Zweite Ordnung zur Änderung der Prüfungsordnung für den konsekutiven Bachelor- und Master-
studienangang Biologie des Fachbereichs Mathematik und Naturwissenschaften der Universität Kassel
vom 13. Juli 2011

Die Prüfungsordnung für den konsekutiven Bachelor- und Masterstudiengang Biologie des
Fachbereichs Mathematik und Naturwissenschaften vom 22. April 2009 (Mittbl. 16/2009, S. 1083),
zuletzt geändert am 14. April 2010 (Mittbl. 8/2010, S. 662) wird wie folgt geändert:

Artikel 1 Änderungen

1. In § 6 Abs. (1) wird der Umfang der Credits für die Pflichtmodule ohne Bachelorarbeit auf 110
Credits und für die Wahlmodule auf 26 Credits geändert.

2. § 6 Abs. 2 wird wie folgt gefasst:

„(2) Folgende Pflichtmodule im Umfang von 122 Credits sind zu erbringen (davon 12 Credits für
integrierte Schlüsselkompetenzen):

BSCBIO P 1 Mathematik für Biologen 5 c
BSCBIO P 2 Biometrie für Biologen 5 c
BSCBIO P 3 Physik für Biologen 10 c
BSCBIO P 4 Allgemeine und Anorganische Chemie 10 c
BSCBIO P 5 Organische Chemie und Biochemie 12 c
BSCBIO P 7 Anatomie der Pflanzen 5 c
BSCBIO P 8 Allgemeine und Spezielle Zoologie 5 c
BSCBIO P 9 Biodiversität der Pflanzen 5 c
BSCBIO P 10 Biodiversität der Tiere 5 c
BSCBIO P 11 Physiologie der Pflanzen 5 c
BSCBIO P 12 Physiologie der Tiere 5 c
BSCBIO P 13 Genetik 5 c
BSCBIO P 14 Mikrobiologie 5 c
BSCBIO P 15 Ökologie 5 c
BSCBIO P 16 Zellbiologie und Entwicklungsbiochemie 5 c
BSCBIO P 17 Berufliche Orientierung I 10 c
BSCBIO P 18 Methodenkenntnis und Projektplanung I 9 c
BSCBIO P 19 Bachelorarbeit 12 c

3. § 6 Abs. (3) wird wie folgt gefasst:

“(3) 32 Credits sind aus den folgenden Wahlpflichtmodulen zu erbringen (davon 4 Credits für
integrierte Schlüsselkompetenzen). Es müssen je 2 Module aus BSCBIO R 1 bis BSCBIO R 6 und BSCBIO
V 1 bis BSCBIO V 11 absolviert werden:

BSCBIO R 1 Tutiorium Organische Chemie und Biochemie 4 c
BSCBIO R 2 Tutiorium Genetik und Mikrobiologie 4 c
BSCBIO R 3 Tutiorium Pflanzenphysiologie und Botanik 4 c
BSCBIO R 4 Tutiorium Zellbiologie und Entwicklungsbiochemie 4 c
BSCBIO R 5 Tutiorium Tierphysiologie und Zoologie 4 c
BSCBIO R 6 Tutiorium Ökologie und Biodiversität 4 c
BSCBIO V 1 Profilmus Biochemie 12 c
BSCBIO V 2 Profilmus Botanik 12 c
BSCBIO V 3 Profilmus Zoologie 12 c
BSCBIO V 4 Profilmus Pflanzenphysiologie/Evolutionsbiochemie 12 c

Mitteilungsblatt der Universität Kassel Nr. 2/2012 vom 06.03.2012 220
BSCBIO V 5	Profilmodul Tierphysiologie	12 c
BSCBIO V 6	Profilmodul Genetik	12 c
BSCBIO V 7	Profilmodul Mikrobiologie	12 c
BSCBIO V 8	Profilmodul Ökologie der Pflanzen, Tiere und Pilze	12 c
BSCBIO V 9	Profilmodul Zellbiologie	12 c
BSCBIO V 10	Profilmodul Entwicklungsbiologie	12 c
BSCBIO V 11	Profilmodul Humanbiologie	12 c

4. § 6 Ab. 4 wird wie folgt gefasst:

„(4) 26 Credits sind u.a. aus folgenden Wahlmodulen zu erbringen:

BSCBIO W 1	Biochemie II	4 c
BSCBIO W 2	Biophysik für Biologen	4 c
BSCBIO W 3	Anatomie der Pflanzen II	3 c
BSCBIO W 4	Biodiversität der Moose und Flechten	3 c
BSCBIO W 5	Systematik und Evolution der Algen, Pilze und Pflanzen	5 c
BSCBIO W 6	Genetik II	4 c
BSCBIO W 7	Waldökologie	4 c
BSCBIO W 8	Pilze für Einsteiger	4 c
BSCBIO W 9	Grundmodul Humanbiologie	5 c
BSCBIO W 10	Wirbeltieranatomie	3 c
BSCBIO W 11	Parasitologie	3 c
BSCBIO W 12	Grundlagen der Biologiedidaktik	3 c
BSCBIO W 13	Evolutionsbiologie	4 c
BSCBIO W 14	Grundlagen der Sinnesphysiologie	4 c
BSCBIO W 15	Grundlagen der Limnologie	3 c
BSCBIO W 16	Grundlagen der Biologie	4 c
BSCBIO W 17	Fachübergreifende Schlüsselkompetenzen	6 c

6 der 26 Credits sollen aus Modulen zu Schlüsselkompetenzen eingebracht werden, die von der Universität zentral angeboten werden. In den Wahlbereich kann auch ein zusätzliches Wahlpflichtmodul aus BSCBIO V1 bis BSCBIO V11 eingebracht werden. Fachlich gleichwertige Module des eigenen oder anderer Fachbereiche können für den Wahlbereich angerechnet werden.“

5. § 9 Abs. (1) wird wie folgt gefasst:

6. § 11 Abs. (4) wird wie folgt gefasst:

(4) 34 Credits sind u.a. aus folgenden Wahlnmodulen zu erbringen:

MSCBIO W 1 Methoden der Molekularbiologie 6 c
MSCBIO W 2 DNA-Diagnostik 3 c
MSCBIO W 3 Molekulare Systematik und Evolution 3 c
MSCBIO W 4 Nanostrukturen aus biologischer Sicht 6 c
MSCBIO W 5 Biologische AFM-Anwendung (atomic force microscope) 3 c
MSCBIO W 6 Mikrobielle Molekulargenetik 4 c
MSCBIO W 7 Spezielle Aspekte der molekularen Entwicklungsbioologie 3 c
MSCBIO W 8 Ökologische Exkursion/Forschungsreise 6 c
MSCBIO W 9 Arbeitsgemeinschaft Pilze 4 c
MSCBIO W 10 Große Botanische Exkursion 4 c
MSCBIO W 11 Limnologie 6 c
MSCBIO W 12 Humanökologie 3 c
MSCBIO W 13 Sinnesphysiologie 5 c
MSCBIO W 14 Wissenschaftliches Arbeiten mit Multimedia und Internet 6 c
MSCBIO W 15 Bodenkunde 6 c
MSCBIO W 16 Grundlagen und angewandte Aspekte der Bodenbioologie 6 c
MSCBIO W 17 Nutzpflanzenkunde II 6 c
MSCBIO W 18 Phytopathologischer Kurs 6 c
MSCBIO W 19 GIS-Anwendungen 6 c
MSCBIO W 20 Ökologische Grundlagen der Umweltplanung 6 c
MSCBIO W 21 Schutzgüter in Umweltplanung und Landschaftsmanagement I 6 c
MSCBIO W 22 Schutzgüter in Umweltplanung und Landschaftsmanagement II 6 c
MSCBIO W 23 Verhaltensforschung 4 c
MSCBIO W 24 Pflanzliche Evolutionsbioologie 9 c
MSCBIO W 25 Fachübergreifende Schlüsselkompetenzen 4 c

4 der 34 Credits sollen durch fachergänzende Schlüsselkompetenzmodule eingebracht werden, die von der Universität zentral angeboten werden. In den Wahlbereich kann auch ein zusätzliches Wahlpflichtmodul aus MSCBIO F 1 bis MSCBIO F 11 eingebracht werden. Fachlich gleichwertige Module des eigenen oder anderer Fachbereiche können für den Wahlbereich angerechnet werden."

7. § 10 Abs. (1) wird wie folgt gefasst: "Zum Masterstudium kann nur zugelassen werden, wer
a) die Bachelorprüfung im Studiengang Biologie der Universität Kassel bestanden hat oder
b) einen fachlich gleichwertigen Abschluss einer anderen Hochschule mit einer Regelstudienzeit von mindestens sechs Semestern und 180 Credits erworben hat und
c) die Anforderungen gem. Abs. 2 erfüllt."

11. Die Anlage 5 „Modulhandbuch Bachelor“ wird durch die dieser Änderungsordnung als Anlage beigefügte neue Anlage 5 ersetzt.

Artikel 2 In-Kraft-Treten

Die Änderungsordnung tritt am Tag nach ihrer Veröffentlichung im Mitteilungsblatt der Universität Kassel in Kraft.

Kassel, den 22. Dezember 2011

Der Dekan des Fachbereichs Mathematik und Naturwissenschaften
Prof. Dr. Friedrich W. Herberg

Anlagen

1. Curriculare Übersicht Bachelor Biologie
2. Curriculare Übersicht Master Biologie
3. und 4. Studienpläne Bachelor und Master
5. Modulhandbuch Bachelor Nanostrukturwissenschaften
6. Modulhandbuch Bachelor Nanostrukturwissenschaften

Anlage 1 Curriculare Übersicht Bachelor Biologie

Vom 1. bis zum 6. Semester müssen folgende Pflichtmodule belegt werden (geordnet nach Semestern, in denen das Modul präferentiell absolviert werden soll) (zusammen 122 Credits, davon 12 Credits für integrierte Schlüsselkompetenzen)

1. Semester:

<table>
<thead>
<tr>
<th>Modul</th>
<th>Kreditpunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 Mathematik für Biologen</td>
<td>5 c</td>
</tr>
<tr>
<td>P4 Allgemeine und Anorganische Chemie (anteilig)</td>
<td>5 von 10 c</td>
</tr>
<tr>
<td>P7 Anatomie der Pflanzen</td>
<td>5 c</td>
</tr>
<tr>
<td>P8 Allgemeine und Spezielle Zoologie (anteilig)</td>
<td>1 von 5 c</td>
</tr>
<tr>
<td>P13 Genetik (1. oder 3. Semester)</td>
<td>5 c</td>
</tr>
<tr>
<td>P15 Ökologie</td>
<td>4 c</td>
</tr>
</tbody>
</table>

2. Semester

<table>
<thead>
<tr>
<th>Modul</th>
<th>Kreditpunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2 Biometrie für Biologen</td>
<td>5 c</td>
</tr>
<tr>
<td>P3 Physik für Biologen (anteilig)</td>
<td>5 von 10 c</td>
</tr>
<tr>
<td>P4 Allgemeine und Anorganische Chemie(anteilig)</td>
<td>5 von 10 c</td>
</tr>
<tr>
<td>P8 Allgemeine und Spezielle Zoologie (anteilig)</td>
<td>4 von 5 c</td>
</tr>
<tr>
<td>P9 Biodiversität der Pflanzen</td>
<td>5 c</td>
</tr>
<tr>
<td>P11 Physiologie der Pflanzen (anteilig)</td>
<td>2,5 von 5 c</td>
</tr>
<tr>
<td>P12 Physiologie der Tiere (anteilig)</td>
<td>2,5 c</td>
</tr>
</tbody>
</table>
3. Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Kurs Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3</td>
<td>Physik für Biologen (anteilig)</td>
<td>5 von 10 c</td>
</tr>
<tr>
<td>P5</td>
<td>Organische Chemie und Biochemie (anteilig)</td>
<td>5 von 12 c</td>
</tr>
<tr>
<td>P11</td>
<td>Physiologie der Pflanzen (anteilig)</td>
<td>2,5 von 5 c</td>
</tr>
<tr>
<td>P12</td>
<td>Physiologie der Tiere (anteilig)</td>
<td>2,5 von 5 c</td>
</tr>
<tr>
<td>P14</td>
<td>Mikrobiologie (1. oder 3. Semester)</td>
<td>5 c</td>
</tr>
<tr>
<td>P16</td>
<td>Zellbiologie und Entwicklungsbiologie (anteilig)</td>
<td>2,5 von 5 c</td>
</tr>
</tbody>
</table>

4. Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Kurs Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>P5</td>
<td>Organische Chemie und Biochemie (anteilig)</td>
<td>7 von 12 c</td>
</tr>
<tr>
<td>P10</td>
<td>Biodiversität der Tiere</td>
<td>5 c</td>
</tr>
<tr>
<td>P16</td>
<td>Zellbiologie und Entwicklungsbiologie (anteilig)</td>
<td>2,5 von 5 c</td>
</tr>
<tr>
<td>P17</td>
<td>Berufliche Orientierung I (anteilig)</td>
<td>2 von 10 c</td>
</tr>
</tbody>
</table>

5. Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Kurs Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>P17</td>
<td>Berufliche Orientierung (anteilig)</td>
<td>8 von 10 c</td>
</tr>
</tbody>
</table>

6. Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Kurs Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>P18</td>
<td>Methodkenntnis und Projektplanung</td>
<td>9 c</td>
</tr>
<tr>
<td>P19</td>
<td>Bachelorarbeit</td>
<td>12 c</td>
</tr>
</tbody>
</table>

Im 4. oder 5. Semester sollen zwei Wahlpflichtmodule aus R1 bis R6 belegt werden (zusammen 8 Credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Kurs Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>Tutorium Organische Chemie und Biochemie</td>
<td>4 c</td>
</tr>
<tr>
<td>R2</td>
<td>Tutorium Genetik und Mikrobiologie</td>
<td>4 c</td>
</tr>
<tr>
<td>R3</td>
<td>Tutorium Pflanzenphysiologie und Botanik</td>
<td>4 c</td>
</tr>
<tr>
<td>R4</td>
<td>Tutorium Zellbiologie und Entwicklungsbiologie</td>
<td>4 c</td>
</tr>
<tr>
<td>R5</td>
<td>Tutorium Tierphysiologie und Zoologie</td>
<td>4 c</td>
</tr>
<tr>
<td>R6</td>
<td>Tutorium Ökologie und Biodiversität</td>
<td>4 c</td>
</tr>
</tbody>
</table>

Im 4. bis 6. Semester sollen zwei Wahlpflichtmodule aus V1 bis V11 belegt werden (zusammen 24 Credits, davon 4 Credits integrierte Schlüsselkompetenzen)

<table>
<thead>
<tr>
<th>Code</th>
<th>Kurs Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>Profilmodul Biochemie</td>
<td>12 c</td>
</tr>
<tr>
<td>V2</td>
<td>Profilmodul Botanik</td>
<td>12 c</td>
</tr>
<tr>
<td>V3</td>
<td>Profilmodul Zoologie</td>
<td>12 c</td>
</tr>
<tr>
<td>V4</td>
<td>Profilmodul Pflanzenphysiologie/Evolutionsbiologie</td>
<td>12 c</td>
</tr>
<tr>
<td>V5</td>
<td>Profilmodul Tierphysiologie</td>
<td>12 c</td>
</tr>
<tr>
<td>V6</td>
<td>Profilmodul Genetik</td>
<td>12 c</td>
</tr>
<tr>
<td>V7</td>
<td>Profilmodul Mikrobiologie</td>
<td>12 c</td>
</tr>
<tr>
<td>V8</td>
<td>Profilmodul Ökologie der Pflanzen, Tiere und Pilze</td>
<td>12 c</td>
</tr>
<tr>
<td>V9</td>
<td>Profilmodul Zellbiologie</td>
<td>12 c</td>
</tr>
<tr>
<td>V10</td>
<td>Profilmodul Entwicklungsbiologie</td>
<td>12 c</td>
</tr>
<tr>
<td>V11</td>
<td>Profilmodul Humanbiologie</td>
<td>12 c</td>
</tr>
</tbody>
</table>

Zwischen dem 1. und dem 6. Semester sollen insgesamt 26 Credits aus dem folgenden Wahlangbot erworben werden:

<table>
<thead>
<tr>
<th>Code</th>
<th>Kurs Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>Biochemie II</td>
<td>4 c</td>
</tr>
<tr>
<td>W2</td>
<td>Biophysik für Biologen</td>
<td>4 c</td>
</tr>
</tbody>
</table>
Anlage 2 Curriculare Übersicht Master Biologie

Vom 1. bis zum 4. Semester müssen folgende Pflichtmodule belegt werden (zusammen 50 Credits, davon 5 Credits für integrierte Schlüsselkompetenzen)

1. oder 2. Semester:
P1 Berufliche Orientierung II

3. Semester
P2 Methodenkenntnis und Projektplanung II

4. Semester
P3 Mastermodul

Im 1. – 3. Semester sollen drei Wahlpflichtmodule aus F1 bis F11 belegt werden (zusammen 36 Credits, davon 3 Credits für integrierte Schlüsselkompetenzen)

F1 Forschungsmodul Biochemie
F2 Forschungsmodul Biophysik
F3 Forschungsmodul Botanik/Systematik
F4 Forschungsmodul Zoologie
F5 Forschungsmodul Genetik
F6 Forschungsmodul Mikrobiologie
F7 Forschungsmodul Ökologie/Mykologie
F8 Forschungsmodul Zellbiologie
F9 Forschungsmodul Entwicklungsbiologie
F10 Forschungsmodul Neurobiologie
F11 Forschungsmodul Entwicklungsphysiologie der Pflanzen

Im 1. – 3. Semester sollen 34 Credits aus dem folgenden Wahlangebot erworben werden:

W1 Methoden der Molekularbiologie
W2 DNA-Diagnostik
W3 Molekulare Systematik und Evolution
W4 Nanostrukturen aus biologischer Sicht
W5 Biologische AFM-Applikationen (atomic force microscope)
<table>
<thead>
<tr>
<th>W</th>
<th>Kursaufteilung</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>W6</td>
<td>Mikrobielle Molekulargenetik</td>
<td>4 c</td>
</tr>
<tr>
<td>W7</td>
<td>Spezielle Aspekte der molekularen Entwicklungsbiologie</td>
<td>3 c</td>
</tr>
<tr>
<td>W8</td>
<td>Ökologische Exkursion/Forschungsreise</td>
<td>6 c</td>
</tr>
<tr>
<td>W9</td>
<td>Arbeitsgemeinschaft Pilze</td>
<td>4 c</td>
</tr>
<tr>
<td>W10</td>
<td>Große Botanische Exkursion</td>
<td>4 c</td>
</tr>
<tr>
<td>W11</td>
<td>Limnologie</td>
<td>6 c</td>
</tr>
<tr>
<td>W12</td>
<td>Humanökologie</td>
<td>3 c</td>
</tr>
<tr>
<td>W13</td>
<td>Sinnesphysiologie</td>
<td>5 c</td>
</tr>
<tr>
<td>W14</td>
<td>Wissenschaftliches Arbeiten mit Multimedia und Internet (FB11)</td>
<td>6 c</td>
</tr>
<tr>
<td>W15</td>
<td>Bodenkunde (FB 11)</td>
<td>6 c</td>
</tr>
<tr>
<td>W16</td>
<td>Grundlagen und angewandte Aspekte der Bodenbiologie (FB 11)</td>
<td>6 c</td>
</tr>
<tr>
<td>W17</td>
<td>Nutzpflanzenkunde II (FB 11)</td>
<td>6 c</td>
</tr>
<tr>
<td>W18</td>
<td>Phytopathologischer Feldkurs (FB 11)</td>
<td>6 c</td>
</tr>
<tr>
<td>W19</td>
<td>GIS-Anwendungen (FB 6/FB 10)</td>
<td>6 c</td>
</tr>
<tr>
<td>W20</td>
<td>Ökologische Grundlagen der Umweltplanung (FB 6)</td>
<td>6 c</td>
</tr>
<tr>
<td>W21</td>
<td>Schutzgüter in Umweltplanung und Landschaftsmanag. I (FB 6)</td>
<td>6 c</td>
</tr>
<tr>
<td>W22</td>
<td>Schutzgüter in Umweltplanung und Landschaftsmanag. II (FB 6)</td>
<td>6 c</td>
</tr>
<tr>
<td>W23</td>
<td>Verhaltensforschung</td>
<td>4 c</td>
</tr>
<tr>
<td>W24</td>
<td>Pflanzliche Evolutionsbiologie</td>
<td>9 c</td>
</tr>
<tr>
<td>W25</td>
<td>Fachübergreifende Schlüsselkompetenzen</td>
<td>4 c</td>
</tr>
</tbody>
</table>
Anlage 3 und 4 Studienpläne

Exemplarischer Studienverlaufplan Bachelor Biologie

5. Sem.
- Wahlpflicht 1: Profilmodul 12 CP (L, S, oder C. Sem.)
- Wahlpflicht 2: Profilmodul 12 CP (L, S, oder C. Sem.)
- Berufspraktikum (Praktikum)

4. Sem.
- Zellbio V (2,5)
- Biologie V (P-Ca)
- Tafel I (ab 4)
- Teleuniv B (ab 4)
- SK-Modul 4 CP
- Wahlmodul* 4 CP

- Exkursion V (2,5)
- Wahlmodul* 4 CP
- Tierphyt II (P-Ca)
- Pflanzenphysiologie P (2,5)
- Mikrobiologie P (2,5)
- Wahlmodul* 4 CP

2. Sem.
- Biozönose V (2,5)
- Tierphyt I (2,5)
- Zoologie V (P-4)
- Wahlmodul* 4 CP

1. Sem.
- Genetik V (P-S)
- Botanik I (P-S)
- Wahlmodul* 4 CP
- Maßnahme I (P-5)

*Nur Beispiel! Wahl- und Wahlpflichtmodule können zeitlich beliebig gelegt werden.
**Das Genetik- und Mikrobiologie-Modul kann bereits wahrgenommen werden, während das Tierphyt-Modul ab 4 Semester wahrgenommen werden kann.

Exemplarischer Studienverlaufplan Master Biologie

4. Sem.
- Masterarbeit 36 CP

- Methodenkenntnisse und Projektplanung II 12 CP
- Wahlmodul* 4 CP
- Wahlmodul* 4 CP
- SK-Modul 4 CP

2. Sem.
- Berufliche Orientierung II (Praktikum, 2. oder 3. Sem.)
- Wahlpflicht: Forschungsmodul 1* 12 CP
- Wahlmodul* 4 CP

1. Sem.
- Wahlpflicht: Forschungsmodul 1* 12 CP
- Wahlmodul* 4 CP

*Nur Beispiel! Wahl- und Wahlpflichtmodule können zeitlich beliebig gelegt werden.

Integrierte Schlüsselkompetenzen (SK): 6 CP (inkl. Kommunikations-, Organisations- und Methodenkompetenz)
Additive Schlüsselkompetenzen (AK): 4 CP (Fachübergreifende Studien)
Anlage 5

Modulhandbuch

für den Studiengang

Bachelor of Science Biologie

Fachbereich Naturwissenschaften

Universität Kassel
Übersicht Studienziele und Lernergebnisse

Fachübergreifende Studienziele des Bachelors Biologie

- Absolventen sind in der Lage, berufliche Tätigkeiten zu ergreifen, die ein Verständnis biologischer Phänomene erfordern.
- Absolventen können sich während ihrer Berufstätigkeit auf der Basis solider Grundlagen weiterbilden, neue Entwicklungen in ihrem Gebiet erkennen und in ihre Arbeit einbeziehen.
- Absolventen sind in der Lage, ihre Weiterbildung selbständig und effektiv zu organisieren.
In ihrer beruflichen Tätigkeit sind sie sich ihrer Verantwortung als Wissenschaftler und möglicher Folgen ihrer Tätigkeit für Umwelt und Gesellschaft bewusst.
- Bachelor-Absolventen haben die Grundlagen für ein konsekutives Masterstudium erworben.
Sie können in der Regel ein Masterstudium der Biologie oder eines Teilgebietes der Biologie aufnehmen.

