</tr>
<tr>
<td>Medienformen</td>
<td>• Folienvortrag</td>
</tr>
<tr>
<td></td>
<td>• Skript (ergänzend)</td>
</tr>
<tr>
<td></td>
<td>• Office-Tools</td>
</tr>
<tr>
<td></td>
<td>• Flipcharts</td>
</tr>
<tr>
<td></td>
<td>• Metaplantafeln</td>
</tr>
<tr>
<td></td>
<td>• MindMap</td>
</tr>
<tr>
<td></td>
<td>• Prozessmodellierungswerkzeuge</td>
</tr>
<tr>
<td>Literatur</td>
<td>Wird zu Beginn der Veranstaltung bekanntgegeben.</td>
</tr>
</tbody>
</table>
Psychische Belastung und Beanspruchung

Mental Stress and Strain

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Psychische Belastung und Beanspruchung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Die Studierenden wissen:
- Was unter psychischer Belastung und Beanspruchung zu verstehen ist,
- warum psychische Belastung und Beanspruchung zu ermitteln ist,

Zuerst werden theoretische Grundlagen betrachtet, der weitere Teil umfasst Übungen, auch in der Form eigenständiger Arbeit. Die Studierenden werden dabei auch lernen, themenspezifische Literatur auszuwählen, zu bearbeiten, zusammenzufassen und zu präsentieren.

Lehrveranstaltungsarten

<table>
<thead>
<tr>
<th>Lehrveranstaltungsarten</th>
<th>S 2SWS Blockveranstaltung</th>
</tr>
</thead>
</table>

Lehrinhalte

Thematische Schwerpunkte sind:

- Einführung in die Terminologie (Begriffe und Definitionen)
- Psychische Belastung und Beanspruchung in der Arbeitswelt (Prävalenz psychischer Arbeitsanforderungen)
- Normative Regelungen zur psychischen Belastung und Beanspruchung (Gesetze, Verordnungen, Richtlinien, Normen)
- Messmethoden (Ingenieurwissenschaftliche Ansätze, psychologische und physiologische Verfahren)
- Gütekriterien von Messverfahren
- Probleme bei der Erfassung psychischer Belastung und Beanspruchung (Ausgangswertabhängigkeit, das von Restorff Phänomen, Instabilität von Beanspruchungszuständen, Artefakte bei VerlaufsMESSungen),
- Interpretation und Verwendung von Messergebnissen (relative und absolute Entscheidungen, Grenzwerte, Gefährdungsbeurteilung)

<table>
<thead>
<tr>
<th>Titel der Lehrveranstaltungen</th>
<th>Psychische Belastung und Beanspruchung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Blockveranstaltung, Gruppendiskussion, Vortrag, Präsentation</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Semester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Arbeits- und Organisationspsychologie</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Anmeldung erforderlich. Teilnehmerzahl ist auf 20 beschränkt.</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS S (30 Std.) Selbststudium 60 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Anwesenheitspflicht</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistung</td>
</tr>
<tr>
<td></td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Referat und Hausarbeit</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Oliver Sträter</td>
</tr>
<tr>
<td></td>
<td>Dr. Jürgen Pfitzmann</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Martin Schütte</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Präsentationen (PowerPoint)</td>
</tr>
<tr>
<td>Literatur</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>
Regelungstechnik: Zustandsraummethoden und Mehrgrößensysteme

Control theory: State space methods and multivariable systems

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Regelungstechnik: Zustandsraummethoden und Mehrgrößensysteme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>
| Lehrveranstaltungsarten | VLmP 3 SWS
Ü 1 SWS |
| Lehrinhalt |
- Zustandsraumdarstellung von Mehrgrößenregelkreisen,
- Grundbegriffe der Regelungstechnik:
- Steuerbarkeit,
- Beobachtbarkeit,
- Regelbarkeit,
- Entkoppelbarkeit,
- Zustandsentkoppelung,
- Polvorgaberegler,
- Luenberger-Beobachter,
- Gram’sche Matrizen,
- optimale Regelung |
| Titel der Lehrveranstaltungen | Regelungstechnik: Zustandsraummethoden und Mehrgrößensysteme |
| (Lehr-/Lernformen) Lehr- und Lernmethoden (ZEVA) | Frontalunterricht, Tafelübungen |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
B. Sc. Mechatronik
M. Sc. Maschinenbau
M. Sc. Mechatronik |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Sommersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Einführung in die Mess- und Regelungstechnik |
| Voraussetzungen für die Teilnahme am Modul | – |
| Studentischer Arbeitsaufwand | 3 SWS VL (45 Std.)
1 SWS Ü (15 Std.)
Selbststudium 120 Std. |
<p>| Studienleistungen | – |</p>
<table>
<thead>
<tr>
<th>Voraussetzung für Zulassung zur Prüfungsleistung</th>
<th>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 120 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Andreas Kroll</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Dr. Hanns-Jakob Sommer</td>
</tr>
<tr>
<td>Medienformen</td>
<td>• Kurz-Skript</td>
</tr>
<tr>
<td></td>
<td>• Tafel</td>
</tr>
</tbody>
</table>
Schweißtechnik 1
Welding Technology 1

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Schweißtechnik 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 2 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td></td>
</tr>
<tr>
<td>• Grundsätzliche Bemerkungen</td>
<td></td>
</tr>
<tr>
<td>• Schmelzschweißverfahren</td>
<td></td>
</tr>
<tr>
<td>• Pressschweißverfahren</td>
<td></td>
</tr>
<tr>
<td>• Widerstandspressschweißen, Lichtbogenpressschweißen, Reibschweißen, Diffusionsschweißen, Kaltpressschweißen, Ultraschallschweißen, Explosionsschweißen</td>
<td></td>
</tr>
<tr>
<td>• Thermische Trennverfahren</td>
<td></td>
</tr>
<tr>
<td>• Trennen durch örtliches Durchschmelzen, Brennschneiden</td>
<td></td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Schweißtechnik 1</td>
</tr>
<tr>
<td>(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS VL (30 Std.) Selbststudium 60 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>–</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 90 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Thomas Niendorf</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>NN</td>
</tr>
<tr>
<td>Medienformen</td>
<td>–</td>
</tr>
<tr>
<td>Literatur</td>
<td>–</td>
</tr>
</tbody>
</table>
Schweißtechnik 2
Welding Technology 2

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Schweißtechnik 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLM P 2 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td></td>
</tr>
<tr>
<td>• Überblick ausgesuchter Stähle unter schweißtechnischen Gesichtspunkten, ausgewählte allgemeine metallkundliche Fragestellungen</td>
<td></td>
</tr>
<tr>
<td>• Allgemeine Baustähle:</td>
<td></td>
</tr>
<tr>
<td>• Gefügezonen nach dem Schweißen Härteänderungen beim Schweißen Schweißeignung der Werkstoffe Schweißmöglicherkeit, Schweißsicherheit, Schweißbarkeit</td>
<td></td>
</tr>
<tr>
<td>• Schweißbare Betonstähle</td>
<td></td>
</tr>
<tr>
<td>• Feinkornbaustähle</td>
<td></td>
</tr>
<tr>
<td>• Niedriglegierte Stähle</td>
<td></td>
</tr>
<tr>
<td>• Hochlegierte Stähle</td>
<td></td>
</tr>
<tr>
<td>• Schweißeigenspannungen und Verzug</td>
<td></td>
</tr>
<tr>
<td>• Entstehung von Schweißeigenspannungen</td>
<td></td>
</tr>
<tr>
<td>• Auswirkungen von Schweißeigenspannungen</td>
<td></td>
</tr>
<tr>
<td>• Schweißbedingte Maß- und Formänderungen</td>
<td></td>
</tr>
<tr>
<td>• Vorbeugende fertigungstechnische und konstruktive Maßnahmen gegen Verzug bzw. große Schweiß-Zug-Eigenspannungen, Schweißfolgeplan</td>
<td></td>
</tr>
<tr>
<td>• Nachbehandlungsverfahren gegen Verzug bzw. große Schweiß-Zug-Eigenspannungen</td>
<td></td>
</tr>
<tr>
<td>• Statische Beanspruchung von Schweißverbindungen</td>
<td></td>
</tr>
<tr>
<td>• Nennspannungsnachweis</td>
<td></td>
</tr>
<tr>
<td>• Festigkeitsnachweis; zulässige Spannungen</td>
<td></td>
</tr>
<tr>
<td>• Schwingbeanspruchung von Schweißverbindungen</td>
<td></td>
</tr>
<tr>
<td>• Typische Brucharten</td>
<td></td>
</tr>
<tr>
<td>• Schwingfestigkeit geschweißer Verbindungen</td>
<td></td>
</tr>
<tr>
<td>• Zulässige Spannungen bei Schwingbeanspruchung</td>
<td></td>
</tr>
<tr>
<td>• Konstruktive, Festigkeits- und Werkstoffeinfüsse auf die Schwingfestigkeit</td>
<td></td>
</tr>
<tr>
<td>• Maßnahmen zur Verbesserung der Schwingfestigkeit von Schweißverbindungen</td>
<td></td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Schweißtechnik 2</td>
</tr>
<tr>
<td>(Lehr-/Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
M. Sc. Maschinenbau |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Wintersemester |
| Sprache | deutsch |
| Empfohlene (inhaltsliche) Voraussetzungen für die Teilnahme am Modul | Schweißtechnik 1 |
| Voraussetzungen für die Teilnahme am Modul | – |
| Studentischer Arbeitsaufwand | 2 SWS VL (30 Std.)
Selbststudium 60 Std. |
| Studienleistungen | – |
| Voraussetzung für Zulassung zur Prüfungsleistung | Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
| Prüfungsleistung | Klausur 90 Min. |
| Anzahl Credits für das Modul | 3 Credits |
| Lehreinheit | Fachbereich 15 |
| Modulverantwortliche/r | Prof. Thomas Niendorf |
| Lehrende des Moduls | Dr.-Ing. Django Baunack |
| Medienformen | – |
| Literatur | – |
Seminar für mehrphasige Systeme und Transportprozesse