Fachliche Lernergebnisse des Bachelors Biologie

Absolventen verfügen über grundlegende Kenntnisse und anschlussfähiges Wissen in den Bereichen:

- Anatomie der Pflanzen
- Allgemeine und Spezielle Zoologie
- Biodiversität der Pflanzen und Tiere
- Physiologie der Pflanzen und Tiere
- Genetik
- Mikrobiologie
- Ökologie
- Zellbiologie
- Entwicklungsbio­logie
- Allgemeine und Anorganische Chemie
- Organische Chemie und Biochemie
- Mathematik und Statistik/Biometrie
- Physik

Absolventen verfügen darüber hinaus über vertiefte Kenntnisse in mindestens zwei der folgenden Bereiche, die zur Spezialisierung angeboten werden:

- Biochemie
- Botanik
- Zoologie
- Physiologie und Evolutionsbiologie der Pflanzen
- Physiologie der Tiere (Stoffwechsel- oder Neurophysiologie)
- Genetik
- Mikrobiologie
- Ökologie
- Zellbiologie
- Entwicklungs­biologie
- Humanbiologie
Fertigkeiten und Kompetenzen des Bachelors Biologie

1) Studierende haben ein solides und breites Grundlagenwissen in den Fachgebieten der Biologie sowie grundlegende Kenntnisse der Chemie, Physik und Mathematik erworben.
2) Das erworbene Wissen befähigt zu einem prinzipiellen Verständnis biologischer Problemstellungen. Die Skalierung der betrachteten Dimensionen reicht über die Organisationsebene der Moleküle und Zellen über die der Organe und Organismen bis hin zur Ebene der Populationen und Ökosysteme. In der Regel wird das Wissensniveau noch kein tiefer gehendes Verständnis aktueller Forschungsgebiete ermöglichen.
3) Studierende haben moderne Arbeitsmethoden aus verschiedenen Disziplinen der Biologie kennen gelernt, experimentelle Fertigkeiten erworben und ihr Wissen exemplarisch auf biologische Aufgabenstellungen angewandt. Sie haben damit grundlegende, wissenschaftliche Problemlösungskompetenzen erworben.
4) Studierende beherrschen die biologische Fachsprache und sind in der Lage mit Fachwissenschaftlern der biologischen Disziplinen zu kommunizieren.
5) Sie sind in der Lage, Probleme aus dem Bereich der Biologie auf der Basis wissenschaftlicher Erkenntnisse selbständig einzuzuordnen und durch den Einsatz naturwissenschaftlicher Methoden zu analysieren bzw. zu lösen.
7) Studierende können das im Bachelorstudium erworbene Wissen kontinuierlich eigenverantwortlich ergänzen und vertiefen. Sie sind mit entsprechenden Lernstrategien vertraut (lebenslanges Lernen).
Insbesondere sind sie prinziell zu einem konsekutiven Masterstudium befähigt.
9) Sie haben Kommunikations- und Präsentationstechniken erlernt und eingeübt und sind mit wesentlichen Elementen der englischen Fachsprache vertraut.
10) Studierende sind dazu befähigt, eine geeignete wissenschaftliche Aufgabenstellung zu lösen und die dabei erhaltenen Ergebnisse im mündlichen Vortrag und schriftlich (demonstriert in der Bachelorarbeit) zu präsentieren.

Modulübersicht

Pflichtmodule

<p>| P1 | Mathematik für Biologen | 5 Credits |
| P2 | Biometrie für Biologen | 5 Credits |
| P3 | Physik für Biologen | 10 Credits |
| P4 | Allgemeine und Anorganische Chemie | 10 Credits |
| P5 | Organische Chemie und Biochemie | 12 Credits |
| P7 | Anatomie der Pflanzen | 5 Credits |
| P8 | Allgemeine und Spezielle Zoologie | 5 Credits |
| P9 | Biodiversität der Pflanzen | 5 Credits |
| P10 | Biodiversität der Tiere | 5 Credits |
| P11 | Physiologie der Pflanzen | 5 Credits |
| P12 | Physiologie der Tiere | 5 Credits |
| P13 | Genetik | 5 Credits |</p>
<table>
<thead>
<tr>
<th>Code</th>
<th>Kursaufzählung</th>
<th>Crediten</th>
</tr>
</thead>
<tbody>
<tr>
<td>P14</td>
<td>Mikrobiologie</td>
<td>5</td>
</tr>
<tr>
<td>P15</td>
<td>Ökologie</td>
<td>4</td>
</tr>
<tr>
<td>P16</td>
<td>Zellbiologie und Entwicklungsbio.</td>
<td>5</td>
</tr>
<tr>
<td>P17</td>
<td>Berufliche Orientierung I</td>
<td>10</td>
</tr>
<tr>
<td>P18</td>
<td>Methodenkenntnis und Projektplanung I</td>
<td>9</td>
</tr>
<tr>
<td>P19</td>
<td>Bachelorarbeit</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Summe Pflichtmodule (davon 12 Credits für Integrierte Schlüsselkompetenzen)</td>
<td>122 Credits</td>
</tr>
<tr>
<td></td>
<td>Wahlpflichtmodule</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>Tutorium Organische Chemie und Biochemie,</td>
<td>4</td>
</tr>
<tr>
<td>R2</td>
<td>Tutorium Genetik und Mikrobiologie</td>
<td>4</td>
</tr>
<tr>
<td>R3</td>
<td>Tutorium Pflanzenphysiologie und Botanik</td>
<td>4</td>
</tr>
<tr>
<td>R4</td>
<td>Tutorium Zellbiologie und Entwicklungsbio.</td>
<td>4</td>
</tr>
<tr>
<td>R5</td>
<td>Tutorium Tierphysiologie und Zoologie</td>
<td>4</td>
</tr>
<tr>
<td>R6</td>
<td>Tutorium Ökologie und Biodiversität</td>
<td>4</td>
</tr>
<tr>
<td>V1</td>
<td>Profilmul Biochemie</td>
<td>12</td>
</tr>
<tr>
<td>V2</td>
<td>Profilmul Botanik</td>
<td>12</td>
</tr>
<tr>
<td>V3</td>
<td>Profilmul Zoologie</td>
<td>12</td>
</tr>
<tr>
<td>V4</td>
<td>Profilmul Pflanzenphysiologie/Evolutionsbiologie</td>
<td>12</td>
</tr>
<tr>
<td>V5</td>
<td>Profilmul Tierphysiologie</td>
<td>12</td>
</tr>
<tr>
<td>V6</td>
<td>Profilmul Genetik</td>
<td>12</td>
</tr>
<tr>
<td>V7</td>
<td>Profilmul Mikrobiologie</td>
<td>12</td>
</tr>
<tr>
<td>V8</td>
<td>Profilmul Ökologie der Pflanzen, Tiere und Pilze</td>
<td>12</td>
</tr>
<tr>
<td>V9</td>
<td>Profilmul Zellbiologie</td>
<td>12</td>
</tr>
<tr>
<td>V10</td>
<td>Profilmul Entwicklungsbio.</td>
<td>12</td>
</tr>
<tr>
<td>V11</td>
<td>Profilmul Humanbiologie</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Es müssen je 2 Wahlpflichtmodule aus R1 bis R6 und V1 bis V11 gewählt werden</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summe Wahlpflichtmodule (davon 4 Credits für Integrierte Schlüsselkompetenzen)</td>
<td>32 Credits</td>
</tr>
<tr>
<td></td>
<td>Wahlmodule</td>
<td></td>
</tr>
<tr>
<td>W1</td>
<td>Biochemie II</td>
<td>4</td>
</tr>
<tr>
<td>W2</td>
<td>Biophysik für Biologen</td>
<td>4</td>
</tr>
<tr>
<td>W3</td>
<td>Anatomie der Pflanzen II</td>
<td>3</td>
</tr>
<tr>
<td>W4</td>
<td>Biodiversität der Moose und Flechten</td>
<td>3</td>
</tr>
<tr>
<td>W5</td>
<td>Systematik und Evolution der Algen, Pilze und Pflanzen</td>
<td>5</td>
</tr>
<tr>
<td>W6</td>
<td>Genetik II</td>
<td>4</td>
</tr>
<tr>
<td>W7</td>
<td>Waldökologie</td>
<td>4</td>
</tr>
<tr>
<td>W8</td>
<td>Pilze für Einsteiger</td>
<td>4</td>
</tr>
<tr>
<td>W9</td>
<td>Grundmodul Humanbiologie</td>
<td>5</td>
</tr>
<tr>
<td>W10</td>
<td>Wirbeltieranatomie</td>
<td>3</td>
</tr>
<tr>
<td>W11</td>
<td>Parasitologie</td>
<td>3</td>
</tr>
<tr>
<td>W12</td>
<td>Grundlagen der Biologiedidaktik</td>
<td>3</td>
</tr>
<tr>
<td>W13</td>
<td>Evolutionsbiologie</td>
<td>4</td>
</tr>
<tr>
<td>W14</td>
<td>Grundlagen der Sinnesphysiologie</td>
<td>4</td>
</tr>
<tr>
<td>W15</td>
<td>Grundlagen der Limnologie</td>
<td>3</td>
</tr>
<tr>
<td>W16</td>
<td>Grundlagen der Biologie</td>
<td>4</td>
</tr>
<tr>
<td>W17</td>
<td>Fachübergreifende Schlüsselkompetenzen</td>
<td>6</td>
</tr>
</tbody>
</table>

Mitteilungsblatt der Universität Kassel Nr. 2/2012 vom 06.03.2012 231
Auch ein drittes Profilmodule kann als Wahlmodul angerechnet werden.

Summe Wahlmodule (Incl. Fachübergreifende Schlüsselkompetenzen) 26 Credits

| Summe Bachelor | 122 + 32 + 26 = 180 Credits |

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Mathematik für Biologen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>BScBio P1</td>
</tr>
</tbody>
</table>
| Einzelveranstaltungen des Moduls und Lehrformen | • Mathematik für Biologen (V, 2 SWS)
• Mathematik-Übungen für Biologen (Ü, 2 SWS) |
| Modulbeauftragter | Dr. W. Metzler |
| Dozent/in | Dr. W. Metzler |

Lernziele und Kompetenzen
- Erlernen elementarer, vorwiegend analytischer Methoden zur Untersuchung biologischer und naturwissenschaftlicher Fragestellungen
- Erkennen und Einordnen der dabei auftretenden mathematischen Aufgabenstellungen
- Gewinnen von Sicherheit beim Lösen mathematischer Aufgaben
- Beurteilung von numerischen Resultaten bei der Benutzung von Computern und Taschenrechnern
- Erwerb erster Fertigkeiten zum Entwickeln elementarer mathematischer Modelle biologischer Vorgänge

Integrierter Erwerb von Schlüsselkompetenzen

Lerninhalte
- Grundlegendes Verständnis des Funktionsbegriffs und Kennenlernen elementarer Funktionen
- Beschreibung von Wachstumsprozessen mittels Zahlenfolgen
- Grundverständnis des mathematischen Konvergenzbegriffs und Berechnung von Grenzwerten
- Differenzialrechnung: Ableitungsbegriff und Ableitungsregeln. Ableitung der Umkehrfunktion
- Unbestimmtes Integral als Stammfunktion und Berechnung von Integralen. Integrationsregeln
- Anwendung der Vektorrechnung bei der Lösung linearer Gleichungssysteme und der Darstellung von Geraden und Ebenen im Raum

Verwendbarkeit des Moduls (Zuordnung zu Curriculum) B.Sc. Biologie: Pflichtmodul

Dauer und Häufigkeit des Angebotes des Moduls	Einsemestrig, jährlich (jeweils im WS)
Semester	1. (oder 3.)
Sprache	Deutsch
Voraussetzung für Teilnahme	Immatrikulation für B.Sc. Biologie
Lehrform	Vorlesung und Übung
Studentischer Arbeitsaufwand	60 Stunden Präsenzzeit
90 Stunden Selbststudium	
Leistungspunkte (Credits)	5
Studienleistungen	Bearbeitung von Übungsaufgaben
Modulprüfungsleistung, Art und Dauer der Prüfungen	Klausur (120 Minuten)
Literatur	Pavel/Winkler: Mathematik für Naturwissenschaftler, Pearson Studium 2007

Mitteilungsblatt der Universität Kassel Nr. 2/2012 vom 06.03.2012 232
<table>
<thead>
<tr>
<th>Module</th>
<th>Blometrie für Biologen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>BScBio P2</td>
</tr>
</tbody>
</table>

Einzelveranstaltungen des Moduls und Lehrformen
- Vorlesung Biometrie (V, 2 SWS)
- Übung am Computer (Ü, 2 SWS)

Modulbeauftragter
Dr. W. Metzler

Dozent/in
N.N.

Lernziele und Kompetenzen
- Erlernen elementarer Methoden der Wahrscheinlichkeitsrechnung und mathematischen Statistik zur Lösung biologischer Aufgabenstellungen
- Übersetzen von Anwendungsproblemen in eine mathematische Sprache und Entwickeln von begrifflicher Sorgfalt bei deren Modellierung
- Erkennen von Datenstrukturen und Datentypen sowie Darstellung experimenteller Daten in Diagrammen und mittels stochastischer Kenngrößen
- Erwerb von Fertigkeiten zur Auswahl und Durchführung statistischer Tests und Befähigung zu einem kritischen Verständnis statistischer Aussagen
- Kennenlernen und sicheres Handhaben von Statistik-Software

Integrierter Erwerb von Schlüsselkompetenzen
- Deskriptive Statistik
- Grundlagen der Kombinatorik
- Zufallsvariablen und Wahrscheinlichkeitsverteilungen
- Stochastische Unabhängigkeit und bedingte Wahrscheinlichkeiten
- Gesetze der großen Zahlen
- Stochastische Tests für univariate und bivariate Daten
- Schätzer
- Durchführung und Interpretation statistischer Tests
- Durchführung von Berechnungen, grafischen Darstellungen und von Tests mit Hilfe von Statistik-Software

Verwendbarkeit des Moduls (Zuordnung zu Curriculum)
B.Sc. Biologie: Pflichtmodul
Wahlmodul im fächergreifenden Angebot der Universität Kassel zu Schlüsselkompetenzen

Dauer und Häufigkeit des Angebotes des Moduls
Einsemestrig, jährlich (jeweils im SS)

Semester
2. oder 4. Sem.

Sprache
Deutsch

Voraussetzung für Teilnahme
Immatrikulation in den Studiengang B.Sc. Biologie

Lehrform
Vorlesung und Übung

Studentischer Arbeitsaufwand
60 Stunden Präsenzzeit
90 Stunden Selbststudium

Leistungspunkte (Credits)
5

Studienleistungen
Bearbeitung von Übungsaufgaben

Modulprüfung
Klausur (1h - 2h) oder Hausarbeit. Die Art der Prüfungsleistung wird zu Beginn der Veranstaltung bekannt gegeben.
<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Spezielle Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dieses Modul kann im fachübergreifenden Angebot der Universität von Nichtbiologen als Wahlmodul im Bereich Schlüsselkompetenzen gewählt werden</td>
</tr>
<tr>
<td>Modulname</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Code</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Modulbeauftragter</td>
</tr>
<tr>
<td>Dozent/in</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Integrierter Erwerb von Schlüsselkompetenzen</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lerninhalte</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
</tr>
<tr>
<td>Semester</td>
</tr>
<tr>
<td>Sprache</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
</tr>
<tr>
<td>Lehrform</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
</tr>
<tr>
<td>Studienleistungen</td>
</tr>
<tr>
<td>Modulprüfungsleistung, Art und Dauer der Prüfungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demtröder, Experimentalphysik I, Springer</td>
</tr>
<tr>
<td>Tipler, Physik, Spektrum</td>
</tr>
<tr>
<td>Gerthsen, Physik, Springer</td>
</tr>
<tr>
<td>Bergmann–Schäfer, Mechanik, Relativität, Wärme, de Gruyter</td>
</tr>
<tr>
<td>Bergmann–Schäfer, Elektromagnetismus, de Gruyter</td>
</tr>
<tr>
<td>Walcher, Praktikum der Physik</td>
</tr>
<tr>
<td>Schriftliche Versuchsanleitungen</td>
</tr>
<tr>
<td>Modulname</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>Code</td>
</tr>
<tr>
<td>Einzelveranstaltungen des</td>
</tr>
<tr>
<td>Moduls und Lehrformen</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Modulbeauftragter</td>
</tr>
<tr>
<td>Dozent/in</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Integrierter Erwerb von</td>
</tr>
<tr>
<td>Schlüsselkompetenzen</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lerninhalte</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td>(Zuordnung zu Curriculum)</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des</td>
</tr>
<tr>
<td>Angebotes des Moduls</td>
</tr>
<tr>
<td>Semester</td>
</tr>
<tr>
<td>Sprache</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
</tr>
<tr>
<td>Lehrform</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
</tr>
<tr>
<td>Studienleistungen</td>
</tr>
<tr>
<td>Modulprüfungsaufgaben,</td>
</tr>
<tr>
<td>Art und Dauer der Prüfungen</td>
</tr>
<tr>
<td>Literature</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Mitteilungsblatt der Universität Kassel Nr. 2/2012 vom 06.03.2012 237
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Organische Chemie und Biochemie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>BScBio P5</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Einführung in die Organische Chemie (V, 4 SWS)</td>
</tr>
<tr>
<td></td>
<td>Biochemie I (V, 3 SWS)</td>
</tr>
<tr>
<td></td>
<td>Organisch–chemisches Grundpraktikum (Pra, 5 Kurstage–ganztagig = 4 SWS) oder Biochemie–Praktikum (Pra, 4 SWS)</td>
</tr>
<tr>
<td></td>
<td>Seminar zum OC– oder Biochemie–Praktikum (S, 1 SWS)</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Prof. Dr. F. Herberg, Prof. Dr. R. Faust</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. F. Herberg, Prof. Dr. R. Faust</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fähigkeit zur selbständigen Arbeit im organischen Praktikum mit Schwerpunkten in der Synthese und einfachen analytischen Verfahren auch unter dem Aspekt der Arbeitssicherheit.</td>
</tr>
<tr>
<td></td>
<td>Grundkenntnisse der Arbeitssicherheit in Laboratorien</td>
</tr>
<tr>
<td></td>
<td>Vertieftes Verständnis für die Stoffwechselleistungen des zellulären Metabolismus. Dieses geht über ein einfaches Erlernen von Stoffwechselkreislaufprozessen hinaus und erfordert die kritische Auseinandersetzung mit regulatorischen Prozessen innerhalb der eukaryotischen Zelle.</td>
</tr>
<tr>
<td>Integrierter Erwerb von Schlüsselkompetenzen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erlernen des eigenständigen Arbeiten mit biochemisch-organischen Lehrbüchern.</td>
</tr>
<tr>
<td></td>
<td>Erwerb der Fähigkeit, Grundprinzipien des Stoffwechsels mit Grundlagen der organischen Chemie zu verbinden (Grundstein für den Erwerb von Problemlosungskompetenz).</td>
</tr>
<tr>
<td></td>
<td>Erwerb der Fähigkeit zur Dokumentation von Experimenten und deren Ergebnissen (Erstellung detaillierter wissenschaftlicher Protokolle).</td>
</tr>
<tr>
<td></td>
<td>Teamfähigkeit</td>
</tr>
<tr>
<td>Lerninhalte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grundlage und wichtige Substanzklassen in der Organischen Chemie und Biochemie</td>
</tr>
<tr>
<td></td>
<td>Grundlegende Methoden und Konzepte der Organischen Chemie und Stereochemie.</td>
</tr>
</tbody>
</table>

- Glycolyse, Citratzyklus, oxidative Phosphorylierung: Rolle des ATP u. seiner Metabolite; Stoffwechsel, Energiehaushalt, Energiebilanz;
- Grundlagen u. Mechanismen der Stoffwechselregulation
- Kohlenhydratstoffwechsel Nukleotidstoffwechsel
- Lipide, Fettsäuren, Fette, Phospholipide, Glycolipide,
- Proteine: Aminosäuren, Primär-, Sekundär-, Tertiär–Quartärstruktur; Proteinfaltung; Hämoglobin als allosterisches Protein
- Grundlagen der Enzymkinetik, -regulation, Katalysemachanismen
- Das biochemische Praktikum enthält eine zusammenhängende Serie von Versuchen zur Herstellung und biochemisch / biophysikalischen Charakterisierung rekombinanter Proteine

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</th>
<th>B.Sc. Biologie: Pflichtmodul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Zweisemestrig, jährlich (Vorlesung Organische Chemie im WS, Vorlesung Biochemie, Seminare und Praktika im SS)</td>
</tr>
<tr>
<td>Semester</td>
<td>ab 3. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Modul Allgemeine und Anorganische Chemie</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung, Praktikum und Seminar</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>180 Stunden Präsenzzeit (12 SWS)</td>
</tr>
<tr>
<td></td>
<td>180 Stunden Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>12 (davon 1 Credit integrierte Schlüsselkompetenzen)</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>(1) Klausur „Einführung in die Organische Chemie“. Das Bestehen der Klausur ist Voraussetzung für das jeweilige gewählte Praktikum (Organisch–chemisches Grundpraktikum oder Biochemie–Praktikum)</td>
</tr>
<tr>
<td></td>
<td>(2) Durchführung aller Praktikumsversuche und aktive Mitarbeit im Seminar</td>
</tr>
<tr>
<td></td>
<td>(3) Praktikumsprotokolle</td>
</tr>
<tr>
<td>Modulprüfungsleistung, Art und Dauer der Prüfungen</td>
<td>Klausur zur Vorlesung Biochemie (1–2 Stunden)</td>
</tr>
<tr>
<td>Literatur</td>
<td>Organische Chemie:</td>
</tr>
<tr>
<td></td>
<td>Skripte zur Vorlesung und zum Praktikum sowie die in den Veranstaltungen vorgeschlagene Literatur.</td>
</tr>
<tr>
<td></td>
<td>Biochemie:</td>
</tr>
<tr>
<td>Spezielle Informationen</td>
<td>Innerhalb des Moduls kann zwischen dem Organisch–Chemischen Grundpraktikum und dem Biochemie–Praktikum gewählt werden.</td>
</tr>
<tr>
<td>Modulname</td>
<td>Anatomie der Pflanzen</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Code</td>
<td>BScBio P7</td>
</tr>
<tr>
<td>Einzelveranstaltungen des</td>
<td>• Einführung in die Pflanzenanatomie (V, 2 SWS)</td>
</tr>
<tr>
<td>Moduls und Lehrformen</td>
<td>• Botanisch–Anatomisch–Zellbiologischer Kurs (Ü, 3 SWS)</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Prof. Dr. K. Weising</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. K. Weising</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>• Grundlegendes Verständnis von Bau und Funktion einer Pflanzenzelle, ihrer lichtmikroskopisch sichtbaren Organellen und des Prinzips der Kompartimentierung</td>
</tr>
<tr>
<td></td>
<td>• Grundkenntnisse zur Anatomie der vegetativen Gewebe und Organe der höheren Pflanzen (Sprossachse, Blatt, Wurzel) in Zusammenhang mit ihrer funktionalen Bedeutung; Erkennen der wichtigsten pflanzlichen Gewebe im Lichtmikroskop</td>
</tr>
<tr>
<td></td>
<td>• Befähigung zur selbständigen Arbeit mit dem Lichtmikroskop und zur dafür erforderlichen Vorbereitung pflanzlicher Gewebeproben</td>
</tr>
<tr>
<td></td>
<td>• Beherrschten einfacher Schnitt- und Färbetechniken.</td>
</tr>
<tr>
<td></td>
<td>• Befähigung zur zeichnerischen Dokumentation mikroskopischer Präparate, insbesondere pflanzlicher Zellen und Gewebe.</td>
</tr>
<tr>
<td>Integrierter Erwerb von Schlüsselkompetenzen</td>
<td></td>
</tr>
<tr>
<td>Lerninhalte</td>
<td>• Molekulare und makromolekulare Bestandteile der Pflanzenzelle</td>
</tr>
<tr>
<td></td>
<td>• Struktur und Funktion der Pflanzenzelle und ihrer Organellen</td>
</tr>
<tr>
<td></td>
<td>• Biomembranen, Cytoskelett und Zellwand</td>
</tr>
<tr>
<td></td>
<td>• Mitose</td>
</tr>
<tr>
<td></td>
<td>• Struktur, Funktion und Entwicklung der wichtigsten pflanzlichen Gewebetypen und Organe</td>
</tr>
<tr>
<td></td>
<td>• Anatomie von primärer Sprossachse, Blatt und Wurzel</td>
</tr>
<tr>
<td></td>
<td>• Sekundäres Dickenwachstum, Holz und Bast</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</td>
<td>B.Sc. Biologie: Pflichtmodul</td>
</tr>
<tr>
<td></td>
<td>Lehramt L2 (Biologie): Pflichtmodul</td>
</tr>
<tr>
<td></td>
<td>Lehramt L3 (Biologie): Pflichtmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Einsemestrig, jährlich (jeweils im WS)</td>
</tr>
<tr>
<td>Semester</td>
<td>1. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Immatrikulation für einen der o.g. Studiengänge</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung und Kurs</td>
</tr>
<tr>
<td></td>
<td>Zur Vorlesung wird Arbeitsmaterial im Internet zur Verfügung gestellt</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>75 Stunden Präsenzzeit (5 SWS)</td>
</tr>
<tr>
<td></td>
<td>75 Stunden Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>5</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Regelmäßige Mitarbeit im Kurs und Anfertigung von Zeichnungen Selbständige Bearbeitung, Zeichnung und Beschriftung eines unbekannten botanisch–mikroskopischen Objekts (2 Stunden)</td>
</tr>
<tr>
<td>Modulprüfungsleistung, Art und Dauer der Prüfungen</td>
<td>Theoretische Klausur (1 Stunde)</td>
</tr>
</tbody>
</table>
| Literatur | Theorie:
| | Strasburger: Lehrbuch der Botanik. 36. Auflage 2008, Spektrum Akademischer Verlag
| | oder
| | Praxis:
| | Wanner, G.: Mikroskopisch-Botanisches Praktikum, Thieme-Verlag, Stuttgart, 2004
| | oder
| Spezielle Informationen |
Modulname
Allgemeine und Spezielle Zoologie

<table>
<thead>
<tr>
<th>Code</th>
<th>BScBio P8</th>
</tr>
</thead>
</table>

Einzelveranstaltungen des Moduls und Lehrformen
- Einführung in die Allgemeine Zoologie (V, 1 SWS)
- Einführung in die Systematische Zoologie (V, 2 SWS)
- Zoologisch-Anatomischer Kurs (Ü, 2 SWS)

Modulbeauftragter
Dr. C. Nowack

Dozent/in
Dr. C. Nowack

Lernziele und Kompetenzen
- Erwerb von Grundlagenwissen im Bereich der allgemeinen Zoologie (insbesondere vergleichende und funktionelle Anatomie der Organe und Organsysteme im Tierreich)
- Kenntnis der Baupläne und Charakteristika der Großgruppen des Tierreichs
- Kenntnis der modernen Aspekte der Phylogenie des Tierreichs
- Befähigung zum Umgang mit dem Lichtmikroskop
- Basiswissen zu tierischer Histologie
- Beurteilung und Analyse mikroskopischer zoologischer Präparate
- Zeichnerische Dokumentation mikroskopischer Präparate
- Erwerb der Fähigkeit, Präparationen an tierischem Material aus verschiedenen Tiergruppen durchzuführen und den Organ-Situs bzw. einzelne Organsysteme zu interpretieren
- Anwendung von zoologischem Fachvokabular

Integrierter Erwerb von Schlüsselkompetenzen

Lerninhalte
- Taxonomie des Tierreichs
- Struktur und Funktion der Zellen tierählicher Protisten (ehem. Protozoen)
- Lichtmikroskopische Diagnose tierischer Gewebe
- Bauplanmerkmale ausgewählter großer Tiergruppen
- Funktionelle Anatomie der Organe und Organsysteme im Tierreich

Verwendbarkeit des Moduls (Zuordnung zu Curriculum)
- B.Sc. Biologie: Pflichtmodul
- Lehramt L2 (Biologie) Pflichtmodul
- Lehramt L3 (Biologie) Pflichtmodul

Dauer und Häufigkeit des Angebotes des Moduls
- Zweiseitig, jährlich (Vorlesung Allgemeine Zoologie im WS, Vorlesung Systematische Zoologie und Kurs im SS)

Semester
- 1. und 2. Sem.

Sprache
Deutsch

Voraussetzung für Teilnahme
Immatrikulation für einen der o.g. Studiengänge

Lehrform
- Vorlesung und Übung

Studentischer Arbeitsaufwand
- 75 Stunden Präsenzzeit (5 SWS)
- 75 Stunden Selbststudium

Leistungspunkte (Credits)
- 5

Studienleistungen
- Regelmäßige Mitarbeit im Kurs und Anfertigung von Zeichnungen

Modulprüfungsleistung, Art und Dauer der Prüfungen
- Klausur (2 Std.)

Literatur
- Storch/Welsch: Kurzes Lehrbuch der Zoologie, 8. Auflage 2005, Spektrum Akademischer Verlag,
- Wehner/ Gehring: Zoologie, 22. Aufl. 1990, Thieme Verlag
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Biodiversität der Pflanzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>BScBio P9</td>
</tr>
</tbody>
</table>

Einzelveranstaltungen des Moduls und Lehrformen
- Systematik und Morphologie der Pflanzen (V, 2 SWS)
- Botanische Bestimmungsübungen (Ü, 2 SWS)
- Botanische Exkursionen (E, 2 SWS)

Modulbeauftragter
Prof. Dr. K. Weising

Dozent/in
Prof. Dr. K. Weising und Mitarbeiter

Lernziele und Kompetenzen
- Grundlegendes Verständnis des morphologischen Aufbaus und der Lebenszyklen (Generationswechsel) der Gefäßpflanzen, sowie der Mechanismen der Bestäubung, Befruchtung und Samenverbreitung
- Gewinnen eines Überblicks über die Systematik der Gefäßpflanzen
- Praktische Kenntnisse und Fähigkeiten zur morphologischen Untersuchung und Herbarisierung von Pflanzenmaterial
- Erlernen des Umgangs mit wissenschaftlicher Bestimmungsliteratur zur Identifikation einheimischer Gefäßpflanzenarten
- Erwerb erster Artenkenntnisse: Erkennen häufiger einheimischer Pflanzenarten im Freiland
- Grundlegende Kenntnisse zur Ökologie einheimischer Biotope und ihrer charakteristischen Pflanzenarten

Integrierter Erwerb von Schlüsselkompetenzen

Lerninhalte
- Morphologie der Gefäßpflanzen: Struktur, Funktion und Metamorphosen von Sprossachse, Blatt und Wurzel
- Bau und Funktion von Blüte, Samen und Frucht
- Bestäubungs- und Ausbreitungsoökologie
- Lebenszyklen der Farne und Samenpflanzen
- Systematik und Erkennungsmerkmale wichtiger einheimischer Gefäßpflanzenarten
- Grundlagen der Flora, Vegetation und Ökologie einheimischer Biotope (Wälder, Halbtrockenrasen, Wiesen)

Verwendbarkeit des Moduls (Zuordnung zu Curriculum)
- B.Sc. Biologie: Pflichtmodul
- Lehramt L2 (Biologie): Wahlpflichtmodul
- Lehramt L3 (Biologie): Wahlpflichtmodul

Dauer und Häufigkeit des Angebotes des Moduls
Einsemestrig, jährlich (jeweils im SoSe)

Semester
2. Sem. (oder 4. Sem.)

Sprache
Deutsch

Voraussetzung für Teilnahme
Immatrakulation für einen der o.g. Studiengänge

Lehrform
Vorlesung, Übung und Exkursion
Zur Vorlesung werden Arbeitsmaterialien im Internet bereit gestellt

Studentischer Arbeitsaufwand
90 Stunden Präsenzzzeit (6 SWS)
60 Stunden Selbststudium

Leistungspunkte (Credits)
5

Studienleistungen
Aktive Mitarbeit in den Bestimmungskursen und Exkursionen
Identifikation von 4 unbekannten einheimischen Pflanzenarten mit Hilfe eines Bestimmungsschlüssels

Modulprüfungsschleistung, Art und Dauer der Prüfungen
Theoretische Klausur (1 Stunde)
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Bildhalt der Tiere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>BScBio P10</td>
</tr>
</tbody>
</table>
| Einzelveranstaltungen des Moduls und Lehrformen | • Taxonomie der Tiere (V, 1 SWS)
• Zoologische Bestimmungübungen (Ü, 3 SWS)
• Zoologische Exkursionen (E, 2 SWS) |
| Modulbeauftragter | Prof. Dr. M. Schäfer |
| Dozent/in | Dr. H. Koenies, Dr. C. Nowack, Prof. Dr. R. Wagner, N.N. |
| Lernziele und Kompetenzen | • Gewinnen eines Überblicks über die Systematik der wichtigsten Tierstämme mit einheimischen Vertretern
• Praktische Kenntnisse und Fähigkeiten zur morphologischen Untersuchung von Tiermaterial
• Erlernen des Umgangs mit wissenschaftlicher Bestimmungsliteratur zur Identifikation einheimischer Tierarten
• Erwerb erster Artenkenntnisse: Erkennen häufiger einheimischer Tierarten im Freiland
• Grundlegende Kenntnisse zur Ökologie einheimischer Biotope und ihrer charakteristischen Tierarten |
| Integrierter Erwerb von Schlüsselkompetenzen | • Systematik, Taxonomie, Morphologie und Erkennungsmerkmale wichtiger einheimischer Tierarten
• Grundlagen der Fauna und Ökologie einheimischer Biotope |
| Verwendbarkeit des Moduls (Zuordnung zu Curriculum) | B.Sc. Biologie: Pflichtmodul
Lehramt L2 (Biologie): Wahlpflichtmodul
Lehramt L3 (Biologie): Wahlpflichtmodul |
| Dauer und Häufigkeit des Angebotes des Moduls | Einsemestrig, jährlich (jeweils im SoSe) |
| Semester | (2. od.) 4. Sem. |
| Sprache | Deutsch |
| Voraussetzung für Teilnahme | Immatraktion für einen der o.g. Studiengänge |
| Lehrform | Vorlesung, Übung und Exkursion |
| Studentischer Arbeitsaufwand | 90 Stunden Präsenzzeit (6 SWS)
60 Stunden Selbststudium |
<p>| Leistungspunkte (Credits) | 5 |
| Studienleistungen | Aktive Mitarbeit in den Bestimmungskursen und Exkursionen |
| Modulprüfungsleistung, Art und Dauer der Prüfungen | Klausur (2 Stunden) |</p>
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Physiologie der Pflanzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>BScBio P11</td>
</tr>
</tbody>
</table>
| Einzelveranstaltungen des Moduls und Lehrformen | Einführung in die Pflanzenphysiologie (V, 2 SWS)
| | Pflanzenphysiologischer Kurs (II, 3 SWS) |
| Modulbeauftragter | Prof. Dr. U. Kutschera |
| Dozent/in | Prof. Dr. U. Kutschera und Mitarbeiter |
| Lernziele und Kompetenzen | Verständnis der Grundlagen der allgemeinen Physiologie mit dem Schwerpunkt Pflanzen/Cyanobakterien
| | Vermittlung der naturwissenschaftlichen Denk- und Arbeitsweise aus dem Blickwinkel eines experimentell arbeitenden Wissenschaftlers unter Berücksichtigung evolutionsbiologischer Aspekte
| | Der Student soll auf Grundlage des methodischen Naturalismus den Unterschied zwischen der naturwissenschaftlichen Arbeitsweise und pseudowissenschaftlichen Ideologien kennen lernen (Schlüsselkompetenz eines jeden Naturwissenschaftlers) |
| Integrierter Erwerb von Schlüsselkompetenzen | |
| Lerninhalte | Prinzipien des experimentellen Arbeitens: Methodischer Naturalismus, Hypothesen- und Theorienbildung.
| | Geschichte der Pflanzenphysiologie, Schwerpunkt Vitalismus-Debatte
| | Grundlagen der Stoffwechsel-, Entwicklungs- und Bewegungsphysiologie der Pflanzen. Als Beispiele werden meist Nutzpflanzen vorgestellt, mit Hinweis auf gentechnisch verbesserte Varietäten (Vorteile für die Ertragssicherung und den Naturschutz)
| | Durchführung physiologischer Experimente und deren Auswertung bzw. Interpretation auf Grundlage derzeit üblicher internationaler Standards (naturalistische Denkweise, SI-Einheiten, evolutionäre Physiologie als induktive Naturwissenschaft) |
| Verwendbarkeit des Moduls (Zuordnung zu Curriculum) | BSc. Biologie: Pflichtmodul
| | Lehramt L2 (Biologie): Wahlpflichtmodul
| | Lehramt L3 (Biologie): Pflichtmodul |
| Dauer und Häufigkeit des Angebotes des Moduls | Zweiseitrig, jährlich (Vorlesung im SS, Kurs im folgenden WS) |
| Semester | 2. und 3. Sem. |
| Sprache | Deutsch |
| Voraussetzung für Teilnahme | Immatrikulation für einen der o.g. Studiengänge |
| Lehrform | Vorlesung, praktische Übungen |
| Studentischer Arbeitsaufwand | 75 Stunden Präsenzzeit (5 SWS)
| | 75 Stunden Selbststudium |
| Leistungspunkte (Credits) | 5 |
| Studienleistungen | Durchführung der im Praktikum vorgesehenen Experimente
<p>| | Anfertigung von Protokollen mit Interpretation der Ergebnisse (Hypothesen- und Theorienbildung) |
| Modulprüfungsleistung, Art und Dauer der Prüfungen | Klausur (ca. 2 Stunden) |</p>
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Physiologie der Tiere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>BScBio P12</td>
</tr>
</tbody>
</table>

Einzelveranstaltungen des Moduls und Lehrformen
- Vorlesung Tierphysiologie (V. 2 SWS)
- Tierphysiologischer Kurs (U. 3 SWS)

Modulbeauftragter
Prof. Dr. M. Stengel

Dozent/in
Prof. Dr. M. Stengel, Dr. W. Schwippert

Lernziele und Kompetenzen
- Kenntnis der Grundlagen der einzelnen Teilgebiete der Neuro- und Stoffwechselphysiologie von Vertebraten (incl. Mensch) und Invertebraten
- Methodentraining und Softwarekompetenzen
- Verantwortungsvolles kompetentes Umgehen mit Versuchsapparaturen in der Tierphysiologie

Integrierter Erwerb von Schlüsselkompetenzen
- Methodentraining
- *learning by doing*
- Verantwortliches Arbeiten mit Versuchstieren
- Verantwortliches Arbeiten in der Gruppe
- Wissenschaftliches Experimentieren, Planen und Durchführen

Lerninhalte

Verwendbarkeit des Moduls (Zuordnung zu Curriculum)
- B.Sc. Biologie: Pflichtmodul
- Lehramt L2 (Biologie) Wahlpflichtmodul
- Lehramt L3 (Biologie) Pflichtmodul

Dauer und Häufigkeit des Angebotes des Moduls
zweisemestrig, jährlich (Beginn jeweils im SoSe)

Semester
Ab 2. Sem.

Sprache
Deutsch

Voraussetzung für Teilnahme
Immatrskulation für einen der o.g. Studiengänge

Lehrform
Vorlesung und Kurs

Studentischer Arbeitsaufwand
75 Stunden Präsenzzeit (SWS)
75 Stunden Selbststudium

Leistungspunkte (Credits)
5

Studienleistungen
Eingangsklausur für Kurs
Durchführung aller im Kurs vorgesehenen Experimente
Bestehen aller Kolloquien und Annahme aller Protokolle
Die Studienleistungen sind Voraussetzung für die Meldung zur Modulprüfung

Modulprüfungsleistung, Art und Dauer der Prüfungen
Abschlussklausur zum Kurs

Literatur
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Genetik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>BScBio P13</td>
</tr>
<tr>
<td>Einzelveranstaltungen des</td>
<td></td>
</tr>
<tr>
<td>Moduls und Lehrformen</td>
<td>Grundvorlesung Genetik 1 (2 SWS)</td>
</tr>
<tr>
<td></td>
<td>Genetisches Grundpraktikum (3 SWS)</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Prof. Dr. W. Nellen</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. W. Nellen und Mitarbeiter</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>Kompetenz, die Grundlagen der Genetik an</td>
</tr>
<tr>
<td></td>
<td>einfachen Fragestellungen anzuwenden</td>
</tr>
<tr>
<td></td>
<td>Verständnis der Zusammenhänge zwischen</td>
</tr>
<tr>
<td></td>
<td>klassischer und molekularer Genetik</td>
</tr>
<tr>
<td></td>
<td>Durchführung grundlegender Experimente mit</td>
</tr>
<tr>
<td></td>
<td>Hilfe von Arbeitsprotokollen</td>
</tr>
<tr>
<td></td>
<td>Umgang mit biologischen Materialien und</td>
</tr>
<tr>
<td></td>
<td>Laborgeräten</td>
</tr>
<tr>
<td></td>
<td>Protokollführung</td>
</tr>
<tr>
<td>Integrierter Erwerb von</td>
<td>Bioethik</td>
</tr>
<tr>
<td>Schlüsselkompetenzen</td>
<td>Biologische Sicherheit, Gentechnikgesetz</td>
</tr>
<tr>
<td></td>
<td>Gute Laborpraxis</td>
</tr>
<tr>
<td>Lerninhalte</td>
<td>Grundlagen der klassischen und molekularen</td>
</tr>
<tr>
<td></td>
<td>Genetik</td>
</tr>
<tr>
<td></td>
<td>Grundlagen der Bioinformatik in der Genetik</td>
</tr>
<tr>
<td></td>
<td>Grundlagen der Gentechnik und Anwendungen</td>
</tr>
<tr>
<td></td>
<td>Anwendungen der Genetik</td>
</tr>
<tr>
<td></td>
<td>Analyse von Nukleinsäuren und Proteinen</td>
</tr>
<tr>
<td></td>
<td>Genetische In vitro-Experimente (P)</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B.Sc. Biologie: Pflichtmodul</td>
</tr>
<tr>
<td>(Zuordnung zu Curriculum)</td>
<td>Lehramt L3 (Biologie): Pflichtmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des</td>
<td>Einsemester, jährlich (jeweils im WS)</td>
</tr>
<tr>
<td>Angebotes des Moduls</td>
<td></td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Immatrikulation für einen der o.g. Studiengänge</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung und Kurs</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>75 Stunden Präsenzzeit (5 SWS)</td>
</tr>
<tr>
<td></td>
<td>75 Stunden Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>5 (davon 1 Credit integrierte Schlüsselkompetenzen)</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Regelmäßige, erfolgreiche Mitarbeit im Praktikum</td>
</tr>
<tr>
<td>Modulprüfungsleistung, Art und</td>
<td>(1) Klausur nach der Vorlesung (2 h)</td>
</tr>
<tr>
<td>Dauer der Prüfungen</td>
<td>Erfolgreiches Bestehen ist Voraussetzung für</td>
</tr>
<tr>
<td></td>
<td>die Praktikumsteilnahme.</td>
</tr>
<tr>
<td></td>
<td>(2) Beurteilung der Praktikumsleistung/Protokoll</td>
</tr>
<tr>
<td></td>
<td>Beide Prüfungsteile werden 50:50 gewichtet</td>
</tr>
<tr>
<td>Literatur</td>
<td>Janning, Knust, Genetik, 2. Auflage, Thieme-Verlag, 2008</td>
</tr>
<tr>
<td></td>
<td>oder Klug, Cummings, Spencer, Verlag Pearson Studium, 8. Auflage 2007, Aktuelle Folienansammlung zur Vorlesung</td>
</tr>
<tr>
<td>Spezielle Informationen</td>
<td>Das Praktikum findet als Blockpraktikum in der vorlesungsfreien Zeit nach dem WS statt</td>
</tr>
</tbody>
</table>
Modulname | Mikrobiologie
--- | ---
Code | BScBio P14

Einzelveranstaltungen des Moduls und Lehrformen
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mikrobiologie I (V, 2 SWS)</td>
<td></td>
</tr>
<tr>
<td>Übungen zur Mikrobiologie (Praktikum, 3 SWS)</td>
<td></td>
</tr>
</tbody>
</table>

Modulbeauftragter | Prof. Dr. R. Schaffrath
Dozent/in | Prof. Dr. R. Schaffrath und Mitarbeiter

Lernziele und Kompetenzen
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlegendes Verständnis vom Aufbau einer Mikroorganismen-Zelle und eines Virus, ihrer Genetik und Stoffwechselleistungen, der Systematik der Prokaryoten, ihrer biotechnologischen Anwendung und ihrer Ökologie</td>
<td></td>
</tr>
<tr>
<td>Beherrschung grundlegender mikrobiologischer Arbeitsmethoden und Kenntnis der Sicherheitsbestimmungen in der Mikrobiologie</td>
<td></td>
</tr>
</tbody>
</table>

Integrierter Erwerb von Schlüsselkompetenzen
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen der Evolution von Mikroorganismen</td>
<td></td>
</tr>
<tr>
<td>Mikroorganismen-Zelle: Morphologie, Zellwand, Membranen, Kapseln, Geißeln, Dauerformen</td>
<td></td>
</tr>
<tr>
<td>Systematik der Prokaryoten</td>
<td></td>
</tr>
<tr>
<td>Medizinisch bedeutsame Bakterien</td>
<td></td>
</tr>
<tr>
<td>Einführung in die Genetik von Mikroorganismen</td>
<td></td>
</tr>
<tr>
<td>Viren, Viroide, Bakteriophagen</td>
<td></td>
</tr>
<tr>
<td>Grundlagen der Gentechnik und Biotechnologie</td>
<td></td>
</tr>
<tr>
<td>Stoffwechsel, Energieumwandlungen, Gärungen, Elektronentransport</td>
<td></td>
</tr>
<tr>
<td>Paläomikrobiologie und Archaea</td>
<td></td>
</tr>
<tr>
<td>Sicherheitsbestimmungen beim Umgang mit Mikroorganismen</td>
<td></td>
</tr>
<tr>
<td>Grundlegende mikrobiologische Arbeitsmethoden, Mikroorganismen in verschiedenen Umweltbereichen, ihre Rolle in natürlichen Ökosystemen und bei der Nahrungsmittelproduktion</td>
<td></td>
</tr>
</tbody>
</table>

Lerninhalte
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls (Zuordnung zu Curriculum)
| B.Sc. Biologie: Pflichtmodul |
| Lehramt L3 (Biologie): Pflichtmodul |

Dauer und Häufigkeit des Angebotes des Moduls
| Einsemestrig, jährlich (jeweils im WS) |

Semester

Sprache
| Deutsch |

Voraussetzung für Teilnahme
| Immatrikulation für einen der o.g. Studiengänge |

Lehrform
| Vorlesung, Übung |

Studentischer Arbeitsaufwand
| 75 Stunden Präsentenzeit |
| 75 Stunden Selbststudium |

Leistungspunkte (Credits)
| 5 |

Studienleistungen
| Durchführung aller im Praktikum vorgesehenen Experimente |

Modulprüfungsleistung, Art und Dauer der Prüfungen
| Erfolgreiche Klausur zur Vorlesung (1–2 Std.) ist Voraussetzung für Praktikumsteilnahme. Sie geht zu gleichen Teilen (50/50) mit dem Praktikumspflichtprotokoll in die Modul-Endnote ein |

Literatur
| Süßmuth et al. (1999) Biochemisch-Mikrobiologisches Praktikum, Thieme |