Seminar of multiphase systems and transport phenomena

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Seminar für mehrphasige Systeme und Transportprozesse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Seminar für mehrphasige Systeme und Transportprozesse</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlmodul</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Studierende verfügen über die Fähigkeit, mehrphasige Systeme sowie Transportprozesse zu modellieren und zu berechnen. Sie haben Kenntnisse darüber, wie ein Apparat mit mehrphasigen Fluiden ausgelegt, aufgebaut und betrieben wird. Weiterhin können Sie die geeignete Messmethodik zur Überwachung und Regelung mehrphasiger Systeme beurteilen und auswählen.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>S 1 SWS Blockveranstaltung</td>
</tr>
</tbody>
</table>
| Lehrinhalte | • Thermodynamische Eigenschaften mehrphasiger Systeme
• Modellierung mehrphasiger Transportprozessen
• Messung von thermophysischen- und Transportgrößen mehrphasiger Systeme
• Auslegung und Prozessführung mehrphasiger Systeme und derer Komponenten
• Dynamik und Keimbildung fluider Partikel
• Einzelne Themenfelder werden durch externe Dozenten aus Industrie und Wirtschaft vertieft |
| Titel der Lehrveranstaltungen | Seminar für mehrphasige Systeme und Transportprozesse |
| (Lehr–/Lernformen) | Seminar, Präsentationen, Vorträge |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
M. Sc. Maschinenbau |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Semester |
| Sprache | Deutsch |
| Empfohlene (inhaltsliche) Voraussetzungen für die Teilnahme am Modul | Technische Thermodynamik 1
Technische Thermodynamik 2
Wärmeübertragung 1 |
| Voraussetzungen für die Teilnahme am Modul | Anmeldung erforderlich, Teilnehmerzahl auf X beschränkt |
| Studentischer Arbeitsaufwand | 1 SWS S (15 Std.)
Selbststudium 15–75 Std. |
| Studienleistungen | Anwesenheitspflicht im Seminar |
| Voraussetzung für Zulassung zur Prüfungsleistung | Studienleistung
Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
<p>| Prüfungsleistung | Präsentation und/oder schriftliche Ausarbeitung |
| Anzahl Credits für das Modul | 1–3 Credits, je nach studentischem Arbeitsaufwand und gewählter Prüfungsleistung |</p>
<table>
<thead>
<tr>
<th>Lehreinheit</th>
<th>Fachbereich 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr.-Ing. habil. Andrea Luke</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Dr.-Ing. habil. Andrea Luke</td>
</tr>
<tr>
<td>Medienformen</td>
<td>• Beamer</td>
</tr>
<tr>
<td></td>
<td>• Tafel</td>
</tr>
<tr>
<td></td>
<td>• Wissenschaftlich-technische Literatur</td>
</tr>
<tr>
<td>Literatur</td>
<td>• VDI - Wärmeatlas, 11.Auflage, Springer-Verlag, 2013</td>
</tr>
<tr>
<td></td>
<td>• Mayinger, F.: Strömung und Wärmeübertragung in Gas-Flüssigkeits-Gemischen, Springer-Verlag, 1982</td>
</tr>
<tr>
<td></td>
<td>• Stephan, K: Wärmeübergang beim Kondensieren und beim Sieden, Springer-Verlag, 1987</td>
</tr>
<tr>
<td></td>
<td>• Weitere Literatur wird in der Veranstaltung je nach aktuellem Themenfeld bekannt gegeben</td>
</tr>
</tbody>
</table>
Seminar Human Factors Engineering
Seminar Human Factors Engineering

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Seminar Human Factors Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Seminar Human Factors Engineering</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>S 4 SWS</td>
</tr>
</tbody>
</table>
| Lehrinhalte | • Vorstellung der aktuellen Themen
• Einführung in das Wissenschaftliche Arbeiten
• Informationsrecherche und Auswertung
• Datenbankgestützte Literaturenverwaltung und Zitierunterstützung mit Citavi
• Inhaltliche Gliederung und visuelle Gestaltung einer Präsentation
• Tipps zur Vortragstechnik
• Selbstständige Erarbeitung der Seminarthemen
• Präsentation und Diskussion der Seminarthemen |
| Titel der Lehrveranstaltungen | Seminar Human Factors Engineering |
| (Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEGA) | Projektarbeit, Seminar, Präsentationen, Vorträge |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
B. Sc. Mechatronik
B. Sc. Informatik
B. Sc. Psychologie
B. Sc. Wirtschaftsingenieurwesen
Diplom Produkt-Design |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Semester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Mensch–Maschine–Systeme 1 und/oder 2 oder Arbeitswissenschaft |
| Voraussetzungen für die Teilnahme am Modul | – |
| Studentischer Arbeitsaufwand | 4 SWS S (60 Std.)
Selbststudium 120 Std. |
| Studienleistungen | Anwesenheitspflicht |
| Voraussetzung für Zulassung zur Prüfungsleistung | Studienleistung
Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>Seminarvortrag oder Hausarbeit</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Ludger Schmidt</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Ludger Schmidt</td>
</tr>
<tr>
<td>Medienformen</td>
<td>–</td>
</tr>
<tr>
<td>Literatur</td>
<td>Wird in der Veranstaltung je nach aktuellem Themenfeld bekannt gegeben.</td>
</tr>
</tbody>
</table>
Seminar Mess- und Automatisierungstechnik
Seminar measurement and control engineering

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Seminar Mess- und Automatisierungstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Seminar Mess- und Automatisierungstechnik</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>S 4 SWS</td>
</tr>
</tbody>
</table>
| Lehrinhalte | • Vorstellungen der konkreten Themen/Aufgabenstellungen aus den beteiligten Fachgebieten
• Technisch-wissenschaftliche Informationsrecherche
• Erarbeitung der Themengebiete
• Präsentation der Ergebnisse in einem Seminarvortrag
• Anfertigung eines Seminarberichtes |
| Titel der Lehrveranstaltungen | Seminar Mess- und Automatisierungstechnik |
| (Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA) | Seminar |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
B. Sc. Mechatronik |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Semester |
| Sprache | deutsch |
| Empfohlene (inhaltsliche) Voraussetzungen für die Teilnahme am Modul | Vertiefende Vorlesungen in Mess- und/oder Automatisierungstechnik |
| Voraussetzungen für die Teilnahme am Modul | – |
| Studentischer Arbeitsaufwand | 4 SWS S (60 Std.)
Selbststudium 120 Std. |
| Studienleistungen | – |
| Voraussetzung für Zulassung zur Prüfungsleistung | Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
| Prüfungsleistung | Präsentation und schriftliche Ausarbeitung |
| Anzahl Credits für das Modul | 6 Credits |
| Lehreinheit | Fachbereich 15 |
| Modulverantwortliche/r | Prof. Andreas Kroll |
| Lehrende des Moduls | Prof. Andreas Kroll |
| Medienformen | · Beamer
| | · Tafel
<p>| | · Wissenschaftlich-technische Literatur |
| Literatur | Wird in der Veranstaltung je nach aktuellem Themenfeld bekannt gegeben. |</p>
<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Seminar Umformtechniklabor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Lehrveranstaltungsarten

| S 2 SWS | Pr 2 SWS |

Lehrinhalte

Das Seminar ist in vier Themenbereiche unterteilt, die in einem engen Bezug zueinander stehen und aufeinander aufbauen.

- **Bereich 1: Messung von thermischen Prozessgrößen**
 - Hier werden in einem einfachen Aufbau die Temperaturen und die Temperaturverteilung eines metallischen Bauteils über verschiedene berührungslose Verfahren (Pyrometer, Thermographiekamera) und berührende Verfahren (Thermoelemente verschiedener Ausführung, Federthermoelemente) ermittelt. Dabei sollen die verschiedenen Verfahren miteinander verglichen werden hinsichtlich Genauigkeit, Toleranzbereich, Responseverhalten, Anwendbarkeit, Fehlerquellen.

- **Bereich 2: Messung von mechanischen Prozessgrößen**
 - Anhand von Zugversuchen unter verschiedenen thermischen Prozessbedingungen und Umformgeschwindigkeiten einer Stahlprobe werden die wichtigsten Methoden zur Aufnahme von mechanischen Prozessgrößen (Kraft, Weg, Spannung, Dehnung) und die Übertragung in umformtechnische Kenngrößen (Fließspannung, Umformgrad, Fließkurve) vermittelt.

- **Bereich 3: Umformtechnische Modellversuche**
 - Kaltwalzversuche an Blechstreifen dienen zur Ermittlung der Prozessgrößen Walzkraft, −moment, Umformgrad, die mit berechneten Werten aus der Walztheorie verglichen werden. Dabei wird der Einfluss der Werkstoffverfestigung und der elastischen Deformation des Walzgerüstes vermittelt.

- **Napftiefziehversuche an Blechproben mit unterschiedlichen mechanischen Eigenschaften werden zur Charakterisierung der die Tiefziehbarkeit durchgeführt und die wichtigsten Einflüsse (z.B. Reibung, Anisotropie, etc.) demonstriert.**

- **Bereich 4: Prüfung von spezifischen Werkstoff-/-Bauteileigenschaften**

<table>
<thead>
<tr>
<th>Titel der Lehrveranstaltung</th>
<th>Seminar Umformtechniklabor</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lehr-/Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Blockveranstaltung, Laborarbeit, praktische Arbeit, Gruppenarbeit, Präsentationen, Gruppendiskussion, Lehrgespräch</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
 M. Sc. Maschinenbau
 B. Sc. Wirtschaftsingenieurwesen |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Semester |
| Sprache | deutsch |
| Empfohlene (inhaltsliche) Voraussetzungen für die Teilnahme am Modul | Fertigungstechnik 2 |
| Voraussetzungen für die Teilnahme am Modul | – |
| Studentischer Arbeitsaufwand | 2 SWS S (30 Std.)
 2 SWS Pr (30 Std.)
 Selbststudium 120 Std. |
| Studienleistungen | Gruppenpräsentationen
 Anwesenheitspflicht |
| Voraussetzung für Zulassung zur Prüfungsleistung | Studienleistung
 Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
| Prüfungsleistung | Schriftliche Ausarbeitung in Gruppen
 Bei entsprechender Ankündigung durch den Dozenten zu Beginn der Lehrveranstaltung kann eine Teilleistung der abschließenden Prüfung in einer vorgezogenen lehrveranstaltungsbegleitenden Leistung in Form von einem schriftl. Testat à 1x15 Min. erbracht werden. |
| Anzahl Credits für das Modul | 6 Credits |
| Lehreinheit | Fachbereich 15 |
| Modulverantwortliche/r | Prof. Kurt Steinhoff |
| Lehrende des Moduls | Prof. Kurt Steinhoff |
| Medienformen | • PowerPoint-Präsentationen
 • schriftl. Unterlagen zum Download |
| Literatur | – |
Sensorapplikationen – Messen nichtelektrischer Größen

Sensor applications – Measurement of non–electrical quantities

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Sensorapplikationen – Messen nichtelektrischer Größen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Sensorapplikationen – Messen nichtelektrischer Größen</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Die Studierenden haben einen Überblick über Applikationen zur Messung nicht–elektrischer Größen erworben. Sie haben verstanden, dass eine Messgröße durch verschiedene Sensoren erfasst werden kann und welche qualitativen Konsequenzen die Sensorauswahl auf die Messung nimmt.