Spezielle Informationen
<p>| Rechtzeitig vor Beginn der Veranstaltungen steht ein Skript mit der Beschreibung der Versuche zur Verfügung. Das Praktikum findet als Blockpraktikum in der vorlesungsfreien Zeit nach dem WS statt. |</p>
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Ökologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>BScBio P15</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
<td>• Einführung in die Ökologie (V, 2 SWS)</td>
</tr>
<tr>
<td></td>
<td>• Ökologisches Seminar mit Exkursionen (S/E, 2 SWS)</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Prof. Dr. E. Langer</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. E. Langer, Dr. H. Koenies</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>• Grundlegendes Verständnis ökologischer Zusammenhänge</td>
</tr>
<tr>
<td></td>
<td>• Erkennen und interpretieren ökologischer Phänomene in der Natur</td>
</tr>
<tr>
<td></td>
<td>• Aneignen eines ökologischen Grundwortschatzes</td>
</tr>
<tr>
<td></td>
<td>• Korrektes Anwenden ökologischer Fachbegriffe</td>
</tr>
<tr>
<td></td>
<td>• Interpretation ökologischer Diagramme</td>
</tr>
<tr>
<td></td>
<td>• Kenntnis der Theorie gängiger ökologischer Untersuchungsmethoden</td>
</tr>
<tr>
<td></td>
<td>• Artenkenntnis und Ökologie wichtiger einheimischer Organismen</td>
</tr>
<tr>
<td>Integrierter Erwerb von Schlüsselkompetenzen</td>
<td></td>
</tr>
<tr>
<td>Lerninhalte</td>
<td>• Grundbegriffe der Aut- und Synökologie</td>
</tr>
<tr>
<td></td>
<td>• Klima, Klimadiagramme, abiotische Faktoren</td>
</tr>
<tr>
<td></td>
<td>• Stoffkreisläufe</td>
</tr>
<tr>
<td></td>
<td>• Bodenkunde</td>
</tr>
<tr>
<td></td>
<td>• Demökologie</td>
</tr>
<tr>
<td></td>
<td>• Vegetationsökologie</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</td>
<td>B.Sc. Biologie: Pflichtmodul</td>
</tr>
<tr>
<td></td>
<td>Lehramt L2 (Biologie): Pflichtmodul</td>
</tr>
<tr>
<td></td>
<td>Lehramt L3 (Biologie): Pflichtmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Einsemestrig, jährlich (jeweils im WS)</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Immatrikulation für einen der o. g. Studiengänge</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung, Seminar, Exkursion</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>60 Stunden Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>60 Stunden Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>4</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Regelmäßige, aktive Mitarbeit in Seminar und Exkursionen mit schriftlicher Ausarbeitung oder mündlichem Vortrag eines Spezialthemas</td>
</tr>
<tr>
<td>Modulprüfungsleistung, Art und Dauer der Prüfungen</td>
<td>Klausur (ca. 2 Stunden)</td>
</tr>
<tr>
<td>Literatur</td>
<td>Nentwig, W., Bacher, S., Brandl, R.: Ökologie kompakt, 2007; Springer-Verlag Berlin, Heidelberg</td>
</tr>
<tr>
<td></td>
<td>oder</td>
</tr>
<tr>
<td>Modulname</td>
<td>Zellbiologie und Entwicklungsbiologie</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Code</td>
<td>BScBio P16</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
<td></td>
</tr>
</tbody>
</table>
| | • Molekulare Grundlagen der Entwicklung (V, 2 SWS)
| | • Virtuelles Tutorium (T, e-learning)
| | • Zellbiologie (V, 2 SWS) |
| Modulbeauftragter | Prof. Dr. M. Maniak |
| Dozent/in | Prof. Dr. M. Maniak, Prof. Dr. M. Schäfer |
| Lernziele und Kompetenzen |
| | • Erkennen der dynamischen Aspekte der Zelle und ihrer molekularen Grundlagen als Grundlage spezialisierter Zellfunktionen
| | • Bedeutung von Modellorganismen in der Zell- und Entwicklungsbiologie
| | • Grundverständnis für entwicklungsbiologische Zusammenhänge und Fragestellungen
| | • Erkennen von Grundprinzipien in den Entwicklungsprozessen und deren molekulargenetischen Kontrollmechanismen |
| Integrierter Erwerb von Schlüsselkompetenzen |
| Lerninhalte |
| | • Embryonalentwicklung an ausgewählten Organismen (Ablauf, Organisationsprinzipien, Musterbildungsprozesse)
| | • Modellsysteme mit ihren Besonderheiten und experimentellen Analyseschwerpunkten
| | • Keimzellentwicklung und die molekularen Zusammenhänge bei der Befruchtung
| | • Geschlechtsbestimmung
| | • Postembryonale Entwicklungsprozesse (Metamorphose und Regeneration) |
| Verwendbarkeit des Moduls (Zuordnung zu Curriculum) | B.Sc. Biologie: Pflichtmodul |
| Dauer und Häufigkeit des Angebotes des Moduls | Zweiseitoramig, jährlich (Zellbiologie SoSe, Entwicklungsbiologie WS) |
| Semester | ab 3. Sem. |
| Sprache | Deutsch |
| Voraussetzung für Teilnahme | Modul Allgemeine und Spezielle Zoologie |
| Lehrform | Vorlesung
| | Virtuelles Tutorium (Online) |
| Studentischer Arbeitsaufwand |
| | 60 Stunden Präsenzzeit
| | 90 Stunden Selbststudium |
| Leistungspunkte (Credits) | 5 |
| Studienleistungen | |
| Modulprüfungsleistung, Art und Dauer der Prüfungen |
| | (1) Teilklausur zu Molekulare Grundlagen der Entwicklung (1–2 h)
| | (2) Teilklausur zu Zellbiologie (1–2 h) |
| Literatur |
| | Foliensammlungen/Skripte
| | Pollard and Earnshaw Cell Biology 2nd Ed. Saunders 2006
<p>| Spezielle Informationen | Die Teilnahme am virtuellen Tutorium ist freiwillig. |</p>
<table>
<thead>
<tr>
<th>Modul Name</th>
<th>Berufliche Orientierung I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>BScBio P17</td>
</tr>
</tbody>
</table>
| Einzelveranstaltungen des Moduls und Lehrformen | - Berufsfelder der Biologie (Kolloquium, 2 SWS)
- Berufsfeldbezogenes Praktikum (6 Wochen) |
| Modulbeauftragter | Studiendekan |
| Dozent/in | Prof. Dr. F. Herberg, Prof. Dr. U. Kutschera, Prof. Dr. E. Langer, Prof. Dr. W. Nellen, Dr. C. Nowack, Prof. Dr. M. Schafer, Prof. Dr. R. Schaffrath, Prof. Dr. M. Stengl, Prof. Dr. M. Maniak, Prof. Dr. R. Wagner, Prof. Dr. K. Weising, Prof. Dr. H. Zolitzer, N.N. |
| Lernziele und Kompetenzen | - Erlangung erster berufsspezifischer Fertigkeiten
- Gewinnen eines ersten Überblicks über die heterogenen Berufsfelder für Biologen
- Fähigkeit zur selbständigen Abfassung eines Praktikumsberichtes |
| Integrierter Erwerb von Schlüsselkompetenzen | - Integrationsfähigkeit
- Einhaltung von Zielvorgaben
- Teamfähigkeit |
| Lerninhalte | Die fachlichen Inhalte sind abhängig von der gewählten Einrichtung bzw. dem Unterrichten und der Schwerpunktsetzung des Studierenden |
| Verwendbarkeit des Moduls (Zuordnung zu Curriculum) | B.Sc. Biologie: Pflichtmodul |
| Dauer und Häufigkeit des Angebotes des Moduls | Ein- bis zweisemestrig, jährlich, Kolloquium in der Vorlesungszeit des SoSe; Praktikum in der vorlesungsfreien Zeit |
| Semester | Ab 4. Sem. |
| Sprache | Deutsch |
| Voraussetzung für Teilnahme | Immatrikulation in den Studiengang B.Sc. Biologie |
| Lehrform | Kolloquium, Berufspraktikum |
| Studentischer Arbeitsaufwand | 30 Stunden Präsenzzeit für das Kolloquium
240 Stunden Präsenzzeit im Praktikum (6 Wochen zu 40 Std.)
30 Stunden Selbststudium (Berichtserstellung) |
<p>| Leistungspunkte (Credits) | 10 (davon 4 Credits integrierte Schlüsselkompetenzen) |
| Studienleistungen | |
| Modulprüfungsteilnahme, Art und Dauer der Prüfungen | Schriftlicher Praktikumsbericht (bewertet, aber unbenotet) |
| Literatur | Fachspezifisch |
| Spezielle Informationen | Das Praktikum kann zu einem beliebigen Zeitpunkt nach dem 4. Semester absolviert werden, vorzugsweise in der vorlesungsfreien Zeit |</p>
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Methodenkenntnis und Projektplanung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>BScBio P18</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
<td>Selbststudium</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. F. Herberg, Prof. Dr. U. Kutschera, Prof. Dr. E. Langer, Prof. Dr. M. Maniak, Prof. Dr. W. Nellen, Dr. C. Nowack, Prof. Dr. M. Schäfer, Prof. Dr. R. Schaffrath, Prof. Dr. M. Stengl, Prof. Dr. R. Wagner, Prof. Dr. K. Weising, Prof. Dr. H. Zölter, N.N.</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>Selbständige, gezielte Literatursuche in Bibliotheken, Datenbanken und Internet</td>
</tr>
<tr>
<td></td>
<td>Selbständige Erstellung einer Literaturübersicht zum Stand der Forschung in einem begrenzten Forschungsgebiets der Biologie, auf der Grundlage deutsch- und englischsprachiger Originalliteratur</td>
</tr>
<tr>
<td></td>
<td>Projektplanung: themenspezifische Gliederung und Ausarbeitung eines Projektvorschlags für eine Bachelorarbeit</td>
</tr>
<tr>
<td>Integrierter Erwerb von Schlüsselkompetenzen</td>
<td>Datenbankrecherchen</td>
</tr>
<tr>
<td></td>
<td>Internetkompetenz</td>
</tr>
<tr>
<td></td>
<td>Wissenschaftliches Formulieren</td>
</tr>
<tr>
<td></td>
<td>Umgang mit MS Office-Anwendungen</td>
</tr>
<tr>
<td>Lerninhalte</td>
<td>Erarbeitung der theoretischen Grundlagen einer wissenschaftlichen Fragestellung aus dem Forschungsgebiets der Biologie, zur unmittelbaren Vorbereitung einer Bachelorarbeit</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</td>
<td>B.Sc. Biologie: Pflichtmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Einsemestrig, in jedem Semester</td>
</tr>
<tr>
<td>Semester</td>
<td>Ab 5. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Folgende Pflichtmodule sind Voraussetzung:</td>
</tr>
<tr>
<td></td>
<td>Mathematik für Biologen</td>
</tr>
<tr>
<td></td>
<td>Biometrie für Biologen</td>
</tr>
<tr>
<td></td>
<td>Physik für Biologen</td>
</tr>
<tr>
<td></td>
<td>Allgemeine und anorganische Chemie</td>
</tr>
<tr>
<td></td>
<td>Organische Chemie und Biochemie</td>
</tr>
<tr>
<td></td>
<td>Anatomie der Pflanzen</td>
</tr>
<tr>
<td></td>
<td>Allgemeine und Spezielle Zoologie</td>
</tr>
<tr>
<td></td>
<td>Biodiversität der Pflanzen</td>
</tr>
<tr>
<td></td>
<td>Biodiversität der Tiere</td>
</tr>
<tr>
<td></td>
<td>Physiologie der Pflanzen</td>
</tr>
<tr>
<td></td>
<td>Physiologie der Tiere</td>
</tr>
<tr>
<td></td>
<td>Genetik</td>
</tr>
<tr>
<td></td>
<td>Mikrobiologie</td>
</tr>
<tr>
<td></td>
<td>Ökologie</td>
</tr>
<tr>
<td></td>
<td>Zellbiologie und Entwicklungsbiologie</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Selbststudium</td>
</tr>
<tr>
<td></td>
<td>Anleitung zum Wissenschaftlichen Arbeiten</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>270 h</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>9 (davon 1 Credit integrierte Schlüsselkompetenzen)</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td></td>
</tr>
<tr>
<td>Modulprüfungsleistung, Art und Dauer der Prüfungen</td>
<td>Schriftliche Ausarbeitung eines Projektvorschlag für die Bachelorarbeit (unbenotet)</td>
</tr>
<tr>
<td>Literatur</td>
<td>Themenspezifische Fachliteratur</td>
</tr>
<tr>
<td>Modulname</td>
<td>Bachelorarbeit</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Code</td>
<td>BScBio P19</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls</td>
<td>Bachelorarbeit</td>
</tr>
<tr>
<td>und Lehrformen</td>
<td></td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. F. Herberg, Prof. Dr. U. Kutschera, Prof. Dr. E. Langer, Prof. Dr. M. Maniak, Prof. Dr. W. Nellen, Dr. C. Nowack, Prof. Dr. M. Schäfer, Prof. Dr. R. Schaffrath, Prof. Dr. M. Stengel, Prof. Dr. R. Wagner, Prof. Dr. K. Weising, Prof. Dr. H. Zöltzer, N.N.</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td></td>
</tr>
<tr>
<td>• In der Bachelorarbeit soll sich der/die Studierende innerhalb einer festgelegten Zeit in eine biologisch-wissenschaftliche Fragestellung einarbeiten, das erlernte Wissen bei der experimentellen und/oder theoretischen Bearbeitung der Fragestellung anwenden und die Ergebnisse in schriftlicher Form verständlich darstellen und diskutieren.</td>
<td></td>
</tr>
<tr>
<td>• Kommunikationsfähigkeit über wissenschaftliche Fragestellungen</td>
<td></td>
</tr>
<tr>
<td>• Wissenschaftliches Formulieren</td>
<td></td>
</tr>
<tr>
<td>• Kritische Diskussion wissenschaftlicher Ergebnisse vor Fachleuten</td>
<td></td>
</tr>
<tr>
<td>• Fähigkeit zur mündlichen Erläuterung eines wissenschaftlichen Problems aus einem Fachgebiet der Biologie sowie entsprechender Lösungsansätze</td>
<td></td>
</tr>
<tr>
<td>Integrierter Erwerb von Schlüsselkompetenzen</td>
<td></td>
</tr>
<tr>
<td>• Entwicklung von Arbeitshypothesen</td>
<td></td>
</tr>
<tr>
<td>• Entwicklung von Problemlösungskonzepten</td>
<td></td>
</tr>
<tr>
<td>• Kooperations- und Teamfähigkeit</td>
<td></td>
</tr>
<tr>
<td>• Projektrealisierung</td>
<td></td>
</tr>
<tr>
<td>Lerninhalte</td>
<td></td>
</tr>
<tr>
<td>• Experimentelle oder theoretische Bearbeitung einer wissenschaftlichen Fragestellung aus dem Forschungsgebiet der Biologie</td>
<td></td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</td>
<td>B.Sc. Biologie: Pflichtmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Einsemestrig, in jedem Semester</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Folgende Module sind Voraussetzung:</td>
</tr>
<tr>
<td>• Mathematik für Biologen</td>
<td></td>
</tr>
<tr>
<td>• Biometrie für Biologen</td>
<td></td>
</tr>
<tr>
<td>• Physik für Biologen</td>
<td></td>
</tr>
<tr>
<td>• Allgemeine und anorganische Chemie</td>
<td></td>
</tr>
<tr>
<td>• Organische Chemie und Biochemie</td>
<td></td>
</tr>
<tr>
<td>• Anatomie der Pflanzen</td>
<td></td>
</tr>
<tr>
<td>• Allgemeine und spezielle Zoologie</td>
<td></td>
</tr>
<tr>
<td>• Biodiversität der Pflanzen</td>
<td></td>
</tr>
<tr>
<td>• Biodiversität der Tiere</td>
<td></td>
</tr>
<tr>
<td>• Physiologie der Pflanzen</td>
<td></td>
</tr>
<tr>
<td>• Physiologie der Tiere</td>
<td></td>
</tr>
<tr>
<td>• Genetik</td>
<td></td>
</tr>
<tr>
<td>• Mikrobiologie</td>
<td></td>
</tr>
<tr>
<td>• Ökologie</td>
<td></td>
</tr>
<tr>
<td>• Zellbiologie und Entwicklungsbiologie</td>
<td></td>
</tr>
<tr>
<td>• Berufliche Orientierung I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Selbststudium, ggf. experimentelle Arbeit</td>
</tr>
<tr>
<td></td>
<td>Anleitung zum Wissenschaftlichen Arbeiten</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>360 Std. Präsenzzeit und Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>12 (davon 2 Credits integrierte Schlüsselkompetenzen)</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td></td>
</tr>
<tr>
<td>Modulprüfungsleistung, Art und Dauer der Prüfungen</td>
<td>Bachelorarbeit, Bachelorkolloquium (max. 60 Minuten)</td>
</tr>
<tr>
<td>Literatur</td>
<td>Themenspezifische Fachliteratur</td>
</tr>
<tr>
<td>Spezielle Informationen</td>
<td>Die Note ergibt sich aus der Bachelorarbeit. Der Vortrag im Rahmen des Bachelorkolloquiums wird nur mit bestanden/nicht bestanden bewertet.</td>
</tr>
<tr>
<td>Modulname</td>
<td>Tutorium Organische Chemie und Biochemie</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>Code</td>
<td>BioBSc R1</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
<td>• Tutorium</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. F. Herberg, N.N.</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>• Selbstständige Vertiefung von Lerninhalten mit Hilfe von Literatur und Internetrecherche</td>
</tr>
<tr>
<td></td>
<td>• Diskussionskultur zur Lösung von Transferaufgaben</td>
</tr>
<tr>
<td></td>
<td>• Anwendung des erlernten Wissens auf praktische Problemstellungen</td>
</tr>
<tr>
<td>Integrierter Erwerb von Schlüsselkompetenzen</td>
<td>• Effizientes Lernen in der Gruppe</td>
</tr>
<tr>
<td></td>
<td>• Recherchieren von geeigneter Literatur</td>
</tr>
<tr>
<td>Lerninhalte</td>
<td>• Vertiefung und Festigung des im Grundmodul Organische Chemie und Biochemie gelehrtten Stoffs</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</td>
<td>B.Sc. Biologie: Wahlpflichtmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Einsemestrig, jedes Semester</td>
</tr>
<tr>
<td>Semester</td>
<td>4. oder 5. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Modul Organische Chemie und Biochemie</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Selbstständiges, durch ein Tutorium flankiertes Lernen aus Fachbüchern und eigenen Aufzeichnungen</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>120 Stunden Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>4</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td></td>
</tr>
<tr>
<td>Modulprüfungsteilnahme, Art und Dauer der Prüfungen</td>
<td>Mündliche Prüfung von 30 Min.</td>
</tr>
<tr>
<td>Literatur</td>
<td>Siehe Beschreibungen der Module Organische Chemie und Biochemie</td>
</tr>
<tr>
<td>Spezielle Informationen</td>
<td>Es wird empfohlen, die Auswahl der Tutorien der Wahl der Profilmodule anzupassen.</td>
</tr>
<tr>
<td>Modulname</td>
<td>Tutorium Genetik und Mikrobiologie</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Code</td>
<td>BioBSc R2</td>
</tr>
<tr>
<td>Einzelveranstaltungen des</td>
<td></td>
</tr>
<tr>
<td>Moduls und Lehrformen</td>
<td>• Tutorium</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. W. Nellen, Prof. Dr. R. Schaffrath</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>• Selbständige Vertiefung von Lerninhalten mit Hilfe von Literatur und Internetrecherche</td>
</tr>
<tr>
<td></td>
<td>• Diskussionskultur zur Lösung von Transferaufgaben</td>
</tr>
<tr>
<td></td>
<td>• Anwendung des erlernten Wissens auf praktische Problemstellungen</td>
</tr>
<tr>
<td>Integrierter Erwerb von</td>
<td></td>
</tr>
<tr>
<td>Schlüsselkompetenzen</td>
<td>• Effizientes Lernen in der Gruppe</td>
</tr>
<tr>
<td></td>
<td>• Recherchieren von geeigneter Literatur</td>
</tr>
<tr>
<td>Lerninhalte</td>
<td>• Fachübergreifende Vertiefung und Festigung des in den Grundmodulen Genetik und Mikrobiologie gelehrtten Stoffs</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B.Sc. Biologie: Wahlpflichtmodul</td>
</tr>
<tr>
<td>(Zuordnung zu Curriculum)</td>
<td></td>
</tr>
<tr>
<td>Dauer und Häufigkeit des</td>
<td>Einsemestrig, jedes Semester</td>
</tr>
<tr>
<td>Angebotes des Moduls</td>
<td></td>
</tr>
<tr>
<td>Semester</td>
<td>4. oder 5. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch und Englisch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Modul Genetik</td>
</tr>
<tr>
<td></td>
<td>Modul Mikrobiologie</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Selbstständiges, durch ein Tutorium und eine internationale Aufgaben- und Diskussionsplattform flankiertes Lernen aus Fachbüchern und eigenen Aufzeichnungen</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>120 Stunden Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>4</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td></td>
</tr>
<tr>
<td>Modulprüfungsleistung,</td>
<td>Mündliche Prüfung 30 Min.</td>
</tr>
<tr>
<td>Art und Dauer der Prüfungen</td>
<td></td>
</tr>
<tr>
<td>Literatur</td>
<td>Siehe Beschreibungen der Grundmodule Genetik und Mikrobiologie</td>
</tr>
<tr>
<td>Spezielle Informationen</td>
<td>Es wird empfohlen, die Auswahl der Tutorien der Wahl der Profilmodule anzupassen.</td>
</tr>
<tr>
<td>Modulname</td>
<td>Tutorium Pflanzenphysiologie und Botanik</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Code</td>
<td>BioBSc R3</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Modul und Lehrformen</td>
<td>Tutorium</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. U. Kutschera, Prof. Dr. K. Weising</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>Fachübergreifendes Verständnis des Zusammenhangs zwischen Struktur und Funktion pflanzlicher Zellen und Gewebe, Überblick über die grundlegenden physiologischen Vorgänge bei Pflanzen Selbständige Vertiefung von Lerninhalten mit Hilfe von Literatur und Internetrecherche Diskussionskultur zur Lösung von Transferaufgaben Anwendung des erlernten Wissens auf praktische Problemstellungen</td>
</tr>
<tr>
<td>Integrierter Erwerb von Schlüsselkompetenzen</td>
<td>Effizientes Lernen in der Gruppe Recherchieren von geeigneter Literatur</td>
</tr>
<tr>
<td>Lerninhalte</td>
<td>Fachübergreifende Vertiefung und Festigung des in den Grundmodulen Anatomie der Pflanzen und Physiologie der Pflanzen gelehrt Stoffs</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</td>
<td>B.Sc. Biologie: Wahlpflichtmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Einsemestrig, jedes Semester</td>
</tr>
<tr>
<td>Semester</td>
<td>4. oder 5. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Modul Anatomie der Pflanzen Modul Physiologie der Pflanzen</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Selbstständiges, durch ein Tutorium flankiertes Lernen aus Fachbüchern und eigenen Aufzeichnungen</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>120 Stunden Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>4</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td></td>
</tr>
<tr>
<td>Modulprüfungsleistung, Art und Dauer der Prüfungen</td>
<td>Mündliche Prüfung von 30 Min.</td>
</tr>
<tr>
<td>Literatur</td>
<td>Siehe Beschreibungen der Module Anatomie der Pflanzen und Physiologie der Pflanzen</td>
</tr>
<tr>
<td>Spezielle Informationen</td>
<td>Es wird empfohlen, die Auswahl der Tutorien der Wahl der Profilmodule anzupassen.</td>
</tr>
<tr>
<td>Modulname</td>
<td>Tutorium Zellbiologie und Entwicklungsbiologie</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>Code</td>
<td>BioBSc R4</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
<td>Tutorium</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. M. Schäfer, Prof. Dr. M. Maniak</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>Fachübergreifendes Verständnis des Zusammenwirkens von Molekülen bei physiologischen und entwicklungsbio- logischen Vorgängen in Zellen und Geweben</td>
</tr>
<tr>
<td></td>
<td>Überblick über Modellorganismen und ihre besonderen Eigenschaften</td>
</tr>
<tr>
<td></td>
<td>Selbständige Vertiefung von Lerninhalten mit Hilfe von Literatur und Internetrecherche</td>
</tr>
<tr>
<td></td>
<td>Diskussionskultur zur Lösung von Transferaufgaben</td>
</tr>
<tr>
<td></td>
<td>Anwendung des erlernten Wissens auf praktische Problemstellungen</td>
</tr>
<tr>
<td>Integrierter Erwerb von Schlüsselkompetenzen</td>
<td>Effizientes Lernen in der Gruppe</td>
</tr>
<tr>
<td></td>
<td>Recherchieren von geeigneter Literatur</td>
</tr>
<tr>
<td>Lerninhalte</td>
<td>Fachübergreifende Vertiefung und Festigung des im Grundmodul Zell- und Entwicklungsbiologie gelehrt Stoffs</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</td>
<td>B.Sc. Biologie: Wahlpflichtmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Einsemestrig, jedes Semester</td>
</tr>
<tr>
<td>Semester</td>
<td>4. oder 5. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Modul Zell– und Entwicklungsbiologie</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Selbstständiges, durch ein Tutorium flankiertes Lernen aus Fachbüchern und eigenen Aufzeichnungen</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>120 Stunden Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>4</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Mündliche Prüfung von 30 Min.</td>
</tr>
<tr>
<td>Literatur</td>
<td>Siehe Beschreibungen des Moduls Zell– und Entwicklungsbiologie</td>
</tr>
<tr>
<td>Spezielle Informationen</td>
<td>Es wird empfohlen, die Auswahl der Tutorien der Wahl der Profimodule anzupassen.</td>
</tr>
<tr>
<td>Modulname</td>
<td>Tutorium Tierphysiologie und Zoologie</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Code</td>
<td>BioBSc R5</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
<td>Tutorium</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. M. Stengl, Dr. C. Nowack</td>
</tr>
</tbody>
</table>
| Lernziele und Kompetenzen | • Fächerübergreifendes Verständnis zoologischer Systematik und der bei den verschiedenen Tiergruppen auftretenden anatomischen und physiologischen Merkmale.
• Fächerübergreifendes Verständnis physiologischer Prozesse bei verschiedenen Tiergruppen und bei Menschen
• Einsicht in die größeren Funktionszusammenhänge der Strukturen und Aufgaben von Organsystemen
• Selbständige Vertiefung von Lerninhalten mit Hilfe von Literatur und Internetrecherche
• Diskussionskultur zur Lösung von Transferaufgaben
• Anwendung des erlernten Wissens auf praktische Problemeinheiten |
| Integrierter Erwerb von Schlüsselkompetenzen | • Effizientes Lernen in der Gruppe
• Recherchieren von geeigneter Literatur |
| Lerninhalte | • Fachübergreifende Vertiefung und Festigung des in den Grundmodulen Allgemeine und Spezielle Zoologie sowie Physiologie der Tiere gelehrtten Stoffs
• Baupläne der wichtigsten Tiergruppen unter phylogenetischen Aspekten
• Vergleich der bei verschiedenen Invertebraten und Vertebraten vorhandenen Organsysteme in Bau und Funktion
• Sensorische Systeme von Invertebraten und Vertebraten
• Lebenszyklen und Fortpflanzung
• Aufbau und Funktion von kleinen und großen Gehirnen |
| Verwendbarkeit des Moduls (Zuordnung zu Curriculum) | B.Sc. Biologie: Wahlpflichtmodul |
| Dauer und Häufigkeit des Angebotes des Moduls | Einsemestrig, jedes Semester |
| Semester | 4. oder 5. |
| Sprache | Deutsch |
| Voraussetzung für Teilnahme | Modul Allgemeine und Spezielle Zoologie
Modul Physiologie der Tiere |
<p>| Lehrform | Selbstständiges, durch ein Tutorium flankiertes Lernen aus Fachbüchern und eigenen Aufzeichnungen |
| Studentischer Arbeitsaufwand | 120 Stunden Selbststudium |
| Leistungspunkte (Credits) | 4 |
| Studienleistungen | |
| Modulprüfungsleistung, Art und Dauer der Prüfungen | Mündliche Prüfung von 30 Min. |
| Literatur | Siehe Beschreibungen der Module Allgemeine und Spezielle Zoologie sowie Physiologie der Tiere |
| Spezielle Informationen | Für das Tutorium wird entweder Tierphysiologie oder Zoologie gewählt. Es wird empfohlen, die Auswahl der Tutorien der Wahl der Profimodule anzupassen. |</p>
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Tutorium Ökologie und Biodiversität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>BioBSc R6</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
<td>Tuttorium</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof, Dr. K. Weising, Prof. Dr. E. Langer, Prof. Dr. M. Schäfer</td>
</tr>
</tbody>
</table>
| Lernziele und Kompetenzen | - Überblick über Systematik, Phylogenie und Lebenszyklen der Tiere und Gefäßpflanzen
- Kenntnis häufiger einheimischer Pflanzen, Tiere und Pilze
- Verständnis grundlegender ökologischer Gesetzmäßigkeiten
- Selbstdändige Vertiefung von Lerninhalten mit Hilfe von Literatur und Internetrecherche
- Diskussionskultur zur Lösung von Transferaufgaben
- Anwendung des erlernten Wissens auf praktische Probleme |
| Integrierter Erwerb von Schlüsselkompetenzen | - Effizientes Lernen in der Gruppe
- Recherchieren von geeigneter Literatur |
| Lerninhalte | - Vertiefung und Festigung des in den Grundmodulen Biodiversität der Pflanzen, Biodiversität der Tiere und Ökologie gelehrt en Stoffs
- Häufige und wichtige einheimische Pflanzen, Tiere und Pilze
- Systematik, Phylogenie und Lebenszyklen der Pflanzen, Tiere und Pilze |
| Verwendbarkeit des Moduls (Zuordnung zu Curriculum) | B.Sc. Biologie: Wahlpflichtmodul |
| Dauer und Häufigkeit des Angebotes des Moduls | Einseminatrig, jedes Semester |
| Semester | 4. oder 5. Sem. |
| Sprache | Deutsch |
| Voraussetzung für Teilnahme | Modul Ökologie
Modul Biodiversität der Pflanzen
Modul Biodiversität der Tiere |
<p>| Lehrform | Selbstständiges, durch ein Tutorium flankiertes Lernen aus Fachbüchern und eigenen Aufzeichnungen |
| Studentischer Arbeitsaufwand | 120 Stunden Selbststudium |
| Leistungspunkte (Credits) | 4 |
| Studienleistungen | |
| Modulprüfungsslustung, Art und Dauer der Prüfungen | Mündliche Prüfung von 30 Min. |
| Literatur | Siehe Beschreibungen der Module Grundmodulen Biodiversität der Pflanzen, Biodiversität der Tiere und Ökologie |
| Spezielle Informationen | Es wird empfohlen, die Auswahl der Tutorien der Wahl der Profimodule anzupassen. |</p>
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Profimodul Biochemie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>BScBio V1</td>
</tr>
</tbody>
</table>
| Einzelveranstaltungen des Moduls und Lehrformen | • Biochemie II (V 2 SWS)
• Seminar I (S 1 SWS)
• Seminar II (S, 2 SWS)
• Praktikum (Pra, 7 SWS) |
| Modulbeauftragter | Prof. Dr. F. Herberg |
| Dozent/in | Prof. Dr. F. Herberg und Mitarbeiter |
| Lernziele und Kompetenzen | • Soße Kenntnisse der Biochemie, insbesondere in der Anwendung auf zelluläre Systeme als Grundlage für Forschungsarbeiten in den molekularen
 biowissenschaften,
• Verständnis und Auseinandersetzung mit Methoden der modernen Biochemie
• Erlernen des sicheren und kompetenten Umgangs mit biochemischer
 Laborausstattung,
• Fähigkeit zur Reflexion der Aussagekraft biochemischer Messergebnisse.
 (Erwerb von Problemlösungskompetenz). |
| Integrierter Erwerb von Schlüsselkompetenzen | • Teamfähigkeit
• Versuchsplanung
• Erwerb der Fähigkeit zur Dokumentation von Experimenten und deren
 Ergebnissen (Erstellung detaillierter wissenschaftlicher Protokolle)
• Erwerb der Fähigkeit, Grundprinzipien der molekularen Biowissenschaften
 auf konkrete biologische und medizinische Fallbeispiele aus der
 alltäglichen Umgebung anzuwenden
• Fähigkeit zur Reflexion der Aussagekraft von Fachliteratur
• Erlernen der mündlichen Präsentation Ergebnisse eignen Ergebnisse unter
 wissenschaftlichen Gesichtspunkten. |
| Lerninhalte | • Molekulare Mechanismen der intrazellulären Signaltransduktion.
• Grundlegende Methoden der Proteinbiochemie
• biochemische Standardmethoden (SDS–PAGE, Chromatographie)
• Beschäftigung mit einer aktuellen wissenschaftlichen Fragestellung der
 Abteilung.
• Zum Praktikum gehören die Teilnahme am Seminar der Abteilung für
 Biochemie (Freitags, Beginn 4 Wochen vor Praktikumsanfang), an der
 Vorlesung Biochemie II und dem Kolloquium Molekulare Aspekte der
 Biologie. |
| Verwendbarkeit des Moduls (Zuordnung zu Curriculum) | BSc Biologie: Wahlpflichtmodul |
| Dauer und Häufigkeit des Angebotes des Moduls | Zweisemestratisch, jährlich (Vorlesung Biochemie II im WS, Seminar I im WS; Praktikum und Seminar II im SS) |
| Semester | Ab 5. Sem. |
| Sprache | Deutsch |
| Voraussetzung für Teilnahme | Modul Organische Chemie und Biochemie |
| Lehrform | Vorlesung, Praktikum, Seminar |
| Studentischer Arbeitsaufwand | 180 Stunden Präsenzzeit
180 Stunden Selbststudium |
| Leistungspunkte (Credits) | 12 (davon 2 Credits integrierte Schlüsselkompetenzen) |
| Studienleistungen | Durchführung aller Praktikumsversuche und regelmäßige, aktive Mitarbeit im Seminar |
| Modulprüfungsleistung, Art und Dauer der Prüfungen | (1) Seminarvortrag
(2) Bewertetes Praktikumsprotokoll |
| Literatur | Wird gestellt oder nach Wunsch:
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Profilmus Botanik (Schwerpunkt Molekulare Systematik der Landpflanzen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>BScBio V2a</td>
</tr>
</tbody>
</table>

Einzelveranstaltungen des Moduls und Lehrformen
- Biologische Systematik und Evolution (V, 1 SWS)
- Methoden der Pflanzensystematik und Genomanalyse (S, 2 SWS)
- Pflanzliche Molekularsystematik (P, 9 SWS)

Modulbeauftragter
Prof. Dr. K. Weising

Dozent/in
Prof. Dr. K. Weising und Mitarbeiter

Lernziele und Kompetenzen
- Kenntnisse der wichtigsten klassischen und modernen Prinzipien und Methoden der Pflanzensystematik: von der Morphologie zur Molekularbiologie.
- Verständnis der Prinzipien molekularsystematischer Labortechniken und Auswertemethoden einschließlich der zugehörigen Theorie
- Fähigkeit zur selbstandigen Planung und Durchführung von einfachen Laborexperimenten, u.a. der DNA-Isolation aus Pflanzenmaterial, Gelektrophorese, Polymerase-Kettenreaktion, und DNA-Sequenzierung
- Softwarekenntnisse und -erfahrungen bezüglich der Rekonstruktion von DNA-basierten Stammbäumen

Integrierter Erwerb von Schlüsselkompetenzen
- Fähigkeit zur selbstandigen Vorbereitung, Gestaltung und Präsentation von informativen und wissenschaftlich präzisen Seminarvorträgen, incl. Literaturrecherche
- Erlernen des eigenständigen Arbeitens mit Fachliteratur für Fortgeschrittene
- Teamfähigkeit

Lerninhalte
- Klassische und molekulare Systematik der Landpflanzen
- Methoden der Pflanzensystematik und Genomanalyse
- Vergleichende DNA-Sequenzanalyse
- Molekulare Markertechniken und genetischer Fingerabdruck
- Molekulare Phylogenie und Methoden der Stammbaum-Rekonstruktion

Verwendbarkeit des Moduls (Zuordnung zu Curriculum)
B.Sc. Biologie: Wahlpflichtmodul

Dauer und Häufigkeit des Angebotes des Moduls
Einsemestrig, jährlich (jeweils im WS). Vorlesung im WS, Seminar und Laborpraktikum im Anschluss an das WS (Blockveranstaltung)

Semester
5. Sem.

Sprache
Deutsch

Voraussetzung für Teilnahme
Immatraktionierung für den Studiengang B.Sc. Biologie Grundmodul Genetik

Lehrform
Vorlesung, Seminar und Laborpraktikum

Studentischer Arbeitsaufwand
180 Stunden Präsenzzeit (12 SWS)
180 Stunden Selbststudium

Leistungspunkte (Credits)
12 (davon 2 Credits für integrierte Schlüsselkompetenzen)

Studieneleistungen
Durchführung aller Praktikumsversuche und regelmäßige, aktive Mitarbeit im Seminar

Modulprüfungsleistung, Art und Dauer der Prüfungen
Bewertetes Praktikumsprotokoll
Bewerteter Seminarvortrag (Wichtung 50/50)

Literatur
Zusätzliche Literatur wird je nach Thema individuell zur Verfügung gestellt

<p>| Sonstige Informationen | Die Profilmodule V2a und V2b haben unterschiedliche Schwerpunktsetzungen und können alternativ belegt werden |</p>
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Profilmodul Botanik (Schwerpunkt Systematik und Evolution der Pflanzen, Algen und Pilze)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>BScBio V2b</td>
</tr>
</tbody>
</table>
| Einzelveranstaltungen des Moduls und Lehrformen | • Systematik und Evolution von Algen, Pilzen und Pflanzen (V, 2 SWS)
• Morphologie und Anatomie von Algen, Pilzen u. Pflanzen (P, 8 SWS)
• Spezielle Themen der Pflanzensystematik (S, 1 SWS)
• Botanische Halb- und Ganztageexkursionen (E, 2 SWS) |
| Modulbeauftragter | Prof. Dr. K. Weising |
| Dozent/in | Prof. Dr. K. Weising und Mitarbeiter |
| Lernziele und Kompetenzen | • Vertiefte Kenntnisse der Systematik, Baupläne, Lebenszyklen, Evolution und Biodiversität der Algen, Pilze und Landpflanzen.
• Fähigkeit zur Einordnung pflanzlicher und pflanzenähnlicher Organismen in systematische Großgruppen
• Grundlegendes Verständnis der pflanzlichen Anpassungen an das Landleben
• Verständnis der methodischen Prinzipien der biologischen Systematik: von der Morphologie zur Molekularbiologie.
• Sicherer und kompetenter Umgang mit dem Lichtmikroskop
• Zeichnerische Dokumentation mikro- und makroskopischer Präparate von Pflanzen, Pilzen und Algen
• Gute Kenntnisse der Vegetation und Ökologie der wichtigsten einheimischen Biotope |
| Integrierter Erwerb von Schlüsselkompetenzen | • Fähigkeit zur selbständigen Vorbereitung, Gestaltung und Präsentation von informativen und wissenschaftlich präzisen Seminarvorträgen, incl. Literaturrecherche
• Erlernen des eigenständigen Arbeitens mit Fachliteratur für Fortgeschrittene
• Teamfähigkeit |
| Lerninhalte | • Systematik, Morphologie, Anatomie, Lebenszyklen, Ökologie und Evolution der Cyanobakterien, der eukaryotischen Algen, Joch-, Schlauch- und Ständerpilze, Flechten, Laub-, Leber- und Hornmoose, farnartigen Pflanzen (Farne, Schachtelhalme, Bärlappe) und Gefäßpflanzen (Theorie und Praxis) |
| Verwendbarkeit des Moduls (Zuordnung zu Curriculum) | B.Sc. Biologie: Wahlpflichtmodul
Lehramt L3 (Biologie): Wahlpflichtmodul |
| Dauer und Häufigkeit des Angebotes des Moduls | Einsemestrig, jährlich (jeweils im SS) |
| Sprache | Deutsch |
| Voraussetzung für Teilnahme | Modul Anatomie der Pflanzen
Modul Biodiversität der Pflanzen |
| Lehrform | Vorlesung, Praktikum, Seminar und Exkursionen |
| Studentischer Arbeitsaufwand | 195 Stunden Präsenzzeit (11 SWS und 4 Ganztageexkursionen)
165 Stunden Selbststudium |
| Leistungspunkte (Credits) | 12 (davon 2 Credits integrierte Schlüsselkompetenzen) |
| Studienleistungen | Regelmäßige Mitarbeit im Praktikum und Anfertigung korrekter Zeichnungen
Nachweis über die aktive Teilnahme an 4 Ganztageexkursionen (kann auch nach der Modulprüfung nachgereicht werden) |
<table>
<thead>
<tr>
<th>Modulprüfungsleistung, Art und Dauer der Prüfungen</th>
<th>Seminarvortrag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur (2,5 Stunden)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
</table>
| Strasburger: Lehrbuch der Botanik. 36. Auflage 2008, Spektrum Akademischer Verlag
| oder |
| De Gruyter, Berlin |
| Eine Liste mit Spezialliteratur wird zu Beginn des Kurses bekannt gegeben. |

<table>
<thead>
<tr>
<th>Spezielle Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Code</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Modulbeauftragter</td>
</tr>
<tr>
<td>Dozent/in</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Integrierter Erwerb von Schlüsselkompetenzen</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lerninhalte</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</th>
<th>B.Sc. Biologie: Wahlpflichtmodul</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lehramt L3 (Biologie) Wahlpflichtmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Einsemestrig; jährlich (jeweils in der ersten Hälfte des WS)</td>
</tr>
<tr>
<td>Semester</td>
<td>Ab 5. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Modul Allgemeine und Spezielle Zoologie</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Seminar, Praktikum und Exkursionen</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>210 Stunden Präsenzzeit (13 SWS, 2 Ganztageexkursionen, 2 Halbtageexkursionen)</td>
</tr>
<tr>
<td></td>
<td>150 Stunden Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>12 (davon 2 Credits integrierte Schlüsselkompetenzen)</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Regelmäßige Mitarbeit in Praktikum und Seminar</td>
</tr>
</tbody>
</table>

Mitteilungsblatt der Universität Kassel Nr. 2/2012 vom 06.03.2012 266
<table>
<thead>
<tr>
<th>Modulprüfungsleistung, Art und Dauer der Prüfungen</th>
<th>Mündliches Prüfungsgespräch (ca. 30 Minuten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spezielle Informationen</td>
<td>Anmeldung zum Praktikum: ab vorausgehendem Sommersemester bis spätestens Ende September</td>
</tr>
<tr>
<td>Modulname</td>
<td>Prof. Dr. U. Kutschera und Mitarbeiter</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Code</td>
<td>BSc Bio V4</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
<td></td>
</tr>
<tr>
<td>- Seminar: Evolutionäre Pflanzenphysiologie (2 SWS)</td>
<td></td>
</tr>
<tr>
<td>- Großpraktikum Pflanzenphysiologie mit Seminaranteil (14 SWS)</td>
<td></td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Prof. Dr. U. Kutschera</td>
</tr>
<tr>
<td>Dozent/in</td>
<td></td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td></td>
</tr>
<tr>
<td>- Erlernen des Arbeitens im Bereich Pflanzenphysiologie/</td>
<td></td>
</tr>
<tr>
<td>Mikrobiologie/Evolutionsbiologie (vom Experiment zur Theoriebildung).</td>
<td></td>
</tr>
<tr>
<td>- Moderne Biologen können auf dem Arbeitsmarkt nur vermittelt werden,</td>
<td></td>
</tr>
<tr>
<td>wenn sie über ein breites Fachwissen und ein entsprechendes</td>
<td></td>
</tr>
<tr>
<td>Methodenspektrum verfügen. Das Arbeiten und Denken im</td>
<td></td>
</tr>
<tr>
<td>Kompetenzbereich Physiologie, Mikrobiologie und Evolutionsbiologie soll</td>
<td></td>
</tr>
<tr>
<td>hier erlernt werden.</td>
<td></td>
</tr>
<tr>
<td>Integrierter Erwerb von Schlüsselfkompetenzen</td>
<td></td>
</tr>
<tr>
<td>- Fähigkeit zur selbständigen Vorbereitung, Gestaltung und Präsentation von</td>
<td></td>
</tr>
<tr>
<td>wissenschaftlichen Seminarvorträgen</td>
<td></td>
</tr>
<tr>
<td>- Teamarbeit</td>
<td></td>
</tr>
<tr>
<td>Lerninhalte</td>
<td></td>
</tr>
<tr>
<td>- Im Großpraktikum werden Experimente, die den laufenden</td>
<td></td>
</tr>
<tr>
<td>Forschungsschwerpunkten der Abt. Pflanzenphysiologie/</td>
<td></td>
</tr>
<tr>
<td>Evolutionsbiologie entnommen sind, durchgeführt.</td>
<td></td>
</tr>
<tr>
<td>- Im Projektpraktikum, der aus einem physiologischen und</td>
<td></td>
</tr>
<tr>
<td>mikrobiologischen Teil besteht, wird über die Entwicklung einer</td>
<td></td>
</tr>
<tr>
<td>Nutzpflanze und einer urtümlichen Landpflanze ein Grundverständnis für</td>
<td></td>
</tr>
<tr>
<td>die Wachstumsphysiologie vermittelt.</td>
<td></td>
</tr>
<tr>
<td>- Im zweiten Teil wird die Rolle epiphytischer Bakterien für die Entwicklung</td>
<td></td>
</tr>
<tr>
<td>steril angezogener Pflanzen studiert.</td>
<td></td>
</tr>
<tr>
<td>- Im dritten Teil werden Phytohormone (Schwerpunkt Auxin) mit Bezug zu</td>
<td></td>
</tr>
<tr>
<td>den epiphytischen Mikroben behandelt.</td>
<td></td>
</tr>
<tr>
<td>- Im vierten Teil werden molekularbiologische Methoden (DNA-Sequenzierung) zur</td>
<td></td>
</tr>
<tr>
<td>Klärung physiologischer bzw. evolutionsbiologischer Fragestellungen eingesetzt.</td>
<td></td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</td>
<td>BSc Biologie: Wahlpflichtmodul</td>
</tr>
<tr>
<td></td>
<td>Lehramt L3 Biologie: Wahlpflichtmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Einsemestrig, jährlich (in der 2. Hälfte eines jeden SoSe)</td>
</tr>
<tr>
<td>Semester</td>
<td>Ab 4. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Modul Physiologie der Pflanzen</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Seminar mit Großpraktikum</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>240 Stunden Präsenzzeit (14 SWS Praktikum + 2 SWS Seminar)</td>
</tr>
<tr>
<td></td>
<td>120 Stunden Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>12 (davon 2 Credits integrierte Schlüsselkompetenzen)</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Durchführung aller Praktikumsversuche und regelmäßig, aktive Mitarbeit im</td>
</tr>
<tr>
<td></td>
<td>Seminar</td>
</tr>
<tr>
<td>Modulprüfungsleistung, Art und Dauer der Prüfungen</td>
<td>(1) Seminarvortrag</td>
</tr>
<tr>
<td></td>
<td>(2) Protokoll</td>
</tr>
<tr>
<td></td>
<td>Akademischer Verlag, Heidelberg.</td>
</tr>
<tr>
<td></td>
<td>Verlag, Wiesbaden.</td>
</tr>
<tr>
<td></td>
<td>Zu sämtlichen Themen wird ergänzend die aktuelle Originalliteratur verwendet (z.B.</td>
</tr>
<tr>
<td>Modulname</td>
<td>Prof. Dr. M. Stengel</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
</tr>
</tbody>
</table>
| Einzelveranstaltungen des Moduls und Lehrformen | - Sinnesphysiologie (V, 2 SWS)
- Großpraktikum incl. Technikseminar (P,S 12 SWS)
- Seminar (S, 2 SWS) |
| Modulbeauftragter | Prof. Dr. M. Stengel und Mitarbeiter |
| Lernziele und Kompetenzen | - Erarbeiten von Spezialwissen aus Bereichen der Neurobiologie und Neuroethologie: circadiane Rhythmen, Geruchsinformations-verarbeitung
- Kritische und selbständige Erarbeitung eines Seminarthemas aus dem Bereich der Neurophysiologie |
| Integrierter Erwerb von Schlüsselkompetenzen | - Halten eines Vortrages
- Erarbeiten von englischsprachiger Originalliteratur
- Teamfähigkeit
- Fähigkeit zum analytischen Denken schlüsseln
- Kritikfähigkeit ausbilden
- Gedächtnis- und Konzentrationstraining
- Effiziente Literaturrecherche
- Methodentraining
- learning by doing
- Verantwortungsvolles kompetentes Umgehen mit Versuchsapparaturen
- Verantwortliches Arbeiten mit Versuchstieren
- Verantwortliches Arbeiten in der Gruppe
- Wissenschaftliches Experimentieren, Planen und Durchführen |
| Verwendbarkeit des Moduls (Zuordnung zu Curriculum) | B.Sc. Biologie: Wahlpflichtmodul
Lehramt L3 (Biologie) Wahlpflichtmodul
M.Sc. Nanostrukturnwissenschaften (Wahlmusul) |
| Dauer und Häufigkeit des Angebotes des Moduls | Einsemestrig, jährlich (jeweils im WS) |
| Semester | Ab 5. Sem. |
| Sprache | Deutsch |
| Voraussetzung für Teilnahme | Modul Physiologie der Tiere |
| Lehrform | Seminar, Vorlesung und Praktikum |
| Studentischer Arbeitsaufwand | 240 Stunden Präsenzzeit
120 Stunden Selbststudium |
| Leistungspunkte (Credits) | 12 (davon 2 Credits integrierte Schlüsselkompetenzen) |
| Studienleistungen | Durchführung aller Praktikumsversuche und regelmäßige, aktive Mitarbeit im Seminar |
| Modulprüfungselemente, Art und Dauer der Prüfungen | Bewerteter Abschlussvortrag für Praktikum
Bewerteter Seminarvortrag (Wichtung 50/50) |
| Literatur | Eckert: Tierphysiologie, 4. Aufl., Thieme 2002,
Insect Olfaction (ed. Hansson), Springer
Originalliteratur nach Vereinbarung |
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Profilmodul Genetik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>BScBio V6</td>
</tr>
</tbody>
</table>

Einzelveranstaltungen des Moduls und Lehrformen
- Vorlesung Genetik II (2 SWS)
- Seminar Genetik (2 SWS)
- Praktikum (8 SWS)

Modulbeauftragter
Prof. Dr. W. Nellen

Dozent/in
Prof. Dr. W. Nellen und Mitarbeiter

Lernziele und Kompetenzen
- Vermittlung vertiefter Kenntnisse der Molekulargenetik
- Selbststudium fortgeschrittener Fachliteratur, Aufbereitung der Inhalte für Vorträge, Fähigkeit zu wissenschaftlicher Diskussion zum Training wissenschaftlicher Präsentation
- Selbständige Planung und Durchführung molekularbiologischer Experimente nach Arbeitsprotokollen als Voraussetzung zu selbstständiger experimenteller Tätigkeit unter theorethischer Anleitung

Integrierter Erwerb von Schlüsselkompetenzen
- Fremdsprachentraining
- Vorbereiten und Halten eines Seminarvortrags, Präsentationstraining

Lerninhalte
- Arbeitsschritte von der Genisolierung bis zur Herstellung rekombinanter Proteine,
- Optional Funktionsanalysen
- Grüne, rote und weiße Gentechnik für kommerzielle Anwendungen und für die Grundlagenforschung
- Knock-out und Knock-down Methoden und Anwendungen
- Tags zur Identifizierung und Isolierung von Proteinen

Verwendbarkeit des Moduls (Zuordnung zu Curriculum)
B.Sc. Biologie: Wahlpflichtmodul
Lehramt L3 (Biologie) Wahlpflichtmodul

Dauer und Häufigkeit des Angebotes des Moduls
Zweiseitrig, jährlich
Vorlesung und Seminar im SS, Praktikum im WS

Semester
4. und 5. Sem.