Lehrveranstaltungsarten

<table>
<thead>
<tr>
<th>Lehrveranstaltungsarten</th>
<th>VLmp 3 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ü 1 SWS</td>
</tr>
</tbody>
</table>

Lehrinhalte

- Übersicht und Einführung
- Applikationsübergreifende Grundlagen und Technologien
- Messung verfahrenstechnischer Größen (Temperatur, Druck, Kraft, Füllstand)
- Messung mechanischer Größen (Länge und Winkel (und abgeleitete Größen), Kraft, Drehmoment)
- Weitere Applikationen
- Ausblick

Titel der Lehrveranstaltungen

Sensorapplikationen – Messen nichtelektrischer Größen

Verwendung der Lehrformen (ZEA)

- Frontalunterricht, Tafelübungen

Verwendbarkeit des Moduls

- B. Sc. Maschinenbau
- B. Sc. Mechatronik

Dauer des Angebotes des Moduls

Ein Semester

Häufigkeit des Angebotes des Moduls

Jedes Sommersemester

Sprache

deutsch

Empfohlene (inhaltsliche) Voraussetzungen für die Teilnahme am Modul

- Grundlagenkurse zu Sensorik/Messtechnik sowie Elektrotechnik/Elektronik

Voraussetzungen für die Teilnahme am Modul

-

Studentischer Arbeitsaufwand

- 3 SWS VL (45 Std.)
- 1 SWS Ü (15 Std.)
- Selbststudium 120 Std.

Studienleistungen

-
<table>
<thead>
<tr>
<th>Voraussetzung für Zulassung zur Prüfungsleistung</th>
<th>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 120 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Andreas Kroll</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Dr.-Ing. Robert Schmoll</td>
</tr>
</tbody>
</table>

Medienformen
- Ausdruckbare Vorlesungfolien,
- Web-Portal zum Kurs mit Vorlesungfolien zum Download und Zusatzinformationen (Moodle)
- Tafel
- umfangreiche Exponatesammlung

Literatur
- Schaudel, D., Tauchnitz, T., Urbas, L., Früh, K. F. (Hrsg.): Handbuch der Prozessautomatisierung. 6. Auflage, München: DIV, 2018
Sensoren und Messsysteme

Sensors and Measurement Systems

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Sensoren und Messsysteme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Sensoren und Messsysteme</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Der / die Lernende kann:</td>
</tr>
<tr>
<td></td>
<td>• Grundlegende Sensoren und Messsysteme beschreiben,</td>
</tr>
<tr>
<td></td>
<td>• Messaufgaben einordnen, Lösungen erläutern,</td>
</tr>
<tr>
<td></td>
<td>• erarbeitete Erkenntnisse strukturieren und präsentieren.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 3 SWS</td>
</tr>
<tr>
<td></td>
<td>Ü 1 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>• Teil 1 Sensorik: Sensorprinzipien und -ausführungen</td>
</tr>
<tr>
<td></td>
<td>• Elektromechanische Prinzipien</td>
</tr>
<tr>
<td></td>
<td>• Elektroakustische Prinzipien</td>
</tr>
<tr>
<td></td>
<td>• Optoelektrische Prinzipien</td>
</tr>
<tr>
<td></td>
<td>• Elektronische Temperaturmessung</td>
</tr>
<tr>
<td></td>
<td>• Elektrochemische Prinzipien</td>
</tr>
<tr>
<td></td>
<td>• Sensormodellierung</td>
</tr>
<tr>
<td></td>
<td>• Teil 2 Messsysteme: Optische und akustische Messprinzipien mit Anwendungen</td>
</tr>
<tr>
<td></td>
<td>• Grundlagen der geometrischen Optik</td>
</tr>
<tr>
<td></td>
<td>• Optische Abbildung, Bildverarbeitungssysteme</td>
</tr>
<tr>
<td></td>
<td>• Grundlagen und Anwendungen elektromagnetischer und akustischer Wellen</td>
</tr>
<tr>
<td></td>
<td>• Interferenz von Wellen, Interferometrie</td>
</tr>
<tr>
<td></td>
<td>• Beugung elektromagnetischer Wellen, Spektroskopie</td>
</tr>
<tr>
<td></td>
<td>• Grundlagen und Anwendungen der Kohärenz</td>
</tr>
<tr>
<td></td>
<td>• Fasersensoren</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Sensoren und Messsysteme</td>
</tr>
<tr>
<td>(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Vorlesung, Hörsaalübungen, Demonstrationen, Präsentationen, Vorträge</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Mechatronik</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Mechatronik</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Grundlagen Elektrotechnik I und II, Analysis, Elektrische Messtechnik, Mechanik und Wellenphänomene, Optik und Thermodynamik</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>3 SWS VL (45 Std.)</td>
</tr>
<tr>
<td></td>
<td>1 SWS Ü (15 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 120 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>–</td>
</tr>
<tr>
<td>----------------------</td>
<td>----</td>
</tr>
<tr>
<td>Voraussetzung für</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Zulassung zur</td>
<td>–</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur und Kurzpräsentation (optional)</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 16</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Peter Lehmann</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Peter Lehmann und Mitarbeiter</td>
</tr>
<tr>
<td>Medienformen</td>
<td>• Beamer-Präsentation</td>
</tr>
<tr>
<td></td>
<td>• Hörsaalübungen</td>
</tr>
<tr>
<td></td>
<td>• Vorlesungsfolien und Übungen zum Download</td>
</tr>
<tr>
<td></td>
<td>• Studierendenvorträge</td>
</tr>
<tr>
<td>Literatur</td>
<td>• J. Niebuhr, G. Lindner: Physikalische Messtechnik mit Sensoren, Oldenbourg;</td>
</tr>
<tr>
<td></td>
<td>• H.-R. Tränkler: Taschenbuch der Messtechnik, Oldenbourg;</td>
</tr>
<tr>
<td></td>
<td>• G. W. Schanz: Sensoren – Fühler der Meßtechnik, Hüthig;</td>
</tr>
<tr>
<td></td>
<td>• P. Baumann: Sensorschaltungen. Simulation mit PSPICE, Teubner + Vieweg;</td>
</tr>
<tr>
<td></td>
<td>• E. Hering; R. Martin: Photonik – Grundlagen, Technologie und Anwendung, Springer;</td>
</tr>
<tr>
<td></td>
<td>• F. Pedrotti, L. Pedrotti, W. Bausch, H. Schmidt: Optik für Ingenieure, Springer;</td>
</tr>
<tr>
<td></td>
<td>• E. Hecht: Optik, Oldenbourg;</td>
</tr>
<tr>
<td>Nummer/Code</td>
<td>Sensorik für die Werkstoffwissenschaft</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Modulname</td>
<td>Sensorik für die Werkstoffwissenschaft</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

- **Kenntnisse:** Den Studierenden wird ein Einblick in die Sensorik für die Werkstoffwissenschaft gegeben.
- **Fertigkeiten:** Die Studierenden sind in der Lage Prüfstände für neue Werkstoffanalysen aus bestehenden Sensorsystemen zu erstellen. Dazu kommt die Fertigkeit, diese Sensorsysteme im Rahmen eines Testsetups einer Messfähigkeitsanalyse zu unterziehen. So wird sichergestellt, dass das Testsetup die erforderliche Werkstoffanalyse zuverlässig umsetzen kann.
- **Kompetenzen:** Die Studierenden sind in der Lage für Werkstoffsysteme und deren Analyse neue Sensorik konzipieren zu können. Sie können diese dann im Rahmen von Schadensanalysen anwenden bzw. sie im Rahmen geeigneter Teststrategien einsetzen zu können, welche bspw. in den Modulen Versuchsplanung und Zuverlässigkeit oder Systemzuverlässigkeit im Maschinenbau bzw. Theoretische Schadensanalyse gehalten werden.

Lehrveranstaltungsarten

- **VLmP 4 SWS**

Lehrinhalte

- Sensorik und Sensorsysteme der gängigen Setups für Werkstoffprüfung – Physik der Sensorik
- Anforderungen an Werkstoffe im Umfeld Industrie 4.0
- Messfähigkeitsanalyse (Verfahren MSA I bis III)
- Aspekte der Industrie 4.0 – Sensorik für Werkstoffsysteme für bspw. Predictive Maintenance
- Seminar 1: Evaluierung einer Messhülse zur Spannkraftverlustmessung
- Seminar 2: dynamische Werkstoffprüfung mit Widerstandserfassung (im Vergleich zu DIC)

Titel der Lehrveranstaltungen

- Sensorik für die Werkstoffwissenschaft (SfW)

(Lehr-/ Lernformen)

- **Vorlesung mit Seminar**

Verwendbarkeit des Moduls

- B. Sc. Maschinenbau / M. Sc. Maschinenbau

Dauer des Angebotes des Moduls

- Ein Semester

Häufigkeit des Angebotes des Moduls

- Jedes Sommersemester

Sprache

- deutsch
<table>
<thead>
<tr>
<th>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</th>
<th>Mathematische Kenntnisse und Grundlagen zur Statistik; Werkstoffkunde; Technische Mechanik; Einführung in die Physik oder Grundlagen der Elektrotechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>4 SWS VL (60 Std.) Selbststudium 60 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 90 Min. oder mündliche Prüfung 45 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehrinhaltung</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Dr. Timo Möller</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Dr. Timo Möller</td>
</tr>
<tr>
<td>Medienformen</td>
<td>- Tafelanschrieb</td>
</tr>
<tr>
<td></td>
<td>- PowerPoint-Projektion</td>
</tr>
<tr>
<td></td>
<td>- Planspiele</td>
</tr>
<tr>
<td>Literatur</td>
<td>weiterführende Literatur im Folien­­satz enthalten bzw. der Literaturliste in Moodle zu entnehmen</td>
</tr>
</tbody>
</table>
Signal- und Bildverarbeitung

Signal and image processing

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Signal- und Bildverarbeitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>
| Lehrveranstaltungsarten | VLmP 2 SWS
Pr 1 SWS
Ü 1 SWS |
| Lehrinhalte |
- Definition von Zeit- und Bildsignalen und ihre analytischen Beschreibungsformen (z. B. deterministische und stochastische Signale, Energie- und Leistungssignale)
- Strukturen und Elemente signalverarbeitender Systeme
- Anwendung von Werkzeugen zur digitalen Signal- und Bildverarbeitung anhand von Rechnersimulationen zur Vertiefung der Methodenkenntnisse. |
| Titel der Lehrveranstaltungen | Signal- und Bildverarbeitung |
| (Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA) | Frontalunterricht, Tafelübungen, Rechnerübungen, Auswertung von praktischen Experimenten |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
B. Sc. Mechatronik
M. Sc. Maschinenbau
M. Sc. Mechatronik |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Wintersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Höhere Mathematik 1–3 |
| Voraussetzungen für die Teilnahme am Modul | - |
| **Studentischer Arbeitsaufwand** | 2 SWS VL (30 Std.)
1 SWS Pr (15 Std.)
1 SWS Ü (15 Std.)
Selbststudium 120 Std. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistungen</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 120 Min. oder mündliche Prüfung 30 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Andreas Kroll</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Dr.-Ing. Robert Schmoll</td>
</tr>
</tbody>
</table>
| **Medienformen** | • Vorlesungsfolien
• Beamer, Tafel
• Web-Portal zum Kurs mit Vorlesungsfolien zum Herunterladen und Zusatzinformationen (Moodle)
• PC-Pool für praktische Übungen und Anwendungen der Signal- und Bildverarbeitungsmethoden |
| **Literatur** | • Von Grünigen, D. Ch.: Digitale Signalverarbeitung. 5. Auflage, Fachbuchverlag Leipzig Hanser Verlag München, 2014
Simulation und Machine Learning im Energiemanagement

Simulation und machine learning in energy management

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Simulation und Machine Learning im Energiemanagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Simulation und Machine Learning im Energiemanagement</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Lehrveranstaltungsarten

| VLmP 2 SWS |
| Ü 2 SWS |

Lehrinhalte

- Grundlagen des Energiemanagements und Energiedaten- managements
- Grundlagen der Modellbildung und der kontinuierlichen Simulation
- Grundlagen des Machine Learnings anhand typischer Algorithmen
- Einführungen in die verwendeten Softwaresysteme (z. B. Python, SciKitLearn)
- Übungen zu den einzelnen Themenbereichen
- Bearbeitung einer Projektaufgabe

Titel der Lehrveranstaltungen

Simulation und Machine Learning im Energiemanagement

(Language- / Lernformen) Lehr- und Lernmethoden (ZEVA)

| Vorlesung, Übung, Projektaufgaben |

Verwendbarkeit des Moduls

B. Sc. Maschinenbau
M. Sc. Maschinenbau
M. Sc. Regenerative Energien und Energieeffizienz
B. Sc./M. Sc. Wirtschaftsingenieurwesen
M. Sc. Umweltingenieurwesen

Dauer des Angebotes des Moduls

Ein Semester

Häufigkeit des Angebotes des Moduls

Jedes Sommersemester

Sprache

deutsch

Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul

Energieeffiziente Produktion, Informationstechnik, Thermodynamik, programmiertechnische Vorkenntnisse

Voraussetzungen für die Teilnahme am Modul

-
| Studentischer Arbeitsaufwand | 2 SWS VL (30 Std.)
| | 2 SWS Ü (30 Std.)
	Selbststudium 120 Std.
Studienleistungen	–
Voraussetzung für Zulassung zur Prüfungsleistung	Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8
Prüfungsleistung	Bearbeitung und Präsentation einer Projektaufgabe
Anzahl Credits für das Modul	6 Credits
Lehreinheit	Fachbereich 15
Modulverantwortliche/r	Prof. Dr.–Ing. Mark Junge
Lehrende des Moduls	Prof. Dr.–Ing. Mark Junge
Medienformen	PowerPoint–Präsentationen
	• A. Müller: Einführung in Machine Learning mit Python. O’Reilly. 2017
Simulationsgestützte Steuerung vernetzter Systeme

simulation–based control networked systems –simulation model to PLC

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Simulationsgestützte Steuerung vernetzter Systeme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 2 SWS</td>
</tr>
<tr>
<td></td>
<td>PS 2 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Die Studenten lernen in einem theoretischen Grundlagenteil:</td>
</tr>
<tr>
<td></td>
<td>• Grundlagen Steuern/Regeln</td>
</tr>
<tr>
<td></td>
<td>• Einführung in die Modellbildung</td>
</tr>
<tr>
<td></td>
<td>• Aufbau einer Speicherprogrammierbaren Steuerung</td>
</tr>
<tr>
<td></td>
<td>• Schnittstellen und Kommunikation</td>
</tr>
<tr>
<td></td>
<td>• Systemische Betrachtung von Gesamtsystemen</td>
</tr>
<tr>
<td></td>
<td>In einem Laborpraktikum arbeiten die Studenten an praktischen Versuchsauflagten. Sie werden eine SPS eigenständig aufbauen, programmieren und mit unterschiedlichen Sensoren sowie Aktoren verbinden.</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Simulationsgestützte Steuerung vernetzter Systeme</td>
</tr>
<tr>
<td>(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Vorlesung, Gruppenarbeit, Projektarbeit</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Regenerative Energien und Energieeffizienz</td>
</tr>
<tr>
<td></td>
<td>B. Sc./M. Sc. Wirtschaftsingenieurwesen</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS VL (30 Std.)</td>
</tr>
<tr>
<td></td>
<td>2 SWS Pr (30 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 120 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Anwesenheitspflicht</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistung</td>
</tr>
<tr>
<td></td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Seminarbericht mit Abschlusspräsentation</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Anzahl Credits für das</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Modul</td>
<td></td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Jens Hesselbach</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Jens Hesselbach</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Simon Goy</td>
</tr>
<tr>
<td></td>
<td>Dr.-Ing. Johannes Wagner</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Folienvortrag</td>
</tr>
<tr>
<td>Literatur</td>
<td>Vgl. Info des Dozenten zu Beginn der Veranstaltung</td>
</tr>
</tbody>
</table>
Solarthermie und Thermische Messtechnik

Solar Thermal Engineering and Measurement Technique

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Solarthermie und Thermische Messtechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Solarthermie und Thermische Messtechnik</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Solarstrahlung:
Studierende sind in der Lage, die Funktion der Sonne zu verstehen, solare Einfallswinkel und das verfügbare Solarstrahlungsangebot zu berechnen.

Solarthermie:
Studierende sind in der Lage, die hydraulische Verschaltung und die Dimensionierung der Komponenten solarthermischer Systeme für verschiedene Anwendungsbereiche zu beschreiben und zu bewerten und deren Nutzleistung zu berechnen.

Thermische Messtechnik:

Lehrveranstaltungsarten

- VLmP + Ü 2,5 SWS
- Pr 1,5 SWS

Lehrinhalte

Solarstrahlung:

Solarthermie:
Grundlagen zur Berechnung von Transportvorgängen in solarthermischen Komponenten; Konstruktive Merkmale, Wirkungsgrad und Betriebseigenschaften von Kollektoren und thermischen Speichern und weiterer Systemkomponenten; Dimensionierung und Systemverhalten, Regelwerke und Vorschriften (CEN, VDI, DVGW etc.).

Thermische Messtechnik:

Titel der Lehrveranstaltungen

Solarthermie und Thermische Messtechnik

(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)

Solarthermie: Vorlesung, Hörsaalübung, Laborpraktikum
Thermische Messtechnik: Gruppenarbeit, Laborpraktikum, praktische Arbeiten, Präsentationen, Vorträge, Fachgespräch
| **Verwendbarkeit des Moduls** | B. Sc. Maschinenbau
B. Sc. Umweltwissenschaft
B. Sc. Wirtschaftswissenschaft |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
</tbody>
</table>
| **Häufigkeit des Angebotes des Moduls** | Solarthermie: Jedes Sommersemester
Laborpraktikum: Jedes Semester |
| **Sprache** | Deutsch |
| **Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul** | Mathematik 2, Thermodynamik und Wärmeübertragung oder Thermodynamik 1 und 2 (zumindest parallel zu dem VL-Teil im SS),
Solarthermie:
Es wird von den Teilnehmenden erwartet das sie sich vor der Teilnahme an dem Teilmodul Solarthermie eines der folgenden Bücher gelesen haben (Download unter Moodle):
Viessmann Werke, Allendorf (Eder)“ Planungshandbuch Solarthermie”;
Viessmann Werke (2008)
Thermische Messtechnik
Grundlegendes Wissen zur Messung kalorimetrischer Größen |
| **Voraussetzungen für die Teilnahme am Modul** | – |
| **Studentischer Arbeitsaufwand** | Solarthermie:
2,5 SWS VL (40 Std)
Selbststudium (60 Std.)
Thermische Messtechnik:
1,5 SWS Laborpraktikum (20 Std.)
Selbststudium 40 Std. |
| **Studienleistungen** | *Thermische Messtechnik:*
Durchführung von Laborversuchen, Anwesenheitspflicht |
| **Voraussetzung für Zulassung zur Prüfungsleistung** | Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
| **Prüfungsleistung** | Solarthermie: Klausur 60–90 Min.
Thermische Messtechnik:
Eingangs–Fachgespräch, Versuchsprotokolle, Abschlusspräsentationen (je ca. 20 Minuten) |
| **Anzahl Credits für das Modul** | 6 Credits |
| **Lehreinheit** | Fachbereich 15 |
| **Modulverantwortliche/r** | Prof. Klaus Vajen |
| **Lehrende des Moduls** | Prof. Klaus Vajen |
| **Medienformen** | Solarthermie: Powerpoint–Präsentationen (auch als Skript), Tafel
Thermische Messtechnik: Versuchsanleitungen |
<p>| Literatur | Solarthermie: |</p>
<table>
<thead>
<tr>
<th>Source</th>
<th>Title</th>
<th>ISBN</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goswami, Kreith, Kreider</td>
<td>"Principles of Solar Engineering"</td>
<td>1-56032-714-6</td>
<td>2000</td>
</tr>
<tr>
<td>Khartchenko</td>
<td>"Thermische Solaranlagen"</td>
<td>3-540-58300-9</td>
<td>1995</td>
</tr>
<tr>
<td>Nummer/Code</td>
<td>SPS Programmierung nach IEC 61131–3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulname</td>
<td>SPS Programmierung nach IEC 61131–3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmp 2 SWS
Pr 2 SWS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Erarbeitung in die Programmierung und Werkzeugauswahl, Vorstellung marktüblicher Werkzeuge mit Bezug auf die Anwendung der Werkzeuge, Beispielanwendungen aus verschiedenen Applikationen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>SPS Programmierung nach IEC 61131–3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Lehr- / Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Demonstration, Arbeiten am PC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau
B. Sc. Mechatronik
B. Sc. Informatik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Sommersemester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Programmierkenntnisse, Grundlagen der Informatik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS VL (30 Std.)
2 SWS Pr (30 Std.)
Selbststudium 120 Std.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Praktikumsberichte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistung
Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 120 Min.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Josef Börcsök</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Dr. Michael Schwarz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medienformen</td>
<td>PPT–Folien
Tafel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literatur</td>
<td>Skript wird zu Veranstaltungsbeginn ausgegeben. Weitere Literatur wird in der Lehrveranstaltung bekannt gegeben.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Strömungsmechanik 2
Advanced Fluid Mechanics