Sprache
Deutsch und Englisch

Voraussetzung für Teilnahme
Modul Genetik

Lehrform
Vorlesung, Seminar und Praktikum

Studentischer Arbeitsaufwand
180 Stunden Präsenzzeit
180 Stunden Selbststudium

Leistungspunkte (Credits)
12 (davon 2 Credits integrierte Schlüsselkompetenzen)

Studienleistungen
Durchführung aller Praktikumsversuche und regelmäßige, active Mitarbeit im Seminar

Modulprüfungsleistung, Art und Dauer der Prüfungen
Klausur (ca. 1 h)

Literatur
Klug, Cummins, Spencer: Genetik, 8. Auflage, 2007
Foliensammlung
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Profilmodul Mikrobiologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>BScBio V7</td>
</tr>
<tr>
<td>Einzelveranstaltungen des</td>
<td>• Großpraktikum Mikrobiologie (P, 8 SWS)</td>
</tr>
<tr>
<td>Moduls und Lehrformen</td>
<td>• Mikrobiologie II (V, 2 SWS)</td>
</tr>
<tr>
<td></td>
<td>• Seminar Mikrobiologie (S, 2 SWS)</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Prof. Dr. R. Schaffrath</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. R. Schaffrath und Mitarbeiter</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>• Vorbereitung auf eine wissenschaftliche Arbeit</td>
</tr>
<tr>
<td></td>
<td>• Selbstständiges experimentelles Arbeiten nach Anleitung</td>
</tr>
<tr>
<td></td>
<td>• Vertiefung von Hintergrundwissen zu den Experimenten und Methoden des Großpraktikums, vor allem zu molekular-ökologischen Methoden bei Untersuchungen mit Bakterien.</td>
</tr>
<tr>
<td>Integrierter Erwerb von</td>
<td>• Teamfähigkeit</td>
</tr>
<tr>
<td>Schlüsselkompetenzen</td>
<td>• Vorbereiten und Halten eines Seminarvortrags</td>
</tr>
<tr>
<td></td>
<td>• Präsentationstraining</td>
</tr>
<tr>
<td>Lerninhalte</td>
<td>• Einsatz mikrobiologischer, molekularbiologischer, biochemischer, ökologischer und mikroskopischer Methoden bei der Bearbeitung eines forschungsnahen Projekts der mikrobiellen Ökologie</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• BSc. Biologie: Wahlpflichtmodul</td>
</tr>
<tr>
<td>(Zuordnung zu Curriculum)</td>
<td>• Lehramt L3 (Biologie): Wahlpflichtmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des</td>
<td>Zweiseitrig, jährlich (VL und Seminar im SS, Praktikum im WS)</td>
</tr>
<tr>
<td>Angebotes des Moduls</td>
<td></td>
</tr>
<tr>
<td>Semester</td>
<td>4. und 5. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Modul Mikrobiologie</td>
</tr>
<tr>
<td></td>
<td>Modul Genetik</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Praktikum, Seminar und Vorlesung</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>180 Stunden Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>180 Stunden Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>12 (davon 2 Credits integrierte Schlüsselkompetenzen)</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Durchführung aller Praktikumsversuche und regelmäßige, aktive Mitarbeit im Seminar</td>
</tr>
<tr>
<td></td>
<td>Seminarvortrag</td>
</tr>
<tr>
<td></td>
<td>Praktikumsprotokoll (falls nicht Modulprüfungsleistung)</td>
</tr>
<tr>
<td>Modulprüfungsleistung,</td>
<td>Klausur oder ergebnisorientiertes Modulprotokoll (Prüfungsart wird zu</td>
</tr>
<tr>
<td>Art und Dauer der Prüfungen</td>
<td>Veranstaltungsbeginn bekannt gegeben</td>
</tr>
<tr>
<td></td>
<td>Süßmuth et al. (1999) Biochemisch-Mikrobiologisches Praktikum, Thieme</td>
</tr>
<tr>
<td>Spezielle Informationen</td>
<td>Projektpraktikum (Blockcharakter) zur Einführung in wichtige mikrobiologische Arbeitsgebiete des Fachgebiets, unterstützt durch ein begleitendes Seminar.</td>
</tr>
<tr>
<td>Modulname</td>
<td>Profilmodul Ökologie der Pflanzen, Tiere und Pilze</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Code</td>
<td>BScBio V8</td>
</tr>
</tbody>
</table>
| Einzelveranstaltungen des Moduls und Lehrformen | • Waldökologie (V, 2 SWS)
• Ökologisches Seminar II (S, 2 SWS)
• Exkursionen (E, 2 SWS)
• Projektpraktikum (P, 8 SWS) |
| Modulbeauftragter | Prof. Dr. E. Langer, Dr. H. Koenies, Prof. Dr. U. Brauckmann |
| Dozent/in | |
| Lernziele und Kompetenzen | • Kenntnis der Ökologie wichtiger Organismen (Pflanzen, Tiere, Pilze) einheimischer Wälder und des extensiv genutzten Offenlands
• Kenntnis wichtiger Beispiele trophischer Gruppen der Pilze
• Anwendung und Interpretation von Vegetationsaufnahmen
• Strategien der Stichprobenahme
• Messung abiotischer Parameter
• Graphische Auswertung von Messergebnissen
• Erkennen und Interpretation landschaftsökologischer Besonderheiten
• Erstellung eines ökologischen Gutachtens |
| Integrierter Erwerb von Schlüsselkompetenzen | • Selbstständige Projektdurchführung
• Vorbereiten und Halten eines Seminarvortrags
• Teamfähigkeit |
| Lerninhalte | • Biozönosen des Waldes
• Vegetationsökologie
• Mikroklima
• Bodenkunde
• Gewässerkunde |
| Verwendbarkeit des Moduls (Zuordnung zu Curriculum) | BSc Biologie: Wahlpflichtmodul
Lehramt L3 (Biologie): Wahlpflichtmodul |
| Dauer und Häufigkeit des Angebotes des Moduls | Einsemesterig, jährlich (jeweils im SoSe) |
| Sprache | Deutsch |
| Voraussetzung für Teilnahme | Modul Ökologie |
| Lehrform | Vorlesung, Seminar, Exkursion |
| Studentischer Arbeitsaufwand | 210 Stunden Präsenzzeit
150 Stunden Selbststudium |
| Leistungspunkte (Credits) | 12 (davon 2 Credits integrierte Schlüsselkompetenzen) |
| Studienleistungen | Regelmäßige, aktive Mitarbeit im Seminar
Exkursionen
Projektbericht |
| Modulprüfungsleistung, Art und Dauer der Prüfungen | (1) Klausur zur Vorlesung (ca. 2h), (2) benoteter Projektbericht,
(3) benoteter Seminarvortrag (30 min) |
| Literatur | Dieschke, H.: Pflanzensoziologie, 1994; UTB Ulmer
Ellenberg, H. Vegetation Mitteleuropas mit den Alpen, 5. Aufl. UTB Ulmer
<p>| Spezielle Informationen | Modul beinhaltet mehrere eintägige Exkursionen oder eine mehrtägige Exkursion |</p>
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Profilmodul Zellbiologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>BScBio V9</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls</td>
<td></td>
</tr>
<tr>
<td>und Lehrformen</td>
<td></td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Prof. Dr. M. Maniak</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. M. Maniak und Mitarbeiter, Prof. Dr. M. Schäfer</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Erlangung vertiefter Kenntnisse über polymerisierende Proteine und molekulare Motoren zur Erweiterung des Grund- und Lehrbuchwissens (V).</td>
</tr>
<tr>
<td></td>
<td>• Praktischer Umgang mit lebenden Zellkulturen, quantitative Messung physiologischer Parameter, qualitative mikroskopische Analyse als Voraussetzung zu selbstständiger experimenteller Tätigkeit unter theoretischer Anleitung (P).</td>
</tr>
<tr>
<td></td>
<td>• Selbststudium fortgeschrittener Fachliteratur, Aufbereitung der Inhalte für Vorträge, Fähigkeit zu wissenschaftlicher Diskussion zum Training wissenschaftlicher Präsentation (S).</td>
</tr>
<tr>
<td>Integrierter Erwerb von Schlüsselkompetenzen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Möglichkeit des Fremdsprachentrainings (Englisch) in P und S</td>
</tr>
<tr>
<td></td>
<td>• Vorbereiten und Halten eines Seminarvortrags</td>
</tr>
<tr>
<td></td>
<td>• Teamfähigkeit</td>
</tr>
<tr>
<td>Lerninhalte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Assembly bakterieller Flagellen und Pili; Neues zu polymerisierenden Proteinen des bakteriellen und eukaryontischen Cytoskeletts; Engineering an Schritt- und Drehmotoren (V).</td>
</tr>
<tr>
<td></td>
<td>• Bildung und Analyse von funktionellen Proteinkomplexen des Cytoskeletts in vitro; In vivo Transport von Organellen; Fluoreszenzmi kroskopische Analyse von Organellen; Fluoreszenzspektrometrische Quantifizierung von Endocytosevorgängen (P).</td>
</tr>
<tr>
<td></td>
<td>• Zelluläre Defekte bei Erkrankheiten oder Vererbung von Organellen (S)</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</td>
<td>BSc Biologie: Wahlpflichtmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Zweiseiternig, jährlich (Vorlesung und Praktikum WS; Seminar SoSe)</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Modul Zellbiologie und Entwicklungsbio logie</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung, Seminar, Praktikum</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>180 Stunden Präsenzzeit (12 SWS)</td>
</tr>
<tr>
<td></td>
<td>180 Stunden Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>12 (davon 2 Credits integrierte Schlüsselkompetenzen)</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Durchführung aller Praktikumsversuche und regelmäßige, aktive Mitarbeit im Seminar</td>
</tr>
<tr>
<td>Modulprüfungsleistung, Art und Dauer der Prüfungen</td>
<td>(1) Abschlusspräsentation zum Praktikum (30 Min.)</td>
</tr>
<tr>
<td></td>
<td>(2) Vortrag im Seminar (30 Min.)</td>
</tr>
<tr>
<td>Literatur</td>
<td>Schliwa, Molecular Motors, Wiley–VCH, 2003</td>
</tr>
<tr>
<td></td>
<td>Foliensammlung (V), Skript mit Versuchsanleitungen und ges. Literaturhinweisen (P), Ausgewählte Veröffentlichungen laut Liste (S)</td>
</tr>
<tr>
<td>Modulname</td>
<td>Prof. Bio-Völkel Entwicklungsbiologie</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Code</td>
<td>BScBio V10</td>
</tr>
</tbody>
</table>
| Einzelveranstaltungen des Moduls und Lehrformen | Entwicklungsbio: am Beispiel Drosophila (V, 2 SWS)
| | Zytologische und molekulare Analysen zur Entwicklung des
| | Modellorganismus Drosophila (P, 7 SWS)
| | Spezielle Themen der Entwicklungsbio (S, 2 SWS) |
| Modulbeauftragter | Prof. Dr. M. Schäfer
| Dozent/in | Prof. Dr. M. Schäfer und Mitarbeiter |
| Lernziele und Kompetenzen | Kenntnisse der wichtigsten klassischen und modernen Methoden der
| | Entwicklungsbio: von der Morphologie zur Molekularbio.
| | Herstellen mikroskopischer Präparate
| | Sicherer und kompetenter Umgang mit dem Lichtmikroskop sowie der
| | zeichnerischen Dokumentation mikroskopischer Präparate von
| | zoologischem Material
| | Vertiefte Kenntnisse an einem Modellorganismus zum detaillierten
| | Verständnis der Entwicklung
| | schwerpunktmäßige Erweiterung der Kenntnisse zu
| | entwicklungsbio:logischen Prozessen |
| Integrierter Erwerb von Schlüsselkompetenzen | Fähigkeit zur selbständigen Vorbereitung, Gestaltung und Präsentation von
| | informativen und wissenschaftlich präzisen Seminarvorträgen, incl.
| | Literaturrecherche
| | Erlernen des eigenständigen Arbeitens mit Fachliteratur für
| | Fortgeschrittene
| | Teamfähigkeit |
| Lerninhalte | Beobachtung von Entwicklungsprozessen bei Insekten
| | Organpräparationen
| | Durchführung verschiedener Nachweisverfahren
| | Erzeugen von Chromosomenpräparaten |
| Verwendbarkeit des Moduls (Zuordnung zu Curriculum) | B.Sc. Biologie: Wahlpflichtmodul |
| Dauer und Häufigkeit des Angebotes des Moduls | Einsemestrig, jährlich (jeweils im WS) |
| Semester | 5. Sem.
| Sprache | Deutsch |
| Voraussetzung für Teilnahme | Modul Zellbiologie und Entwicklungsbio |
| Lehrform | Vorlesung, Praktikum, Seminar |
| Studentischer Arbeitsaufwand | 165 Stunden Präsenzzeit
| | 195 Stunden Selbststudium |
| Leistungspunkte (Credits) | 12 (davon 2 Credits integrierte Schlüsselkompetenzen) |
| Studienleistungen | Regelmäßige Teilnahme an der wissenschaftlichen Diskussion in allen
| | Einzelveranstaltungen
| | Anfertigung korrekter Zeichnungen der im Praktikum erzeugten bzw. behandelten
| | Präparate
| | Seminarvortrag |
| Modulprüfungsleistung, Art und Dauer der Prüfungen | Protokoll oder Klausur (1 – 2 h). Die Art der Prüfungsleistung wird zu Beginn der
<p>| | Veranstaltung bekannt gegeben. |</p>
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Prof</th>
<th>Humanbiologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>BScBio V11</td>
<td></td>
</tr>
</tbody>
</table>

Einzelveranstaltungen des Moduls und Lehrformen
- Allgemeine Gewebelehre (P)
- Organsysteme des Menschen (S+P)

Modulbeauftragter
Prof. Dr. H. Zöltzer

Dozent/in
Prof. Dr. H. Zöltzer und Mitarbeiter

Lernziele und Kompetenzen
- Den eigenen Körper in Bau und Funktion zu verstehen und diese Kenntnisse vermitteln zu können
- Fähigkeit, Strukturen und Lebensvorgänge am eigenen Körper im gesunden und im erkrankten Zustand zu interpretieren

Integrierter Erwerb von Schlüsselkompetenzen
- Fähigkeit zur selbständigen Vorbereitung, Gestaltung und Präsentation von informativen und wissenschaftlich präzisen Seminarvorträgen
- Literaturrecherche deutsch/englisch
- Teamfähigkeit
- Grundlagenwerk für Berufsfelder im biomedizinischen Bereich

Lerninhalte
- Vertiefung der Zell- und Gewebelehre des menschlichen und tierischen Organismus
 - Epithelgewebe
 - Binde-/Stützgewebe
 - Muskelgewebe
 - Nervengewebe
- Organlehre des Menschen
 - Herz und Blutgefässystem
 - Blut
 - Lymphgefässystem
 - Abwehrsystem
 - Endokrinium
 - Nervensystem

Verwendbarkeit des Moduls (Zuordnung zu Curriculum)
B.Sc. Biologie: Wahlpflichtmodule
Lehrplan L3 (Biologie) Wahlpflichtmodul

Dauer und Häufigkeit des Angebotes des Moduls
Einseminat, jährlich (jeweils im WS)

Semester
S. Sem.

Sprache
Deutsch

Voraussetzung für Teilnahme
Wahlmodul Humanbiologie

Lehrform
Seminar und Praktikum

Studentischer Arbeitsaufwand
210 Stunden Präsenzzeit
150 Stunden Selbststudium

Leistungspunkte (Credits)
12 (davon 2 Credits integrierte Schlüsselkompetenzen)

Studienleistungen
- Durchführung aller Praktikumsversuche und regelmäßige, aktive Mitarbeit im Seminar
- Anfertigung von Zeichnungen nach dem mikroskopischen Bild
- Zwei Seminarvorträge, Anfertigung von zwei Modellen

Modulprüfungsleistung, Art und Dauer der Prüfungen
Vier mündliche Prüfungen (je 30 Min.)

Literatur
Mörike/Betz/Mergenthaler: Biologie des Menschen. 2007 Nikol
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Biochemie II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>BScBio W1</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
<td>Biochemie II (V 2 SWS) Seminar (V 1 SWS)</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Prof. Dr. F. Herberg</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. F. Herberg und externe wissenschaftliche Experten</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>• Anwendung der Grundkenntnisse der Biochemie aufzelluläre Systeme als Grundlage für Forschungsarbeiten in den molekularen Biowissenschaften. Verständnis des Methodenspektrums der modernen Biochemie • Erwerb der Fähigkeit, Grundprinzipien der molekularen Biowissenschaften auf konkrete biologische und medizinische Fallbeispiele aus der alltäglichen Umgebung anzuwenden (Grundstein für den Erwerb von Problemlösungskompetenz)</td>
</tr>
<tr>
<td>Integrierter Erwerb von Schlüsselkompetenzen</td>
<td>• Erlernen des eigenständigen Arbeitens mit biochemischen Lehrbüchern. • Fähigkeit zur Reflexion der Aussagekraft von Fachliteratur • Fähigkeit zur selbstständigen Vorbereitung, Gestaltung und Präsentation von klaren Seminarvorträgen • Praktische Erfahrungen mit der englischen Fachliteratur und Fachsprache</td>
</tr>
<tr>
<td>Lerninhalte</td>
<td>• Funktion von Proteinen • Struktur / Funktionsbeziehungen ausgesuchter Proteine • Molekulare Mechanismen der Energiegewinnung in Pflanzen • Aktuelle Methoden der Biochemie: Proteinisolierung und biochemische und biophysikalische Methoden zur Proteincharakterisierung • Strategien der Proteomforschung • Biologische Massenspektrometrie • Moderne Screening-Methoden • Bioinformatik • Interaktionsanalytik • Biochemie von Komponenten in humanen Signaltransduktionswegen in gesundem und krankem Gewebe</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</td>
<td>B.Sc. Biologie: Wahlmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Einsemesterig, jährlich (jeweils im WS)</td>
</tr>
<tr>
<td>Semester</td>
<td>5.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Modul Organische Chemie und Biochemie</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung und Seminar</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>45 Stunden Präsenzzeit 75 Stunden Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>4 (davon 1 Credit integrierte Schlüsselkompetenzen)</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Regelmäßige, aktive Mitarbeit im Seminar</td>
</tr>
<tr>
<td>Modulprüfungsteilnahme, Art und Dauer der Prüfungen</td>
<td>Seminarvortrag (30 Min.)</td>
</tr>
<tr>
<td>Spezielle Informationen</td>
<td>Es kann nur entweder das Wahlmodul Biochemie II oder das Profimodul Biochemie absolviert werden</td>
</tr>
<tr>
<td>Modulname</td>
<td>Biophysik für Biologen</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Code</td>
<td>BScBio W2</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls</td>
<td>• Einführung in die Biophysik (V, 2 SWS)</td>
</tr>
<tr>
<td>und Lehrformen</td>
<td>• Moderne Aspekte und Methoden der Biophysik (S, 2 SWS)</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>N.N.</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>N.N.</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>• Überblick über molekulare Strukturen in biologischen Systemen</td>
</tr>
<tr>
<td></td>
<td>• Grundlegende Kenntnisse zur biomechanik und -energetik, sowie zu Kräften in biologischen Systemen</td>
</tr>
<tr>
<td></td>
<td>• Befähigung zu quantitativen Beschreibungen biologischer Systeme</td>
</tr>
<tr>
<td></td>
<td>• Grundlegende Kenntnisse in Datenbankanalysen</td>
</tr>
<tr>
<td></td>
<td>• Methoden der Biophysik und ihre Anwendungen in der Biosensorik</td>
</tr>
<tr>
<td>Integrierter Erwerb von Schlüsselkompetenzen</td>
<td>• Fähigkeit zur selbständigen Vorbereitung, Gestaltung und Präsentation von klaren Seminarvorträgen</td>
</tr>
<tr>
<td></td>
<td>• Praktische Erfahrungen mit der englischen Fachliteratur und Fachsprache</td>
</tr>
<tr>
<td>Lerninhalte</td>
<td>• Mechanik, Energetik und Kräfte in biologischen Systemen</td>
</tr>
<tr>
<td></td>
<td>• Grundlagen der Photobiophysik</td>
</tr>
<tr>
<td></td>
<td>• Kinetik und Thermodynamik im biologischen System</td>
</tr>
<tr>
<td></td>
<td>• Modernen Messmethoden</td>
</tr>
<tr>
<td></td>
<td>• Anwendungen biophysikalischer Prinzipien</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</td>
<td>B.Sc. Biologie: Wahlmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Einsemestrig, jährlich</td>
</tr>
<tr>
<td>Semester</td>
<td>Ab 4.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch und Englisch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Modul Physik für Biologen</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung und Seminar</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>60 Stunden Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>60 Stunden Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>4 (davon 1 Credit integrierte Schlüsselkompetenzen)</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td></td>
</tr>
<tr>
<td>Modulprüfungsleistung, Art und Dauer der Prüfungen</td>
<td>Klausur (1–2 h) oder mündliche Prüfung (30 min) oder benoteter Seminarvortrag (30 min). Die Art der Prüfung wird zu Beginn des Moduls mitgeteilt.</td>
</tr>
<tr>
<td>Spezielle Informationen</td>
<td></td>
</tr>
<tr>
<td>Modulname</td>
<td>Anatomie der Pflanzen II</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Code</td>
<td>BScBio W3</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
<td>Botanisch–anatomischer Vertiefungskurs (Ü, 4 SWS)</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Prof. Dr. K. Weising</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. K. Weising und Mitarbeiter</td>
</tr>
</tbody>
</table>

Lernziele und Kompetenzen
- Erweiterte Kenntnis der Anatomie höherer Pflanzen unter dem Aspekt ihrer Funktion („strukturelle Problemlösungen“)
- Kennen lernen anspruchsvoller lichtmikroskopischer Untersuchungsmethoden einschl. der Vorbehandlung des zu untersuchenden Materials und unterschiedlicher Färbemethoden im Vergleich
- Anfertigung von (auch schwierigen) Hand– und Mikrotom–Schnittpräparaten
- Dokumentation lichtmikroskopischer Bilder in Form von Zeichnungen und Fotografien

Integrierter Erwerb von Schlüsselkompetenzen

Lerninhalte
- Funktionelle Pflanzenanatomie
- Wasserhaushalt (Aufnahme, Transport, Transpiration, Speicherung)
- Photosynthese (C3–, C4–Pflanzen)
- Assimilattransport und -speicherung
- Wachstum und Festigung axialer Organe
- Exkrete und Sekrete

Verwendbarkeit des Moduls (Zuordnung zu Curriculum)
B.Sc. Biologie: Wahlmodul

Dauer und Häufigkeit des Angebotes des Moduls
Einsemestrig, jährlich (jeweils im WS)

Semester
1. (oder 3.) Sem.

Sprache
Deutsch

Voraussetzung für Teilnahme
Immatrikulation in den Studiengang B. Sc, Biologie

Lehrform
Übung

Studentischer Arbeitsaufwand
- 60 Stunden Präsenzzeit
- 30 Stunden Selbststudium

Leistungspunkte (Credits)
3

Studienleistungen
Regelmäßige Mitarbeit im Kurs und Anfertigung von Zeichnungen (mind. 85 % aller Zeichnungen mit Note „ausreichend“)

Modulprüfungsleitung, Art und Dauer der Prüfungen
Praxisklausur (2 h)

Literatur
- Wanner: Mikroskopisch–Botanisches Praktikum. Thieme, Stuttgart, 2004

Mitteilungsblatt der Universität Kassel Nr. 2/2012 vom 06.03.2012
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Biodiversität der Moose und Flechten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>BScBio W4</td>
</tr>
</tbody>
</table>

Einzelveranstaltungen des Moduls und Lehrformen
- Einführung in die Biologie der Moose und Flechten (V, ½ SWS)
- Bestimmungsbürgen an Moosen und Flechten (Ü, 2 SWS)
- 2 Moos- und Flechtenexkursionen (E, ½ SWS)

Modulbeauftragter
Prof. Dr. K. Weising

Dozent/in
Prof. Dr. K. Weising und Mitarbeiter

Lernziele und Kompetenzen
- Befähigung zur selbständigen Bestimmung von Moosen und Flechten mit Hilfe von Bestimmungsschlüssel, Binokular, Mikroskop und chemischen Reagenzien
- Grundlegende Kenntnisse der einheimischen Moos- und Flechtenflora

Integrierter Erwerb von Schlüsselkompetenzen

Lerninhalte
- Systematik, Biologie und Bauplan der Moose und Flechten, Merkmale der Großgruppen
- Einarbeitung in Bestimmungstabellen durch Erlernen des „Bestimmungsvokabulars“ und Durchführung ggf. notwendiger Präparationen
- Ansprache häufiger und/oder auffallender Moose und Flechten im Gelände unter besonderer Berücksichtigung der Standorte

Verwendbarkeit des Moduls (Zuordnung zu Curriculum)
B.Sc. Biologie: Wahlmodul

Dauer und Häufigkeit des Angebotes des Moduls
Zweisemestrig, jährlich (Vorlesung u. Übung SoSe, Exkursionen SoSe u. WS)

Semester
Ab 4. Sem.