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Strömungsmechanik 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Strömungsmechanik 2</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Die Studierenden erweitern ihre Kenntnisse zur Beschreibung von Strömungsvorgängen. Durch die LV erlangen die Studierenden die Fähigkeit, Strömungsprozesse im Maschinenbau detaillierter zu analysieren und mittels komplexerer Modelle zu berechnen. Erweiterte Kenntnisse in der Strömungsmechanik werden für einen Ingenieur im Vertiefungsbereich Mechanik vorausgesetzt.

| Lehrveranstaltungsarten | VLmP 3 SWS
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ü 1 SWS</td>
</tr>
</tbody>
</table>

Lehrinhalte

- Oberflächenspannungen und Kapillarität
- Potentialströmungen (Helmholtzsche Wirbeltransportgleichung, Geschwindigkeitspotential, komplexes Potential, konforme Abbildung Tragflügel)
- Dimensionsanalyse und Modelltheorie (Einführung in die Dimensionsanalyse, Modellähnlichkeit)
- Gitterströmungen (Gerade Gitter, Kennlinien einer axialen Arbeitsmaschine, Eulerische Turbinengleichung)
- Erweiterung reibungsbehinderter Strömungen (instationäre Strömungen, Instabilitäten)
- Gasdynamik (senkrechte und schräge Verdichtungsstoße)

Titel der Lehrveranstaltungen

Strömungsmechanik 2

(Lehr-/Lernformen) Lehr- und Lernmethoden (ZEVA)

Vorlesung, Übungen in Kleingruppen

Verwendbarkeit des Moduls

B. Sc. Maschinenbau
B. Sc. Mechatronik
M. Sc. Regenerative Energien und Energieeffizienz

Dauer des Angebotes des Moduls

Ein Semester

Häufigkeit des Angebotes des Moduls

Jedes Wintersemester

Sprache

deutsch

Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul

Technische Mechanik 1–3, Höhere Mathematik 1–3

Voraussetzungen für die Teilnahme am Modul

Strömungsmechanik 1

Studentischer Arbeitsaufwand

3 SWS VL (45 Std.)
1 SWS Ü (15 Std.)
Selbststudium 120 Std.

Studienleistungen

-
<table>
<thead>
<tr>
<th>Voraussetzung für Zulassung zur Prüfungsleistung</th>
<th>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 120 Min. oder mündliche Prüfung 45 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Olaf Wünsch</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Olaf Wünsch</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Folien</td>
</tr>
</tbody>
</table>
| Literatur | • Becker, E.: Technische Strömungslehre. Teubner-Verlag, Stuttgart, 1993 (7. Aufl.)
• Durst, F.: Grundlagen der Strömungsmechanik. Springer-Verlag, Berlin, 2006
• Oertel jr., H. (Hrsg.): Führer durch die Strömungslehre. Vieweg-Verlag, Braunschweig, 2008 (12. Aufl.)
<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Strömungsmesstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Strömungsmesstechnik</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse,</td>
<td>Die Studierenden verfügen über theoretische und praktische</td>
</tr>
<tr>
<td>Kompetenzen</td>
<td>Kenntnisse zur Messung von Strömungsgrößen. Durch die LV</td>
</tr>
<tr>
<td>(Qualifikationsziele)</td>
<td>erlangen die Studierenden die Fähigkeit, Strömungsgrößen in</td>
</tr>
<tr>
<td></td>
<td>der Praxis messtechnisch zu erfassen. Messtechnische Kenntnisse für</td>
</tr>
<tr>
<td></td>
<td>Strömungsprozesse sind für einen praktisch tätigen Maschinenbauer in</td>
</tr>
<tr>
<td></td>
<td>vielen Arbeitsgebieten vorteilhaft.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLM P 3 SWS</td>
</tr>
<tr>
<td></td>
<td>Ü 1 SWS (Ex)</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>• Grundlagen der Strömungsmesstechnik</td>
</tr>
<tr>
<td></td>
<td>• Mechanische Strömungs- und Durchflussmessung (Drucksonden,</td>
</tr>
<tr>
<td></td>
<td>Drosselgeräte, Massenstrommesser, Schwebekörper)</td>
</tr>
<tr>
<td></td>
<td>• Thermische Strömungsmessung (Grundlagen, Messsonden,</td>
</tr>
<tr>
<td></td>
<td>Messschaltungen, Zeitverhalten)</td>
</tr>
<tr>
<td></td>
<td>• Optische Messmethoden (PIV, LDA)</td>
</tr>
<tr>
<td></td>
<td>• Rheometrie (Rotationsrheometer, Kapillarrheometer)</td>
</tr>
<tr>
<td></td>
<td>• Strömungsmessmessung (Lichtschnittverfahren, Farbmethode,</td>
</tr>
<tr>
<td></td>
<td>Schlierentechnik)</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Strömungsmesstechnik</td>
</tr>
<tr>
<td>(Lehr-/Lernformen)</td>
<td>Vorlesung, Übungen, praktischer Anteil im Labor, Exkursion möglich</td>
</tr>
<tr>
<td>Lehr- und Lernmethoden (ZEVA)</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Mechatronik</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Mechatronik</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Technische Mechanik 1–3, Höhere Mathematik 1–3, Strömungsmechanik 1</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>-</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>3 SWS VL (45 Std.)</td>
</tr>
<tr>
<td></td>
<td>1 SWS Ü (15 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 120 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>-</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 120 Min. oder mündliche Prüfung 45 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Olaf Wünsch</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Olaf Wünsch</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Folien</td>
</tr>
<tr>
<td>Literatur</td>
<td>Allgemein:</td>
</tr>
<tr>
<td></td>
<td>• Eckelmann, Helmut: Einführung in die Strömungsmeßtechnik, Teubner-Verlag, Stuttgart, 1997</td>
</tr>
<tr>
<td></td>
<td>• Fiedler, Otto: Strömungs- und Durchflußmeßtechnik. R. Oldenbourg Verlag, München, 1992</td>
</tr>
<tr>
<td></td>
<td>• Nitsche, Wolfgang: Strömungsmesstechnik. Springer-Verlag, Berlin, 1994</td>
</tr>
<tr>
<td></td>
<td>• Bohl, W.: Technische Strömungslehre, Vogel-Verlag, Würzburg, 2002</td>
</tr>
<tr>
<td></td>
<td>Spezial:</td>
</tr>
</tbody>
</table>
Strukturmechanik – Theorie und Berechnung

Mechanics of Structure – theory and analysis

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Strukturmechanik – Theorie und Berechnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLMp 3 SWS Ü 1 SWS</td>
</tr>
</tbody>
</table>
| Lehrinhalte | • Einführung in die FORTRAN–Programmierung am Beispiel der Lösung von linearen Gleichungssystemen
• Untersuchung der Konditionierung von linearen Gleichungssystemen
• Vorstellung eines Stabwerkprogramms mit Erweiterung zur Berechnung von Platten und Scheiben
• Formulierung eines räumlichen Fachwerkelements
• Lösungen für Biegestäbe nach der Euler– und der Timoshenko–Theorie
• Codierung eines schubweichen Balkenelements und Implementierung in das Programm STAN
• Plattentheorie von Kirchhoff und Reissner–Mindlin
• Untersuchung von Plattenelementen
• St. Venantsche Torsion und Wölbkrafttorsion von Stäben |
| Titel der Lehrveranstaltungen | Strukturmechanik – Theorie und Berechnung |
| (Lehr–/ Lernformen) Lehr– und Lernmethoden (ZEVA) | Vorlesung |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
M. Sc. Maschinenbau |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes zweite Wintersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Technische Mechanik 2 und 3, Höhere Mathematik 2 und 3 |
| Voraussetzungen für die Teilnahme am Modul | – |
| Studentischer Arbeitsaufwand | 3 SWS VL (45 Std.)
1 SWS Ü (15 Std.) |
<table>
<thead>
<tr>
<th>Studienleistungen</th>
<th>Selbststudium 120 Std.</th>
<th>Hausübungen mit Präsentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Erfolgreiche Bearbeitung eines Projekts oder mündliche Prüfung 30 Min.</td>
<td></td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
<td></td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Anton Matzenmiller</td>
<td></td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Anton Matzenmiller</td>
<td></td>
</tr>
<tr>
<td>Medienformen</td>
<td>• Folien</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Tafel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Skript</td>
<td></td>
</tr>
</tbody>
</table>
Systemzuverlässigkeit im Maschinenbau

Nummer/Code
Systemzuverlässigkeit im Maschinenbau

Modulname
Wahlpflichtmodul

Lernergebnisse, Kompetenzen (Qualifikationsziele)

Lehrveranstaltungsarten
VLmP 4 SWS

Lehrinhalte
- Erstellen einer Systemzuverlässigkeitsanalyse anhand von Fehlerbaum oder Fehler-Möglichkeiten-Einfluss-Analyse; Boolesches Modell vs. Markov-Ketten
- Testverfahren (v.a. Testbeschleunigung) und Einsatzbereiche - HALT, HASS, Success Run
- Physics of Failure
- Abgrenzung Zuverlässigkeit und Sicherheit, Risikoaakzeptanz

Titel der Lehrveranstaltungen
Systemzuverlässigkeit im Maschinenbau

Verwendbarkeit des Moduls
B. Sc. Maschinenbau / M. Sc. Maschinenbau

Dauer des Angebotes des Moduls
Ein Semester

Häufigkeit des Angebotes des Moduls
Jedes Sommersemester

Sprache
deutsch

Empfohlene (inhaltsliche) Voraussetzungen für die Teilnahme am Modul
Mathematische Kenntnisse u.a. zu Verteilungsfunktionen, Boole`sche Algebra und Grundlagen zur Statistik; Werkstoffkunde; Grundlagen Qualitätsmanagement; Systemtheorie
<table>
<thead>
<tr>
<th>Voraussetzungen für die Teilnahme am Modul</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>4 SWS VL und 2,5 Seminare (60 Std.) Selbststudium 60 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 90 Min. oder mündliche Prüfung 45 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Dr. Timo Möller</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Dr. Timo Möller</td>
</tr>
<tr>
<td>Medienformen</td>
<td>• Tafelanschrieb • PowerPoint-Projektion • Planspiele</td>
</tr>
<tr>
<td>Literatur</td>
<td>weiterführende Literatur im Foliensatz enthalten bzw. der Literaturliste in Moodle zu entnehmen</td>
</tr>
</tbody>
</table>
Tensoranalysis
Tensor calculus

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Tensoranalysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 3 SWS
Ü 1 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>• Lineare Strukturen
• Basiswechsel
• Funktionenräume
• Operationen mit Tensoren
• Symmetrische und alternierende Tensoren
• Tensorfelder
• Kovariante Ableitung
• Fundamentaltensor
• Differentialformen</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Tensoranalysis</td>
</tr>
<tr>
<td>(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Vorlesung, Übungen</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche Voraussetzungen für die Teilnahme am Modul</td>
<td>Höhere Mathematik 1–3, Vektoranalysis</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>3 SWS VL (45 Std.)</td>
</tr>
<tr>
<td></td>
<td>1 SWS Ü (15 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 60 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 90–120 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Dr. Daniel Wallenta</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Dr. Daniel Wallenta</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Tafelanschrieb</td>
</tr>
<tr>
<td></td>
<td>Skript</td>
</tr>
<tr>
<td>Literatur</td>
<td>R. Courant/D. Hilbert: Methoden der mathematischen Physik I, Springer Verlag</td>
</tr>
<tr>
<td></td>
<td>H. Amann, J. Escher: Analysis I–III, Birkhäuser</td>
</tr>
<tr>
<td></td>
<td>D. Werner: Funktionalanalysis, Springer</td>
</tr>
<tr>
<td></td>
<td>J. Dieudonné: Grundzüge der modernen Analysis 1–4, Vieweg</td>
</tr>
</tbody>
</table>
Theoretical and Experimental Fatigue Life Prediction of Structures

<table>
<thead>
<tr>
<th>Number/Code</th>
<th>Theoretical and experimental fatigue life prediction of structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Theoretical and experimental fatigue life prediction of structures</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Die Studenten lernen die Grundlagen der Betriebsfestigkeit kennen. Hierzu zählen sowohl der theoretische Festigkeitsnachweis von Bauteilen sowie die Grundlagen der experimentellen Betriebsfestigkeit. Die Studierenden sind damit sowohl in der Lage, Betriebslasten auszuwerten und in Prüfbedingungen zu überführen, als auch selbstständig rechnerische Festigkeitsnachweise durchzuführen.</td>
</tr>
</tbody>
</table>
| Lehrveranstaltungsarten | VLmp 2 SWS
Ü 2 SWS |
| Lehrinhalte |
- Betriebsfestigkeit (z. B. Beanspruchung, Beanspruchbarkeit, Schadensakkumulation)
- Einflussgrößen Lebensdauer (z. B. Mittelspannung, Stützwirkung)
- Auswertung von Lastkollektiven
- Theoretischer Festigkeitsnachweis
- Planung und Auswertung von Lebensdaueruntersuchungen |
| Titel der Lehrveranstaltungen | Theoretical and experimental fatigue life prediction of structures |
| (Lehr-/ Lernformen) | Vorlesung |
| Lehr- und Lernmethoden (ZEVA) | B. Sc. Maschinenbau
M. Sc. Maschinenbau |
| Verwendbarkeit des Moduls | Ein Semester |
| Dauer des Angebotes des Moduls | Jedes Wintersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | - |
| Voraussetzungen für die Teilnahme am Modul | - |
| Studentischer Arbeitsaufwand | 2 SWS VL (30 Std.)
2 SWS Ü (30 Std.)
Selbststudium 120 Std. |
<p>| Studienleistungen | - |
| Voraussetzung für Zulassung zur Prüfung | Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
| Prüfungsleistung | Klausur 90–120 Min. oder Mündliche Prüfung 30–45 Min. |
| Anzahl Credits für das Modul | 6 Credits |</p>
<table>
<thead>
<tr>
<th>Lehreinheit</th>
<th>Fachbereich 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Dr.-Ing. Matthias Oxe</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Dr.-Ing. Matthias Oxe</td>
</tr>
<tr>
<td>Medienformen</td>
<td>-</td>
</tr>
<tr>
<td>Literatur</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• FKM-Richtlinie</td>
</tr>
</tbody>
</table>
Tribologie

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Tribologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Die Studierenden erhalten grundlegende Einblicke in:</td>
</tr>
<tr>
<td></td>
<td>• verschießsichere Auslegung bei Maschinenelementen</td>
</tr>
<tr>
<td></td>
<td>• Gleitlager unter stationären und instationären Belastungen</td>
</tr>
<tr>
<td></td>
<td>• standardisierte Auslegungskriterien</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 4 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Die Lehrveranstaltung beinhaltet</td>
</tr>
<tr>
<td></td>
<td>• Reibung und Verschleiß</td>
</tr>
<tr>
<td></td>
<td>• Schmierstoffe</td>
</tr>
<tr>
<td></td>
<td>• Lagerwerkstoffe</td>
</tr>
<tr>
<td></td>
<td>• hydrodynamische Schmierung</td>
</tr>
<tr>
<td></td>
<td>• Radialgleitlagerberechnung</td>
</tr>
<tr>
<td></td>
<td>• Axiallagerberechnung</td>
</tr>
<tr>
<td></td>
<td>• hydrostatische Schmierung</td>
</tr>
<tr>
<td></td>
<td>• elasto-hydrodynamische Schmierung</td>
</tr>
<tr>
<td></td>
<td>• Quetschfilmämpfer</td>
</tr>
<tr>
<td></td>
<td>• Rotoren in Gleitlagern</td>
</tr>
<tr>
<td></td>
<td>• Thermische Effekte im Schmierfilm</td>
</tr>
<tr>
<td></td>
<td>• Oberflächenrauheit und Schmierung, Mischreibung</td>
</tr>
<tr>
<td></td>
<td>• Tribologie in PKW-Verbrennungsmotoren</td>
</tr>
<tr>
<td></td>
<td>• Numerische Lösung der Schmierungsgleichungen mittels FDM</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Tribologie</td>
</tr>
<tr>
<td>(Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Vorlesung, Übungen und Gruppendiskussionen</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Mechatronik</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Mechatronik</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Wirtschaftsingenieurwesen</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Konstruktionstechnik 1–3</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>4 SWS VL (60 Std.) Selbststudium 120 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 120 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Adrian Rienäcker</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Adrian Rienäcker</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Vorlesungs- und Übungsfolien im PDF-Format</td>
</tr>
<tr>
<td></td>
<td>Lehrveranstaltungsplattform Moodle</td>
</tr>
<tr>
<td>Literatur</td>
<td>Wird während der Veranstaltung genannt.</td>
</tr>
</tbody>
</table>
Tribologie Praktikum