Sprache
Deutsch

Voraussetzung für Teilnahme
Modul Biodiversität der Pflanzen

Lehrform
Vorlesung, Kurs, Exkursion

Studentischer Arbeitsaufwand
- 45 Stunden Präsenzzeit
- 45 Stunden Selbstatstudium

Leistungspunkte (Credits)
3

Studienleistungen
Regelmäßige Mitarbeit im Kurs

Modulprüfungsleistung, Art und Dauer der Prüfungen
Bestimmung von je einer unbekannten mitteleuropäischen Moos- und Flechtenart mit Hilfe von Bestimmungsschlüssel, Binokular, Mikroskop und chemischen Reagenzien (1,5 Stunden)

Literatur

Spezielle Informationen
Moos- und Flechtenexkursionen können im SS oder im WS belegt werden
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Systematik und Evolution der Algen, Pilze und Pflanzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>BScBio W5</td>
</tr>
</tbody>
</table>
| Einzelveranstaltungen des Moduls und Lehrformen | • Systematik und Evolution von Algen, Pilzen und Pflanzen (V, 2 SWS)
• Spezielle Themen der Pflanzensystematik (S, 2 SWS)
• Botanische Halb- und Ganztagsexkursionen (E, 1 SWS) |
| Modulbeauftragter | Prof. Dr. K. Weising |
| Dozent/in | Prof. Dr. K. Weising |
| Lernziele und Kompetenzen | • Überblick über die Systematik, Baupläne, Lebenszyklen, Evolution und Biodiversität der wichtigsten Großgruppen der Algen, Pilze und Landpflanzen.
• Fähigkeit zur Einordnung pflanzlicher und pflanzenähnlicher Organismen in systematische Großgruppen
• Grundlegendes Verständnis der pflanzlichen Anpassungen an das Landleben
• Fähigkeit zur selbständigen Vorbereitung (Literaturrecherche), Gestaltung und Präsentation von informativen und wissenschaftlich präzisen Seminarvorträgen |
| Integrierter Erwerb von Schlüsselkompetenzen | • Fähigkeit zur selbständigen Vorbereitung, Gestaltung und Präsentation von informativen und wissenschaftlich präzisen Seminarvorträgen |
| Lerninhalte | • Systematik, Morphologie, Anatomie, Lebenszyklen, Ökologie und Evolution der Cyanobakterien, der euukaryotischen Algen, Joch-, Schlauch- und Ständerpilze, Flechten, Laub-, Leber- und Hornmoose, farnartigen Pflanzen (Farne, Schachtelhalme, Bärlappen) und Gefäßpflanzen (nur Theorie) |
| Verwendbarkeit des Moduls (Zuordnung zu Curriculum) | B.Sc. Biologie: Wahlmodul |
| Dauer und Häufigkeit des Angebotes des Moduls | Einsemestrig, jährlich (jeweils im SS) |
| Sprache | Deutsch |
| Voraussetzung für Teilnahme | Modul Anatomie der Pflanzen
Modul Biodiversität der Pflanzen |
| Lehrform | Vorlesung, Seminar und Exkursionen |
| Studentischer Arbeitsaufwand | 75 Stunden Präsenzzeit
75 Stunden Selbststudium |
| Leistungspunkte (Credits) | 5 (davon 1 Credit integrierte Schlüsselkompetenzen) |
| Studienleistungen | Seminarvortrag |
| Modulprüfungsdauer, Art und Dauer der Prüfungen | Klausur (2 Stunden)
De Gruyter, Berlin.
Zur Vorlesung wird Material im Internet zur Verfügung gestellt. |
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Genetik II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>BScBio W6</td>
</tr>
</tbody>
</table>

Einzelveranstaltungen des Moduls und Lehrformen
- Genetik II (V, 2 SWS)
- Seminar Genetik (S, 2 SWS; Blockveranstaltung)

Modulbeauftragter
- Prof. Dr. W. Nellen

Dozent/in
- Prof. Dr. W. Nellen

Lernziele und Kompetenzen
- Vertiefung der Kenntnisse in ausgewählten Teilgebieten bis zum aktuellen Stand der Wissenschaft.
- Selbststudium fortgeschrittener Fachliteratur, Aufbereitung der Inhalte für Vorträge, Fähigkeit zu wissenschaftlicher Diskussion zum Training wissenschaftlicher Präsentation, eigene Literaturrecherche (S)

Integrierter Erwerb von Schlüsselkompetenzen
- Fremdsprachentraining
- Präsentationstechniken in der Anwendung
- Diskussionsfähigkeit
- Wissenschaftliche Kritikfähigkeit

Lerninhalte
- Vertiefung der Kenntnisse zu Chromatin, Epigenetik und RNA-vermittelte Genregulation über das Lehrbuchwissen hinaus.
- Beschäftigung mit Originalliteratur zu diesen Themen
- Zusammenfassung wesentlicher Inhalte aus der Originalliteratur

Verwendbarkeit des Moduls (Zuordnung zu Curriculum)
- B.Sc. Biologie: Wahlmodul
- B.Sc. Nanostrukturwissenschaften: Wahlmodul

Dauer und Häufigkeit des Angebotes des Moduls
- Einsemestrig, jährlich (jeweils im SoSe)
- (Blockveranstaltung)

Semester

Sprache
- Englisch

Voraussetzung für Teilnahme
- Modul Genetik

Lehrform
- Vorlesung und Seminar

Studentischer Arbeitsaufwand
- 60 Stunden Präsenzzeit
- 60 Stunden Selbststudium

Leistungspunkte (Credits)
- 4 (davon 1 Credit integrierte Schlüsselkompetenzen)

Studienleistungen
- Regelmäßige, aktive Mitarbeit im Seminar

Modulprüfungsleistung, Art und Dauer der Prüfungen
- Klausur (ca. 1 h)

Literatur
- Klug, Cummings, Spencer: Genetik, 8. Auflage, 2007
- Ausgewählte Originalliteratur, Foliensammlung zur Vorlesung

Spezielle Informationen
- Es kann nur entweder das Modul „Genetik II“ oder das „Profilmodul Genetik“ absolviert werden
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Waldökologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>BScBio W7</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls</td>
<td>• Waldökologie (V, 2 SWS)</td>
</tr>
<tr>
<td>Moduls und Lehrformen</td>
<td>• Ökologisches Seminar II (S, 2 SWS)</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Prof. Dr. E. Langer</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. E. Langer, Dr. H. Koenies, Prof. Dr. U. Brauckmann</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>• Kenntnis der Biodiversität und Ökologie wichtiger Organismen (Pflanzen, Tiere, Pilze)</td>
</tr>
<tr>
<td></td>
<td>• Kenntnis der Ökologie einheimischer Wälder</td>
</tr>
<tr>
<td></td>
<td>• Kenntnis wichtiger Beispiele trophischer Gruppen der Pilze</td>
</tr>
<tr>
<td>Integrierter Erwerb von</td>
<td>• Literaturrecherche</td>
</tr>
<tr>
<td>Schlüsselkompetenzen</td>
<td>• Vorbereiten und Halten eines Seminarvortrags</td>
</tr>
<tr>
<td>Lerninhalte</td>
<td>• Biozönosen des Waldes</td>
</tr>
<tr>
<td></td>
<td>• Vegetationsökologie</td>
</tr>
<tr>
<td></td>
<td>• Mikroklima</td>
</tr>
<tr>
<td></td>
<td>• Bodenkunde</td>
</tr>
<tr>
<td></td>
<td>• Saprophytismus, Parasitismus, Symbiose</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls (zuordnung zu Curriculum)</td>
<td>B.Sc. Biologie: Wahlmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Einsemestrig, jährlich (jeweils im SS)</td>
</tr>
<tr>
<td>Semester</td>
<td>Ab 4. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Modul Ökologie</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung, Seminar</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>60 Stunden Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>60 Stunden Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>4 (davon 1 Credit integrierte Schlüsselkompetenzen)</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Regelmäßige, aktive Mitarbeit im Seminar</td>
</tr>
<tr>
<td>Modulprüfungslieistung, Art und Dauer der Prüfungen</td>
<td>(1) Klausur zur Vorlesung (ca. 2h)</td>
</tr>
<tr>
<td></td>
<td>(2) Benoteter Seminarvortrag (30 Min.)</td>
</tr>
<tr>
<td>Spezielle Informationen</td>
<td>Es kann nur entweder das Modul „Waldökologie“ oder das „Profilmodul Ökologie der Pflanzen, Tiere und Pilze“ absolviert werden</td>
</tr>
<tr>
<td>Modulname</td>
<td>Pilze für Einstelger</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Code</td>
<td>BScBio W8</td>
</tr>
<tr>
<td>Einzelveranstaltungen des</td>
<td>• Ökologie und Anatomie der Makropilze (V, 1 SWS)</td>
</tr>
<tr>
<td>Moduls und Lehrformen</td>
<td>• Mikro- und Makromerkmale der Pilze (P, 2 SWS)</td>
</tr>
<tr>
<td></td>
<td>• Ökologie und Anatomie der Makropilze (S, 1 SWS)</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Prof. Dr. E. Langer</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. E. Langer</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>• Verständnis der zellulären Baupläne der Makropilze</td>
</tr>
<tr>
<td></td>
<td>• Kenntnis der Ökologie wichtiger einheimischer Makropilze</td>
</tr>
<tr>
<td></td>
<td>• Anfertigen von mikroskopischen Präparaten mit Färbetechniken</td>
</tr>
<tr>
<td></td>
<td>• Anfertigen von zellulären Zeichnungen</td>
</tr>
<tr>
<td>Integrierter Erwerb von</td>
<td></td>
</tr>
<tr>
<td>Schlüsselkompetenzen</td>
<td></td>
</tr>
<tr>
<td>Lerninhalte</td>
<td>• Morphologie und Ökologie der Hauptgruppen der Makropilze</td>
</tr>
<tr>
<td></td>
<td>• Lebenszyklen der Pilze</td>
</tr>
<tr>
<td></td>
<td>• Saprophytismus, Parasitismus, Symbiose bei Pilzen</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</td>
<td>B.Sc Biologie: Wahlmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des</td>
<td>Einsemestrig, jährlich (jeweils im WS)</td>
</tr>
<tr>
<td>Angebotes des Moduls</td>
<td></td>
</tr>
<tr>
<td>Semester</td>
<td>Ab 1. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Immatraktion für den o.g. Studiengang</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung, Seminar, Praktikum</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>60 Stunden Präsenzzeit (4 SWS)</td>
</tr>
<tr>
<td></td>
<td>60 Stunden Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>4</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Regelmäßige, aktive Mitarbeit in Seminar und Praktikum</td>
</tr>
<tr>
<td></td>
<td>Kurzvortrag</td>
</tr>
<tr>
<td></td>
<td>Erstellung zellulärer Zeichnungen</td>
</tr>
<tr>
<td>Modulprüfungsleistung, Art und</td>
<td>Klausur (ca. 2 Std.) mit praktischem Teil</td>
</tr>
<tr>
<td>Dauer der Prüfungen</td>
<td></td>
</tr>
<tr>
<td>Literatur</td>
<td>Lüder, R.: Grundkurs Pilzbestimmung, 2007; Quelle & Meyer.</td>
</tr>
<tr>
<td>Modulname</td>
<td>Grundmodul Humanbiologie</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Code</td>
<td>BScBio W9</td>
</tr>
</tbody>
</table>
| Einzelveranstaltungen des Moduls und Lehrformen | Vorlesung Humanbiologie (V, 2 SWS)
Humanbiologischer Kurs (P, 3 SWS) |
| Modulbeauftragter | Prof. Dr. H. Zöltzer |
| Dozent/in | Prof. Dr. H. Zöltzer, Prof. Dr. W. Nellen, Prof. Dr. M. Maniak, Prof. Dr. J. Rüschow, Dr. W. Schwipper |
| Lernziele und Kompetenzen | Den eigenen Körper in Bau und Funktion zu verstehen
Fähigkeit, Strukturen und Lebensvorgänge am eigenen Körper im gesunden und im erkrankten Zustand zu interpretieren
Grundlagenerwerb für Berufselder im biomedizinischen Bereich |
| Integrierter Erwerb von Schlüsselkompetenzen | Grundlagen der Zell- und Gewebelehre des menschlichen und tierischen Organismus (Epithelien, Binde- / Stützgewebe, Muskel und Nervengewebe)
Makroskopische und mikroskopische Anatomie des Menschen (Haut, Bewegungssystem, Verdauungssystem, Atmensionsystem, Kreislaufsystem, harnbereitendes System, Genitalsystem) |
| Lerninhalte | Grundlagen der Zell- und Gewebelehre des menschlichen und tierischen Organismus (Epithelien, Binde- / Stützgewebe, Muskel und Nervengewebe)
Makroskopische und mikroskopische Anatomie des Menschen (Haut, Bewegungssystem, Verdauungssystem, Atmensionsystem, Kreislaufsystem, harnbereitendes System, Genitalsystem) |
| Verwendbarkeit des Moduls (Zuordnung zu Curriculum) | B.Sc. Biologie: Wahlmodul
Lehramt (I. 3) Biologie: Pflichtmodul |
| Dauer und Häufigkeit des Angebotes des Moduls | Einsemestrig, jährlich (jeweils im SS) |
| Semester | 2. oder 4. Sem. |
| Sprache | Deutsch |
| Voraussetzung für Teilnahme | Immatrifikation in den Studiengang B.Sc. Biologie |
| Lehrform | Vorlesung und Praktikum |
| Studentischer Arbeitsaufwand | 75 Stunden Präsenzzeit
75 Stunden Selbststudium |
| Leistungspunkte (Credits) | 5 |
| Studienleistungen | Regelmäßige, aktive Mitarbeit im Kurs
Anfertigung von Zeichnungen nach dem mikroskopischen Bild |
| Modulprüfungsleistung, Art und Dauer der Prüfungen | Klausur (3 Stunden) |
Mörke/Betz/Mergenthaler: Biologie des Menschen. 2007 Nikol
Faller/Schünke: Der Körper des Menschen. 2008 Thieme, Stuttgart
Thews/Mutschler/Vaupel: Anatomie, Physiologie, Pathophysiologie des Menschen. 2007 Wissenschaftliche Verlagsgesellschaft |
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Wirbeltieranatomie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>BScBio W10</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
<td>• Einführung in die Wirbeltieranatomie (V, 2 SWS)</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Prof. Dr. A. Wöhmann-Repenning</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. A. Wöhmann-Repenning</td>
</tr>
</tbody>
</table>
| Lernziele und Kompetenzen | • Erwerb grundlegender Kenntnisse der Baupläne und der Anatomie der verschiedenen Wirbeltierklassen
 • Verständnis für den Zusammenhang von Struktur und Funktion der Organsysteme der Wirbeltiere
 • Kenntnis der Entwicklungsgeschichte der wichtigsten Organe der Wirbeltiere
 • Einsicht in die Evolution der Vertebraten |
| Integrierter Erwerb von Schlüsselkompetenzen | |
| Lerninhalte | • Phylogenie der Wirbeltiere
 • Vergleichende Anatomie der Wirbeltiere: Haut, Schädel und Rumpfskelett, Muskulatur, Coelom, Atemorgane, Verdauungssysteme, Urogenitalorgane, Kreislaufsysteme, Sinnesorgane und Nervensystem. |
| Verwendbarkeit des Moduls (Zuordnung zu Curriculum) | B.Sc. Biologie: Wahlfach
 Lehramt I.3 (Biologie): Wahlpflichtfach |
| Dauer und Häufigkeit des Angebotes des Moduls | Einsemestrig, jährlich (jeweils im WS) |
| Semester | Ab 1. Sem. |
| Sprache | Deutsch |
| Voraussetzung für Teilnahme | Immatraktion für einen der o.g. Studiengänge |
| Lehrform | Vorlesung |
| Studentischer Arbeitsaufwand | 30 Stunden Präsenzzeit
 60 Stunden Selbststudium |
| Leistungspunkte (Credits) | 3 |
| Studienleistungen | |
| Modulprüfungsleistung, Art und Dauer der Prüfungen | Klausur (1,5 Stunden) |
| Literatur | Storch/Welsch: Systematische Zoologie, Spektrum, Heidelberg
 Romer/Parson: Vergleichende Anatomie der Wirbeltiere, Parey, Hamburg
 Starck: Vergleichende Anatomie der Wirbeltiere. 3 Bände. Springer, Heidelberg |
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Parastologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>BScBio W11</td>
</tr>
</tbody>
</table>

Einzelveranstaltungen des Moduls und Lehrformen
- Einführung in die Biologie der Parasiten (V, 2 SWS)

Modulbeauftragter
Prof. Dr. A. Wöhrmann-Repenning

Dozent/in
Prof. Dr. A. Wöhrmann-Repenning

Lernziele und Kompetenzen
- Verständnis des Phänomens „Parasitismus“ als Beispiel für die Interaktion zweier Organismen
- Kenntnis der wichtigsten parasitären Erkrankungen des Menschen
- Kennen lernen veterinärmedizinisch und biologisch interessanter Parasiten
- Einsicht in die stammesgeschichtlichen Beziehungen in der Parastologie

Integrierter Erwerb von Schlüsselkompetenzen

Lerninhalte
- Ekto- und Endoparasiten
- Parasitäre Kreisläufe und Infektionsmechanismen
- Wechselbeziehungen zwischen Wirt und Parasit
- Behandlungsmethoden parasitärer Erkrankungen
- Parasiten als Therapeutika in der Medizin
- Faradysche Regel
- Stellenäquivalenz

Verwendbarkeit des Moduls (Zuordnung zu Curriculum)
- B.Sc. Biologie: Wahlmódul
- Lehramt L3 (Biologie): Wahlpflichtmodul

Dauer und Häufigkeit des Angebotes des Moduls
Einsemestrig, jährlich (jeweils im SoSe)

Semester
Ab 2. Sem.

Sprache
Deutsch

Voraussetzung für Teilnahme
Immatrikulation für einen der o.g. Studiengänge

Lehrform
Vorlesung

Studentischer Arbeitsaufwand
- 30 Stunden Präsenzzeit
- 60 Stunden Selbststudium

Leistungspunkte (Credits)
3

Studienleistungen

Modulprüfungsleistung, Art und Dauer der Prüfungen
Klausur (1,5 Stunden)

Literatur
Mehlhorn/Piekarski: Grundlehr der Parasitenkunde. UTB 1075
Frank, W.: Parasitologie. Ulmer
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Grundlagen der Biologiedidaktik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>BScBio W12</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
<td>Grundlagen der Biologiedidaktik (V + E-Learning)</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Prof. Dr. J. Mayer</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. J. Mayer</td>
</tr>
</tbody>
</table>

Lernziele und Kompetenzen

- Grundlegende Strukturen biologisch bildungsrelevanter Aspekte und deren Bezüge zur Fachwissenschaft Biologie kennen
- Einblick in die fachspezifischen Erkenntnismethoden der Biologie und in didaktische Konzepte zu deren Umsetzung
- Biologiespezifische Bildungsziele reflektieren
- Biologiespezifische Lehr-Lernsituationen in Bezug zu Bildungs- und Kompetenzziehen kennen
- Konzepte und Theorien zur Begriffsbildung und zu Präkonzepten kennen
- Fachliche Möglichkeiten zur Steigerung der Lernmotivation bei Lernenden, vor dem Hintergrund der Interessengene und den Modellen zur Entwicklung optimaler Lernsituationen reflektieren
- Allgemeine methodische Prinzipien auf spezielle Aspekte des Lehrens und Lernens der Biologie (z.B. Freilandbiologie) anwenden
- Die Bedeutung fachübergreifender Aspekte biologischer Bildung reflektieren
- Die Geschichte biologischer Bildung im Kontext naturwissenschaftlicher und geistes- kultureller Einflüsse reflektieren

Integrierter Erwerb von Schlüsselkompetenzen

- Biologie als Wissenschaft in ihren fachübergreifenden Zusammenhängen (Bildung, Gesellschaft, Geschichte, Ethik) analysieren und reflektieren
- Informationsrecherche und -bearbeitung zu Aspekten biologischer Bildung (Methodenkompetenz)
- Strukturierte Aufarbeitung von biologiedidaktischem Wissen sowie Umgang mit einer E-Learning-Plattform (Methodenkompetenz)
- Fähigkeit zur Selbstreflexion als Wissenschaftler in gesellschaftlicher Verantwortung (Kommunikationskompetenz)

Lerninhalte

- Fachstruktur und Methoden der Biologie, Schülererfahrungen und -interessen, Kompetenzen und Ziele biologischer Bildung, Strukturierung von biologischen Lerninhalten, Unterrichtsstrategien und Lernorte, Medieneinsatz, Leistungsmessung, Lehren und Lernen naturwissenschaftlicher Erkenntnisgewinnung, bioethischer Bewertung, nachhaltiger Entwicklung

Verwendbarkeit des Moduls (Zuordnung zu Curriculum)

- B.Sc. Biologie: Wahlmodul

Dauer und Häufigkeit des Angebotes des Moduls

- Einsemestrig, jährlich (jeweils im WS)

Semester

- ab 1. Sem.