Tribology - practical course

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Tribologie Praktikum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Tribologie Praktikum</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse,</td>
<td>Die Studierenden sind</td>
</tr>
<tr>
<td>Kompetenzen</td>
<td>in der Lage, selbstständig</td>
</tr>
<tr>
<td>(Qualifikationsziele)</td>
<td>Versuche zu planen,</td>
</tr>
<tr>
<td></td>
<td>durchzuführen und auszuwerten sowie diese zu validieren.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>Pr 2 SWS Blockveranstaltung</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Die Lehrveranstaltung beinhaltet:</td>
</tr>
<tr>
<td></td>
<td>• selbständige Versuchsplanung, Durchführung und Auswertung</td>
</tr>
<tr>
<td></td>
<td>von Tribometerversuchen,</td>
</tr>
<tr>
<td></td>
<td>• Vergleich der Messergebnisse mit Ergebnissen numerischer</td>
</tr>
<tr>
<td></td>
<td>Simulationsverfahren,</td>
</tr>
<tr>
<td></td>
<td>• Korrelationsanalysen.</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Tribologie Praktikum</td>
</tr>
<tr>
<td>(Lehr- / Lernformen)</td>
<td>Vorlesung, Übungen und Gruppendiskussionen</td>
</tr>
<tr>
<td>Lehr- und Lernmethoden</td>
<td>(ZEVA)</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>B. Sc./M. Sc. Wirtschaftsingenieurwesen</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Grundkenntnisse Tribologie, PC Kenntnisse (Erfahrung im Bereich PC-gestützte Messdatenverfassung und -auswertung)</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>Anmeldung erforderlich, Teilnehmerzahl ist auf 8 beschränkt.</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS Pr (30 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 60 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Anwesenheitspflicht</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistung</td>
</tr>
<tr>
<td></td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Schriftliche Ausarbeitung und Kurzklausur 30 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Adrian Rienäcker</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Dr. Sascha Umbach</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Vorlesungs- Übungsunterlagen im PDF-Format</td>
</tr>
<tr>
<td>Literatur</td>
<td>Wird während der Veranstaltung genannt.</td>
</tr>
</tbody>
</table>
| **Versuchsplanung und Zuverlässigkeit**
Design of Experiment and Reliability |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nummer/Code</td>
</tr>
<tr>
<td>Modulname</td>
</tr>
<tr>
<td>Art des Moduls</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
</tr>
</tbody>
</table>
| **Lehrinhalte** | · Erstellen einer Testspezifikation
· Testverfahren (v.a. Testbeschleunigung) und Einsatzbereiche – HALT, HASS, Success Run
· Physics of Failure
· Design of Experiment (DoE)
· Abgrenzung Zuverlässigkeit und Sicherheit
· Bewertung von Zuverlässigkeit von Werkstoffsystemen
8D-Prozess (zur Schadensanalyse) |
| **Titel der Lehrveranstaltungen** | Versuchsplanung und Zuverlässigkeit |
| **(Lehr- / Lernformen) Lehr- und Lernmethoden (Zeva)** | Vorlesung |
| **Verwendbarkeit des Moduls** | B. Sc.Maschinenbau
M. Sc. Maschinenbau |
<p>| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Wintersemester |
| Sprache | deutsch |</p>
<table>
<thead>
<tr>
<th>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</th>
<th>Mathematische Kenntnisse u.a. zu Verteilungsfunktionen, Boole'sche Algebra und Grundlagen zur Statistik; Werkstoffkunde; Grundlagen Qualitätsmanagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>4 SWS VL (60 Std.) Selbststudium 120 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 90 Min. oder mündliche Prüfung 45 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>6 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Dr. Timo Möller</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Dr. Timo Möller</td>
</tr>
</tbody>
</table>
| Medienformen | • Tafelanschrieb
• PowerPoint-Projektion
• Planspiele |
| Literatur | weiterführende Literatur im Foliensatz enthalten bzw. der Literaturliste in Moodle zu entnehmen |
Wärmeübertragung 1

Heat Transfer 1

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Wärmeübertragung 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Studierende sind in der Lage, die Transportprozesse von thermischer Energie durch Wärmeleitungs, Konvektion und Strahlung darzustellen und technische Apparate der Wärmeübertragung auszulegen.</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Studierende sind in der Lage, die Transportprozesse von thermischer Energie durch Wärmeleitungs, Konvektion und Strahlung darzustellen und technische Apparate der Wärmeübertragung auszulegen.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 3 SWS Ü 2 SWS</td>
</tr>
</tbody>
</table>
| Lehrinhalte | • Grundbegriffe, Grundgleichungen der Thermofluidmechanik, stationäre und instationäre Wärmeleitung, Auslegung von Apparaten und deren Verschaltung;
• Transportgleichungen von Energie, Impuls und Stoff und deren Analogien;
• erzwungene und freie Konvektion an unterschiedlichen Geometrien, Grenzschichtgleichungen, Ähnlichkeitstheorie;
• Wärmestrahlung, Optimierung des Energietransports;
• Grundbegriffe des Wärmeübergangs mit Phasenwechsel. |
| Titel der Lehrveranstaltungen | Wärmeübertragung 1 |
| (Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA) | Vorlesung, Hörsaalübungen |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
M. Sc. Regenerative Energien und Energieeffizienz
B. Sc. Umweltingenieurwesen
B. Sc. Wirtschaftsingenieurwesen |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Sommersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Technische Thermodynamik 1 + 2 |
| Voraussetzungen für die Teilnahme am Modul | – |
| Studentischer Arbeitsaufwand | 3 SWS VL (45 Std.)
2 SWS Ü (30 Std.)
Selbststudium 105 Std. |
<p>| Studienleistungen | – |
| Voraussetzung für Zulassung zur Prüfungsleistung | Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
| Prüfungsleistung | Schriftliche Prüfung 90 Min. oder Mündliche Prüfung 30 Min. |</p>
<table>
<thead>
<tr>
<th>Anzahl Credits für das Modul</th>
<th>6 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr.-Ing. habil. Andrea Luke</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Dr.-Ing. habil. Andrea Luke</td>
</tr>
<tr>
<td>Medienformen</td>
<td>E-Learning</td>
</tr>
<tr>
<td>Literatur</td>
<td></td>
</tr>
</tbody>
</table>
Wärmeübertragung 1 – Praktikum
Heat Transfer 1 – Experimental Laboratory Course

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Wärmeübertragung 1 – Praktikum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahrpflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Studierende verfügen über die Fähigkeit, eigenständig experimentell zu arbeiten. Sie haben Kenntnisse über unterschiedliche Möglichkeiten der Temperatur- und Druckmessung und zur experimentellen Bestimmung des Wärmetransports. Sie können Daten wissenschaftlich auswerten und ihre Ergebnisse präsentieren.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>Pr 2 SWS</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Wärmeübertragung 1 – Praktikum</td>
</tr>
<tr>
<td>(Lehr-/Lernformen) Lehr- und Lernmethoden (ZEVA)</td>
<td>Nach einer kurzen, theoretischen Einführung wird das Praktikum durch wissenschaftliches Personal angeleitet.</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
M. Sc. Regenerative Energien und Energieeffizienz
B. Sc. Umwelt ingenieur wesen
B. Sc. Wirtschaft ingenieur wesen |
| Dauer des Angebotes des Moduls | Ein Semester; Beginn nach Absprache |
| Häufigkeit des Angebotes des Moduls | Jedes Semester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Technische Thermodynamik 1 + 2, Wärmeübertragung 1 |
| Voraussetzungen für die Teilnahme am Modul | Anmeldung im Sekretariat des Fachgebiets Technische Thermodynamik erforderlich, Teilnehmerzahl ist auf 20 beschränkt. |
| Studentischer Arbeitsaufwand | 2 SWS Pr (30 Std.)
Selbststudium 60 Std. |
| Studienleistungen | Anwesenheitspflicht während der Versuchsdurchführung im Labor |
| Voraussetzung für Zulassung zur Prüfungsleistung | Studienleistung
Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
<table>
<thead>
<tr>
<th>Prüfungsleistung</th>
<th>Versuchsbericht im Umfang von 15 – 20 Seiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr.-Ing. habil. Andrea Luke</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Dr.-Ing. habil. Andrea Luke</td>
</tr>
<tr>
<td>Medienformen</td>
<td>E-Learning</td>
</tr>
</tbody>
</table>
Werkstoffanalytik mit Röntgenstrahlen

Materials analysis using X-rays

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Werkstoffanalytik mit Röntgenstrahlen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLM P 2 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Es werden wichtige Werkstoffprüverfahren angesprochen, bei denen Röntgenstrahlen zur Anwendung kommen (z. B. Durchstrahlungsprüfung, Eigenspannungsmessung, Strukturbestimmung, Phasenanalyse, Texturermittlung usw.)</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Werkstoffanalytik mit Röntgenstrahlen</td>
</tr>
<tr>
<td>(Lehr-/ Lernformen)</td>
<td>Vorlesung, Laborpraktika</td>
</tr>
<tr>
<td>Lehr- und Lernmethoden (ZEVA)</td>
<td>Vorlesung, Laborpraktika</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau M. Sc. Maschinenbau</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>Werkstofftechnik 1 + 2</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>-</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS VL (30 Std.) Selbststudium 60 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Anwesenheitspflicht im Rahmen der Laborpraktika</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Studienleistung</td>
</tr>
<tr>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
<td></td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Referat 20 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Thomas Niendorf</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Dr.-Ing. Alexander Liehr</td>
</tr>
</tbody>
</table>
| Medienformen | • Tafelanschrieb
 | • Overheadfolien
 | • ppt-Präsentation |
| Literatur | • Skript zur Vorlesung
 | • Spieß, Schwarzer, Behnken, Teichert, Moderne Röntgenbeugung, Teubner Verlag |
Numer/Code
Werkstoffkunde der Kunststoffe – Praktikum

Modulname
Werkstoffkunde der Kunststoffe – Praktikum

Art des Moduls
Wahlpflichtmodul

Lernergebnisse, Kompetenzen (Qualifikationsziele)
Die Studierenden haben sich die wesentlichen Eigenschaften von Kunststoffen im praktischen Versuch aneignet. Das Praktikum dient als Ergänzung zu den Inhalten der Vorlesung Werkstoffkunde der Kunststoffe und soll die dort erlernten Inhalte durch aktive Mitarbeit im Praktikum greifbar machen.

Lehrveranstaltungsarten
Pr 1 SWS

Lehrinhalte
Diverse Versuche zu den Eigenschaften von Kunststoffen:
- Zugversuche unter verschiedenen äußeren Einflüssen
- Rheologische Untersuchungen
- Thermische Analyse
- Kriechversuche
- Kerbschlagbiegeversuche
- Torsionsschwingversuche zur Schubmodulbestimmung

Titel der Lehrveranstaltungen
Werkstoffkunde der Kunststoffe – Praktikum

(Lehr-/ Lernformen)
Praktikum, Laborarbeit

Verwendbarkeit des Moduls
B. Sc. Maschinenbau
B. Sc. Mechatronik
M. Sc. Maschinenbau
M. Sc. Mechatronik

Dauer des Angebotes des Moduls
Ein Semester

Häufigkeit des Angebotes des Moduls
Jedes Wintersemester

Sprache
deutsch

Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul
Besuch der Vorlesung Werkstoffkunde der Kunststoffe (kann auch parallel erfolgen)

Voraussetzungen für die Teilnahme am Modul
Anmeldung erforderlich

Studentischer Arbeitsaufwand
1 SWS Pr (15 Std.)
Selbststudium 15 Std.

Studienleistungen
Anwesenheitspflicht

Voraussetzung für Zulassung zur Prüfungsleistung
Studienleistung
Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8

Prüfungsleistung
Mündliche Prüfung 30 Min.

Anzahl Credits für das Modul
1 Credit

Lehreinheit
Fachbereich 15
<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Prof. Hans-Peter Heim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Hans-Peter Heim</td>
</tr>
<tr>
<td>Medienformen</td>
<td>–</td>
</tr>
<tr>
<td>Literatur</td>
<td>Relevante Literatur wird zur Verfügung gestellt</td>
</tr>
</tbody>
</table>
Werkstoffkunde der Kunststoffe 1
Technology of Plastic Materials 1

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Werkstoffkunde der Kunststoffe 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Werkstoffkunde der Kunststoffe 1</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLmP 2 SWS</td>
</tr>
<tr>
<td>Lehrinhalte</td>
<td>Syntheseprozesse von Polymeren</td>
</tr>
<tr>
<td></td>
<td>Strukturen von Polymeren</td>
</tr>
<tr>
<td></td>
<td>Eigenschaften in der Schmelze (Rheologie)</td>
</tr>
<tr>
<td></td>
<td>Abkühlverhalten und Kristallisation</td>
</tr>
<tr>
<td></td>
<td>Visko–elastisches Verhalten von Kunststoffen im Gebrauchs–temperaturbereich</td>
</tr>
<tr>
<td></td>
<td>Diverse physikalische Eigenschaften von Kunststoffen</td>
</tr>
<tr>
<td>Titel der Lehrveranstaltungen</td>
<td>Werkstoffkunde der Kunststoffe 1</td>
</tr>
<tr>
<td>(Lehr–/ Lernformen)</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Lehr- und Lernmethoden (Zeva)</td>
<td></td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>B. Sc. Mechatronik</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>M. Sc. Mechatronik</td>
</tr>
<tr>
<td>Dauer des Angebotes des Moduls</td>
<td>Ein Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebotes des Moduls</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzungen für die Teilnahme am Modul</td>
<td>–</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>2 SWS VL (30 Std.)</td>
</tr>
<tr>
<td></td>
<td>Selbststudium 60 Std.</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>–</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistungen</td>
<td>Klausur 90 Min. oder mündliche Prüfung 30 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Hans-Peter Heim</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Prof. Hans-Peter Heim</td>
</tr>
</tbody>
</table>
| Medienformen | • Präsentation mit Power Point
| | • Tafel |
| Literatur | Menges et al.: Werkstoffkunde Kunststoffe |
Werkstoffkunde der Kunststoffe 2

Material Science of Plastics 2

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Werkstoffkunde der Kunststoffe 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Werkstoffkunde der Kunststoffe 2</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Lernergebnisse, Kompetenzen (Qualifikationsziele)</td>
<td>Die Studierenden kennen die wesentlichen prozessinduzierten Strukturen von (faserverstärkten) Kunststoffen und deren Einfluss auf das Ermüdungs- und Versagensverhalten.</td>
</tr>
<tr>
<td>Lehrveranstaltungsarten</td>
<td>VLM 2 SWS</td>
</tr>
</tbody>
</table>
| Lehrinhalte | - Prozess-Struktur-Eigenschafts-Korrelation
- Strukturcharakterisierung
- Mikromechanische Eigenschaften
- Bruchmechanische Eigenschaften
- Diverse physikalische Eigenschaften
- Ermüdungs- und Schädigungseigenschaften
- ... von (kurzfaserverstärkten) Kunststoffen |
| Titel der Lehrveranstaltungen | Werkstoffkunde der Kunststoffe 2 |
| (Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA) | Vorlesung |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau
M. Sc. Maschinenbau
B. Sc. Mechatronik
M. Sc. Mechatronik |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Sommersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Vorlesungen des Grundstudiums, Werkstoffkunde der Kunststoffe 1 |
| Voraussetzungen für die Teilnahme am Modul | Werkstoffkunde der Kunststoffe 1 |
| Studentischer Arbeitsaufwand | 2 SWS VL (30 Std.)
Selbststudium 60 Std. |
<p>| Studienleistungen | – |
| Voraussetzung für Zulassung zur Prüfungsleistung | Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
| Prüfungsleistung | Klausur 90 Min. oder mündliche Prüfung 30 Min. |
| Anzahl Credits für das Modul | 3 Credits |</p>
<table>
<thead>
<tr>
<th>Lehreinheit</th>
<th>Fachbereich 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr.-Ing. Hans-Peter Heim</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Dr.-Ing. Jan–Christoph Zarges</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Präsentation mit Power Point, Tafel</td>
</tr>
<tr>
<td>Literatur</td>
<td>Marcus Schoßig: Schädigungsmechanismen in faserverstärken Kunststoffen, Gottfried W. Ehrenstein: Strukturverhalten Wolfgang Grellmann: Deformation und Bruchverhalten von Kunststoffen Wolfgang Grellmann: Kunststoffprüfung</td>
</tr>
</tbody>
</table>
Werkzeugmaschinen der Zerspanung

Englischer Modulname: Cutting Machine Tools

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Werkzeugmaschinen der Zerspanung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Werkzeugmaschinen der Zerspanung</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>
| Lernergebnisse, Kompetenzen (Qualifikationsziele) | • Prinzipieller Aufbau von Werkzeugmaschinen für die Zerspanung
• Beurteilung einzelner Komponenten
• Funktionsweise von spanenden Werkzeugmaschinen
• Ausführungsformen von Werkzeugmaschinen für spanende Fertigungsverfahren |
| Lehrveranstaltungsarten | VLmP 2 SWS |
| Lehrinhalte | • Einführung in den Werkzeugmaschinenbau und die Fertigungstechnik
• Grundlagen der Zerspanung
• Dreh- und Fräsmaschinen
• Bohrmaschinen und Maschinen mit translatorischer Hauptbewegung
• Verzahnungsmaschinen
• Werkzeug- und Werkstückwesen
• Mehrmaschinensysteme und -komponenten
• NC-Steuerungen
• Antriebselemente
• Messsysteme
• Spindel-Lager-Systeme
• Führungen
• Baugruppen und Konstruktionselemente
• Aufbauend auf die Maschinenelemente werden die Maschinen aufgezeigt. Dabei wird speziell auf die aus den unterschiedlichen Fertigungsverfahren resultierenden Belastungen und Anforderungen eingegangen, um die unterschiedlichen Bauformen logisch zu erklären. |
<p>| Titel der Lehrveranstaltungen | Werkzeugmaschinen der Zerspanung |
| (Lehr-/ Lernformen) Lehr- und Lernmethoden (ZEVA) | Vorlesung |
| Verwendbarkeit des Moduls | B. Sc. Maschinenbau |
| Dauer des Angebotes des Moduls | Ein Semester |
| Häufigkeit des Angebotes des Moduls | Jedes Wintersemester |
| Sprache | deutsch |
| Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul | Vorkenntnisse Fertigungstechnik |
| Voraussetzungen für die Teilnahme am Modul | – |</p>
<table>
<thead>
<tr>
<th>Studentischer Arbeitsaufwand</th>
<th>2 SWS VL (30 Std.) Selbststudium 60 Std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistungen</td>
<td>-</td>
</tr>
<tr>
<td>Voraussetzung für Zulassung zur Prüfungsleistung</td>
<td>Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8</td>
</tr>
<tr>
<td>Prüfungsleistung</td>
<td>Klausur 90 Min.</td>
</tr>
<tr>
<td>Anzahl Credits für das Modul</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Lehreinheit</td>
<td>Fachbereich 15</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Stefan Böhm</td>
</tr>
<tr>
<td>Lehrende des Moduls</td>
<td>Marcel Hatzky, M.Sc.</td>
</tr>
<tr>
<td>Medienformen</td>
<td>PowerPoint-Präsentation</td>
</tr>
</tbody>
</table>
| **Literatur** | Weck, M., Brecher, C.: Werkzeugmaschinen Band 1–5
 | Milberg, J.: Werkzeugmaschinen Grundlagen
 | Tönshoff, H. K.: Werkzeugmaschinen |
Wirbeldynamik
Vortex Dynamics

<table>
<thead>
<tr>
<th>Nummer/Code</th>
<th>Wirbeldynamik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Wirbeldynamik</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

Lernergebnisse, Kompetenzen (Qualifikationsziele):

Lehrveranstaltungsarten
VLmP 1 SWS
Ü 1 SWS

Lehrinhalte
- Wirbel in Natur und Technik
- Grundlagen
- Bilanzgleichungen, Navier–Stokes Gleichungsformulierung
- Wirbeltransportgleichung
- Zirkulation
- Analytische Wirbel, Wirbelmodelle, Analyse von Wirbelsystemen
- Wirbelerhaltungsgleichung
- Wirbelgenerierung, Kräfte auf Körper
- Separation

Titel der Lehrveranstaltungen
Wirbeldynamik

(Lehr-/Lernformen) Lehr- und Lernmethoden (ZEVA)
Vorlesung, Übungen mit PC/Laptop

Verwendbarkeit des Moduls
B. Sc. Maschinenbau
M. Sc. Maschinenbau
M. Sc. Regenerative Energien und Energieeffizienz

Dauer des Angebotes des Moduls
Ein Semester

Häufigkeit des Angebotes des Moduls
Im Wintersemester alle zwei Jahre im Wechsel mit der Veranstaltung Auszüge aus der Analytischen Strömungsmechanik.

Sprache
deutsch

Empfohlene (inhaltliche) Voraussetzungen für die Teilnahme am Modul
Strömungsmechanik 1, Technische Mechanik 1–3, Höhere Mathematik 1–3

Voraussetzungen für die Teilnahme am Modul
-
<table>
<thead>
<tr>
<th>Modulhandbuch</th>
</tr>
</thead>
</table>
| **Studentischer Arbeitsaufwand** | 1 SWS VL (15 Std.)
| 1 SWS Ü (15 Std.)
| Selbststudium 60 Std. |
| **Studienleistungen** | – |
| **Voraussetzung für Zulassung zur Prüfungsleistung** | Siehe Prüfungsordnung gemäß § 7 Absatz 7 und 8 |
| **Prüfungsleistung** | Mündliche Prüfung 25 Min. und/oder Abschlusspräsentation |
| **Anzahl Credits für das Modul** | 3 Credits |
| **Lehreinheit** | Fachbereich 15 |
| **Modulverantwortliche/r** | Prof. Olaf Wünsch |
| **Lehrende des Moduls** | Dr.-Ing. Markus Rütten |
| **Medienformen** | Folien |
| **Literatur** | Wird in der Vorlesung bekannt gegeben |