Sprache

- Deutsch

Voraussetzung für Teilnahme

- Immatrikulation für einen der o.g. Studiengänge

Lehrform

- Vorlesung, Lernmanagementsystem Moodle (E-Learning-Plattform)

Studentischer Arbeitsaufwand

- 30 Stunden Präsenzzeit
- 60 Stunden Selbststudium

Leistungspunkte (Credits)

- 3 (davon 1 Credit integrierte Schlüsselkompetenzen)

Studienleistungen

Modulprüfungsleistung, Art und Dauer der Prüfungen

- Eine schriftliche Prüfung von insgesamt 90 Min. in Form von zwei Teilklausuren (je 45 Min.) in der Mitte und am Ende der Lehrveranstaltung

Literatur

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Evolutionsbiologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>BScBio W13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Einzelveranstaltungen des Moduls und Lehrformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Evolutionsbiologie (V, 1 SWS)</td>
</tr>
<tr>
<td>• Seminar zu Evolutionsbiologie (S, 1 SWS)</td>
</tr>
<tr>
<td>• Seminaranteil aus der Didaktik (V/S, 1 SWS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulbeauftragter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. U. Kutschera, Dr. C. Wulff oder N.N. (Didaktik der Biologie)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dozent/in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. U. Kutschera, Dr. C. Wulff oder N.N. (Didaktik der Biologie)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele und Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Grundlagenwissen auf dem Gebiet der Evolutionsbiologie und didaktische Umsetzung dieser Inhalte (z.B. für Unterrichtseinheiten oder populäre Artikel)</td>
</tr>
<tr>
<td>• Die Studierenden sollen neben den Grundlagen der Evolutionsbiologie die irrationalen Argumente der deutschen Kreationisten kennen und widerlegen lernen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Integrierter Erwerb von Schlüsselkompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Teil 2 werden diese Fachinhalte im Rahmen von Einzelvorträgen didaktisch bearbeitet und in eine Form gebracht, die sich für allgemeinverständliche Artikel eignet (z.B. Wissenschaftsjournalismus).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lerninhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Teil 2 werden diese Fachinhalte im Rahmen von Einzelvorträgen didaktisch bearbeitet und in eine Form gebracht, die sich für allgemeinverständliche Artikel eignet (z.B. Wissenschaftsjournalismus).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Biologie: Wahlmodul</td>
</tr>
<tr>
<td>Lehramt L2 (Biologie): Wahlmodul</td>
</tr>
<tr>
<td>Lehramt L3 (Biologie): Wahlmodul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer und Häufigkeit des Angebotes des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einsemestrig, jeweils im WS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzung für Teilnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immatrskulation für einen der o.g. Studiengänge</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar mit Hausaufgaben (Ausbearbeitung von Seminaren)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studentischer Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 Stunden Präsenzzeit</td>
</tr>
<tr>
<td>75 Stunden Selbststudium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leistungspunkte (Credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studienleistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regelmäßige aktive Mitarbeit im Seminar</td>
</tr>
<tr>
<td>Seminarvortrag mit Diskussion (30 Min.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulprüfungsleistung, Art und Dauer der Prüfungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hausarbeit (Schriftliche Ausarbeitung des Referats)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Code</td>
</tr>
</tbody>
</table>
| Einzelveranstaltungen des Moduls und Lehrformen | Vorlesung Grundlagen der Sinnesphysiologie (V, 2 SWS)
Seminard Grundlagen der Sinnesphysiologie (S, 2 SWS) |
| Dozent/in | Prof. Dr. M. Stengl |
| Lernziele und Kompetenzen | Grundlegende Kenntnis einzelner Sinnessysteme
Verständnis von Struktur-Funktionszusammenhängen |
| Integrierter Erwerb von Schlüsselkompetenzen | Aneignung von Fachliteratur
Software-Kompetenzen
Fähigkeit zum analytischen Denken
Gedächtnis- und Konzentrationstraining
Effiziente Literaturrecherche
Halten eines wissenschaftlichen Vortrages |
| Lerninhalte | Grundlagen sensorischer Systeme von Vertebraten und Invertebraten
Optischer Sinn
Mechanosensorische Sinne (Gleichgewichtssinn, Hören, Fühlen, Schmerzwahrnehmung).
Chemosensorische Sinne
Elektroperzeption
Magnetoperzeption |
| Verwendbarkeit des Moduls (Zuordnung zu Curriculum) | B.Sc. Biologie: Wahlomodul
B. Sc. Nanostrukturwissenschaften: Wahlomodul |
| Dauer und Häufigkeit des Angebotes des Moduls | Einsemestrig, jährlich (jeweils im WS) |
| Sprache | Deutsch |
| Voraussetzung für Teilnahme | Immatrikulation für einen der o. g. Studiengänge. |
| Lehrform | Vorlesung und Seminar |
| Studentischer Arbeitsaufwand | 60 h Präsenzzeit
60 h Selbststudium |
| Leistungspunkte (Credits) | 4 (davon 1 Credit integrierte Schlüsselkompetenzen) |
| Studienleistungen | Regelmäßige, aktive Mitarbeit im Seminar |
| Modulprüfungsleistung, Art und Dauer der Prüfungen | Seminarvortrag (ca. 30 Min.) |
| Literatur | Heldmaier/Neuweiler: Vergleichende Tierphysiologie, Bd.1, Springer 2004; nach Vereinbarung.
Penzlin: Lehrbuch der Tierphysiologie, 7. Aufl., Elsevier 2005
Dudel/Menzel/Schmidt: Neurwissenschaft, Springer 1996
Eckert: Tierphysiologie, 4. Aufl., Thieme 2002; Physiologie des Menschen, Schmidt-Thews |
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Grundlagen der Limnologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>BScBio W15</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
<td>• Allgemeine Limnologie (V, 1 SWS)</td>
</tr>
<tr>
<td></td>
<td>• Süßwasserorganismen in Mitteleuropa (V, 1 SWS)</td>
</tr>
<tr>
<td></td>
<td>• Trinkwasser, Abwasser, Wasserqualität (V, E 1 SWS)</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. R. Wagner</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>• Kenntnisse der Ökologie aquatischer Organismen und ihre Anwendung für die Trinkwasser- und Abwasserproblematik</td>
</tr>
<tr>
<td></td>
<td>• Fähigkeit zur Beurteilung von Wasserqualität aufgrund aquatischer Organismen</td>
</tr>
<tr>
<td></td>
<td>• Grundkenntnisse der Theorie und Praxis im Bereich Europäische Wasserrahmenrichtlinie</td>
</tr>
<tr>
<td></td>
<td>• Verständnis der Funktion aquatischer Ökosysteme im Wasserkreislauf der Erde, der Grenzen von Nutzungsansprüchen des Menschen an aquatische Ökosysteme und des Zusammenhangs zwischen Biotop und Biozönose in limnischen Systemen</td>
</tr>
<tr>
<td>Integrierter Erwerb von Schlüsselkompetenzen</td>
<td></td>
</tr>
<tr>
<td>Lerninhalte</td>
<td>• Grundlagen der Limnologie stehender und fließender Gewässer.</td>
</tr>
<tr>
<td></td>
<td>• Aquatische Lebensräume und ihre Besiedler.</td>
</tr>
<tr>
<td></td>
<td>• Nutzung der Wasserressourcen durch den Menschen</td>
</tr>
<tr>
<td></td>
<td>• Abwasserproblematik, Krankheiten durch Wasserarmut und Wasserverschmutzung</td>
</tr>
<tr>
<td></td>
<td>• Wasserkreislauf der Erde und Effekte von „Global Change“</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</td>
<td>B.Sc. Biologie: Wahlmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Zweisemestrig, jährlich (Beginn im WS)</td>
</tr>
<tr>
<td>Semester</td>
<td>Ab 3. Semester</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Immatrikulation für den Studiengang B.Sc. Biologie</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung, Exkursion</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>50 Stunden Präsenzzeit (2 SWS, 15 Wochen), 2–semestrig 40 Stunden Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>3</td>
</tr>
<tr>
<td>Studienleistung, Aktive Teilnahme an den Exkursionen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weitere Literatur wird nach Themen bereit gestellt</td>
</tr>
<tr>
<td>Modulname</td>
<td>Grundlagen der Biologie</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Code</td>
<td>BScBio W16</td>
</tr>
<tr>
<td>Einzelveranstaltungen des</td>
<td>• Vorlesung Grundlagen der Biologie</td>
</tr>
<tr>
<td>Moduls und Lehrformen</td>
<td></td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Prof. Dr. K. Weising</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. F. Herberg, Prof. Dr. K. Weising, N.N., Prof. Dr. W. Nellen, Prof. Dr. E. Langer, Dr. C. Nowack</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>• Grundverständnis biologischer Prinzipien, Vorgänge und Organisationsebenen</td>
</tr>
<tr>
<td></td>
<td>• Einblick in die (bio)chemischen Grundlagen des Lebens</td>
</tr>
<tr>
<td></td>
<td>• Einblick in die Vielfalt der Organismen</td>
</tr>
<tr>
<td></td>
<td>• Verständnis der Kopplung von Struktur und Funktion</td>
</tr>
<tr>
<td></td>
<td>• Selbständige Arbeit mit Lehrbüchern und Internet-Angebot</td>
</tr>
<tr>
<td></td>
<td>• Verständnis der Prinzipien naturwissenschaftlicher</td>
</tr>
<tr>
<td></td>
<td>Erkenntnisprozesse</td>
</tr>
<tr>
<td>Integrierter Erwerb von</td>
<td></td>
</tr>
<tr>
<td>Schlüsselkompetenzen</td>
<td></td>
</tr>
<tr>
<td>Lerninhalte</td>
<td>• Wasser und Kohlenstoffverbindungen als essentielle Bausteine des Lebens</td>
</tr>
<tr>
<td></td>
<td>• Molekulare und makromolekulare Bestandteile der Zelle</td>
</tr>
<tr>
<td></td>
<td>• Struktur und Funktion eukaryotischer Zellen: Zellorganellen, Biomembranen und Cytoskelett</td>
</tr>
<tr>
<td></td>
<td>• Einführung in die molekulare Genetik: Replikation, Mitose, Transkription und Translation</td>
</tr>
<tr>
<td></td>
<td>• Prokaryotische Zellen und Organismen; Bacteria und Archaea</td>
</tr>
<tr>
<td></td>
<td>• Pflanzliche Gewebetypen und Architektur einer Gefäßpflanze</td>
</tr>
<tr>
<td></td>
<td>• Tierische Zellen, Gewebe und Organe</td>
</tr>
<tr>
<td></td>
<td>• Bauplans der wichtigsten Tiergruppen</td>
</tr>
<tr>
<td></td>
<td>• Grundlagen der Mykologie</td>
</tr>
<tr>
<td></td>
<td>• Grundprinzipien der Ökologie: Autökologie und Synökologie</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>B.Sc. Biologie: Wahlmodul</td>
</tr>
<tr>
<td>(Zuordnung zu Curriculum)</td>
<td></td>
</tr>
<tr>
<td>Angebotes des Moduls</td>
<td></td>
</tr>
<tr>
<td>Semester</td>
<td>1.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Immatrikulation für einen der o.g. Studiengänge</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>60 Stunden Präsenzzeit (4 SWS)</td>
</tr>
<tr>
<td></td>
<td>60 Stunden Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>4</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td></td>
</tr>
<tr>
<td>Modulprüfungsleistung, Art</td>
<td>Klausur (1 Stunde)</td>
</tr>
<tr>
<td>und Dauer der Prüfungen</td>
<td></td>
</tr>
</tbody>
</table>
Literatur

Spezielle Informationen
Das Modul war in den vorhergehenden Prüfungsordnungen ein Pflichtmodul für den BSc-Studiengang Biologie (BScBio P6). Studierende, die dieses Pflichtmodul absolviert haben und in eine neue Prüfungsordnung wechseln, können sich Credits und Note des nicht mehr angebotenen Moduls BScBioP6 als Wahlmodul BScBioW16 anrechnen lassen.

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Fachübergreifende Schlüsselkompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>BScBio W17</td>
</tr>
</tbody>
</table>

Einzelveranstaltungen des Moduls
Eine oder mehrere Veranstaltungen, die im Veranstaltungsverzeichnis der Universität Kassel unter der Rubrik „Schlüsselkompetenzen fachübergreifend“ gelistet und für jedes Semester aktualisiert werden. Für die einzelnen Veranstaltungen können in Absprache mit dem anbietenden Dozenten jeweils 1 bis 6 Credits vergeben werden.
Mitarbeit in Gremien der Universität Kassel (z.B. Fachbereichsrat, Fachschaft, Studienausschuss, AstA) sowie die Tätigkeit als studentische Hilfskraft in der Selbstverwaltung, zur Unterstützung des Lehrbetriebes oder bei der Beratung von Studierenden (z.B. als Tutor) können ebenfalls als Veranstaltung angerechnet werden.

Modulbeauftragter
Studiendekan

Dozent/in
Lehrende aus allen Fachbereichen und zentralen Einrichtungen der Universität Kassel

Lernziele und Kompetenzen
Studyierende erwerben Kompetenzen, die das fachlich erworbene Kompetenzraster erweitern und für ein späteres Berufsleben von Bedeutung sind, zum Beispiel in Wissenschaftsethik, Recht, Ökonomie, englischer Fachsprache, Publizistik, Sozial- und Selbstkompetenz, Kommunikationsfähigkeit, analytischem Denken, Gremien- und Teamarbeit

Integrierter Erwerb von Schlüsselkompetenzen

Lerninhalte
Die Inhalte sind abhängig von den gewählten Veranstaltungen. Beispielhaft könnten folgende Veranstaltungen im Rahmen dieses Moduls belegt werden:
- Arbeiten mit Lern- und Kommunikationsplattformen
- Entscheiden, Konflikt und Handeln
- Globalisierung – Einführung in die Int. Politische Ökonomie
- Grundlagen und Konzepte des Managements
- Moderationstechnik
- Spanisch für das Berufsleben
- Technisches Englisch
- Multidisciplinary research in tropical production systems
- Visualisierung für Architektur und Landschaftsarchitektur
- Zeit- und Stressmanagement

Verwendbarkeit des Moduls (Zuordnung zu Curriculum)
B.Sc. Biologie: Wahlmodul

Dauer und Häufigkeit des Angebotes des Moduls
Veranstaltungen zu fachübergreifenden Schlüsselkompetenzen werden in jedem Semester angeboten (siehe Lehrveranstaltungsverzeichnis unter der Rubrik „Schlüsselkompetenzen fachübergreifend“)
<table>
<thead>
<tr>
<th>Semester</th>
<th>Ab 1. Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprache</td>
<td>Deutsch, Englisch oder andere Fremdsprache, abhängig von der gewählten Veranstaltung</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Immatrikulation für den B.Sc. Biologie</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Abhängig von der jeweils gewählten Veranstaltung</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>Die Verteilung von Präsenzzeit und Selbststudium ist abhängig von der gewählten Veranstaltung. Die Summe des gesamten Arbeitsaufwands beträgt 120h.</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>6 Die Anzahl der für die besuchte Veranstaltung zu vergebenden Credits wird durch die anbietenden Dozenten bzw. Bereiche geregelt. Der Nachweis für studentisches Engagement (Gremienarbeit) sowie der hierfür geleistete studentische Arbeitsaufwand/Zahl der Credits muss durch das Wahlamt der Universität Kassel, den ASTA, der Leiterin/den Leiter des betreffenden Gremiums oder die Studiendekan/in/den Studiendekan bescheinigt werden. Außerdem ist dem Modulverantwortlichen eine schriftliche Leistung im Umfang von 5 bis 10 Seiten vorzulegen (Bericht, Ausarbeitung zu einem verwandten Thema).</td>
</tr>
<tr>
<td>Literatur</td>
<td>Gemäß den Hinweisen zu den gewählten Veranstaltungen</td>
</tr>
</tbody>
</table>
Anlage 6

Modulhandbuch

für den Studiengang

Master of Science Biologie

Fachbereich Naturwissenschaften

Universität Kassel
Übersicht Studienziele und Lernergebnisse

Fachübergreifende Studienziele Master Biologie

- Der Studiengang Master of Science Biologie soll Studierende an die aktuelle internationale Forschung in der Biologie heranführen.
- Am Ende des Studiums haben die Studierenden gelernt, selbstständig wissenschaftlich zu arbeiten und ein Forschungsprojekt aus einem selbst gewählten Spezialgebiet der Biologie umzusetzen.
- Master-Absolventen sind in der Lage, in ihrer beruflichen Tätigkeit eine leitende Position zu übernehmen und mit einem interdisziplinär zusammengesetzten Team komplexe biologische Fragestellungen zu analysieren und zu lösen.
- Master-Absolventen können die Ergebnisse ihrer Forschungs- und Entwicklungstätigkeit in den fachlichen Zusammenhang der unterschiedlichen biologischen Disziplinen richtig einordnen und sind in der Lage, die aktuelle internationale Literatur dazu heranzuziehen.
- Im Master-Studiengang Biologie werden neben den fachspezifischen Kompetenzen zahlreiche berufsrelevante Schlüsselkompetenzen vermittelt, die über das Bachelor-Studium hinausgehen. Dazu gehört die Fähigkeit zur wissenschaftlichen Kommunikation in der deutschen und englischen Fachsprache, das Verfassen wissenschaftlicher Texte und die Beherrschung gängiger Präsentationstechniken und die Methodik des Projektmanagements.
- Für Master-Absolventen der Biologie kommt ein weites Spektrum von beruflichen Möglichkeiten in Betracht, wobei aufgrund der erworbenen fachspezifischen und fachübergreifenden Kompetenzen eine Tätigkeit in der Forschung und Entwicklung im Vordergrund steht.
- Master-Absolventen sind in der Lage, neue Entwicklungen in ihrem Gebiet zu erkennen und diese in ihre Arbeit einbeziehen. Sie sind in der Lage, ihre eigene Weiterbildung selbstständig und effektiv zu organisieren.
- In ihrer beruflichen Tätigkeit sind sie sich ihrer Verantwortung als Wissenschaftler und möglicher Folgen ihrer Tätigkeit für Umwelt und Gesellschaft bewusst.

Fachliche Kenntnisse Master Biologie

- Biochemie
- Biophysik
- Botanik
- Zoologie
- Entwicklungsphysiologie der Pflanzen
- Neurobiologie
- Genetik
- Mikrobiologie
- Ökologie
- Zellbiologie
Entwicklungsbiologie

In der Forschungsphase (Masterarbeit zusammen mit vorbereitenden Modulen) arbeiten sich die Studentinnen und Studenten in ein Spezialgebiet so tief ein, dass sie aktiv an der aktuellen internationalen Forschung auf diesem Gebiet teilnehmen können. Absolventen sind prinzipiell zum Übergang in eine Promotionsphase befähigt.

Fertigkeiten und Kompetenzen Master Biologie

Für die Absolventen des Masterstudiengangs in Biologie erwarten wir, dass sie folgende Fertigkeiten und Kompetenzen besitzen:

1) Sie haben ihre biologischen Kenntnisse vertieft, und gezielt auf Fragestellungen aus speziellen Fachgebieten der Biologie angewendet.
2) Sie haben sich auf mindestens einem Fachgebiet der Biologie so weit spezialisiert, dass sie unmittelbaren Anschluss an die aktuelle, internationale Forschung finden können.
3) Sie sind in der Lage, zur Lösung komplexer, auch interdisziplinärer Probleme aus den verschiedenen Bereichen der Biologie Experimente zu konzipieren, durchzuführen und die Ergebnisse nach wissenschaftlichen Kriterien zu interpretieren.
5) Sie haben in der Forschungsphase die Fähigkeit erworben, sich in ein beliebiges Spezialgebiet aus dem Bereich der Biologie einzuarbeiten, die aktuelle internationale Fachliteratur hierzu zu recherchieren und zu verstehen. Sie können Experimente auf diesem Gebiet konzipieren und durchführen, Ergebnisse im Licht verschiedenster Phänomene einordnen und Schlussfolgerungen für methodische Entwicklungen und wissenschaftlichen Fortschritt daraus ziehen.
6) Sie haben in der Forschungsphase erlernt, im Team zu arbeiten, über die Grenzen von Fachgebieten der Biologie hinweg zu kommunizieren und integrative Lösungen zu finden, die auf Erkenntnissen mehrerer Teildisziplinen beruhen.
7) Sie sind in der Lage, auch fernab des im Masterstudiums vertieften Spezialgebietes beruflich tätig zu werden und dabei ihr biologisch-naturwissenschaftliches Grundwissen zusammen mit den erlernten wissenschaftlichen Methoden und Problemlösungsstrategien einzusetzen.
8) Sie können komplexe Sachverhalte und eigene Forschungsergebnisse im Kontext der aktuellen internationalen Forschung umfassend diskutieren und in schriftlicher (Masterarbeit) und mündlicher Form (Vortrag mit Diskussion) darstellen.
9) Sie sind sich ihrer Verantwortung gegenüber der Wissenschaft und möglicher Folgen ihrer Tätigkeit für Umwelt und Gesellschaft bewusst und handeln gemäß den Grundsätzen guter wissenschaftlicher Praxis.
Modulübersicht

Pflichtmodule

<table>
<thead>
<tr>
<th>Modul</th>
<th>Inhalt</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Berufliche Orientierung II</td>
<td>8</td>
</tr>
<tr>
<td>P2</td>
<td>Methodenkenntnis und Projektplanung II</td>
<td>12</td>
</tr>
<tr>
<td>P3</td>
<td>Mastermodul</td>
<td>30</td>
</tr>
</tbody>
</table>

Summe Pflichtmodule (incl. 5 Credits für integrierte Schlüsselkompetenzen)

50 Credits

Wahlpflichtmodule (Drei Module müssen aus F1 bis F11 gewählt werden.)

<table>
<thead>
<tr>
<th>Modul</th>
<th>Inhalt</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>Forschungsmodul Biochemie</td>
<td>12</td>
</tr>
<tr>
<td>F2</td>
<td>Forschungsmodul Biophysik</td>
<td>12</td>
</tr>
<tr>
<td>F3</td>
<td>Forschungsmodul Botanik/Systematik</td>
<td>12</td>
</tr>
<tr>
<td>F4</td>
<td>Forschungsmodul Zoologie</td>
<td>12</td>
</tr>
<tr>
<td>F5</td>
<td>Forschungsmodul Genetik</td>
<td>12</td>
</tr>
<tr>
<td>F6</td>
<td>Forschungsmodul Mikrobiologie</td>
<td>12</td>
</tr>
<tr>
<td>F7</td>
<td>Forschungsmodul Ökologie/Mykologie</td>
<td>12</td>
</tr>
<tr>
<td>F8</td>
<td>Forschungsmodul Zellbiologie</td>
<td>12</td>
</tr>
<tr>
<td>F9</td>
<td>Forschungsmodul Entwicklungsbioologie</td>
<td>12</td>
</tr>
<tr>
<td>F10</td>
<td>Forschungsmodul Neurobiologie</td>
<td>12</td>
</tr>
<tr>
<td>F11</td>
<td>Forschungsmodul Entwicklungphysiologie der Pflanzen</td>
<td>12</td>
</tr>
</tbody>
</table>

Summe Wahlpflichtmodule (incl. 3 Credits für integrierte Schlüsselkompetenzen)

36 Credits

Wahlmodule (Es kann auch ein weiteres Modul aus F1 bis F11 gewählt werden.)

<table>
<thead>
<tr>
<th>Modul</th>
<th>Inhalt</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>Methoden der Molekularbiologie</td>
<td>6</td>
</tr>
<tr>
<td>W2</td>
<td>DNA-Diagnostik</td>
<td>3</td>
</tr>
<tr>
<td>W3</td>
<td>Molekulare Systematik und Evolution</td>
<td>3</td>
</tr>
<tr>
<td>W4</td>
<td>Nanostrukturen aus biologischer Sicht</td>
<td>6</td>
</tr>
<tr>
<td>W5</td>
<td>Biologische AFM-Applikationen (atomic force microscope)</td>
<td>3</td>
</tr>
<tr>
<td>W6</td>
<td>Mikrobielle Molekulargenetik</td>
<td>3</td>
</tr>
<tr>
<td>W7</td>
<td>Spezielle Aspekte der molekularen Entwicklungsbioologie</td>
<td>3</td>
</tr>
<tr>
<td>W8</td>
<td>Ökologische Exkursion/Forschungsreise</td>
<td>6</td>
</tr>
<tr>
<td>W9</td>
<td>Arbeitsgemeinschaft Pilze</td>
<td>4</td>
</tr>
<tr>
<td>W10</td>
<td>Große Botanische Exkursion</td>
<td>4</td>
</tr>
<tr>
<td>W11</td>
<td>Limnologie</td>
<td>6</td>
</tr>
<tr>
<td>W12</td>
<td>Humanökologie</td>
<td>3</td>
</tr>
<tr>
<td>W13</td>
<td>Sinnesphysiologie</td>
<td>5</td>
</tr>
<tr>
<td>W14</td>
<td>Wissenschaftliches Arbeiten mit Multimedia und Internet (FB11)</td>
<td>6</td>
</tr>
<tr>
<td>W15</td>
<td>Bodenkunde (FB 11)</td>
<td>6</td>
</tr>
<tr>
<td>W16</td>
<td>Grundlagen und angewandte Aspekte der Bodenbiologie (FB 11)</td>
<td>6</td>
</tr>
<tr>
<td>W17</td>
<td>Nutzpflanzenkunde II (FB 11)</td>
<td>6</td>
</tr>
<tr>
<td>W18</td>
<td>Phytopathologischer Feldkurs (FB 11)</td>
<td>6</td>
</tr>
<tr>
<td>W19</td>
<td>GIS-Anwendungen (FB 6/FB 18)</td>
<td>6</td>
</tr>
<tr>
<td>W20</td>
<td>Ökologische Grundlagen der Umweltplanung (FB 6)</td>
<td>6</td>
</tr>
<tr>
<td>W21</td>
<td>Schutzgüter in Umweltplanung und Landschaftsmanagement I (FB 6)</td>
<td>6</td>
</tr>
<tr>
<td>W22</td>
<td>Schutzgüter in Umweltplanung und Landschaftsmanagement II (FB 6)</td>
<td>6</td>
</tr>
<tr>
<td>W23</td>
<td>Verhaltensforschung</td>
<td>4</td>
</tr>
<tr>
<td>W24</td>
<td>Pflanzliche Evolutionsbiologie</td>
<td>9</td>
</tr>
<tr>
<td>W25</td>
<td>Fachübergreifende Schlüsselkompetenzen</td>
<td>4</td>
</tr>
</tbody>
</table>

Summe Wahlmodule (Incl. Fachübergreifende Schlüsselkompetenzen)

34 Credits

Gesamt

120 Credits
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Berufliche Orientierung II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>MScBio P1</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
<td>• Berufsfeldbezogenes Praktikum (6 Wochen)</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. F. Herberg, Prof. U. Kutschera, Prof. Dr. E. Langer, Prof. Dr. W. Nellen, Dr. C. Nowack, Prof. Dr. M. Schäfer, Prof. Dr. R. Schaffrath, Prof. Dr. M. Stengl, Prof. Dr. M. Maniac, Prof. Dr. R. Wagner, Prof. Dr. K. Weising, Prof. Dr. H. Zöltzer, N.N.</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>• Erlangung berufsspezifischer Fertigkeiten</td>
</tr>
<tr>
<td></td>
<td>• Fähigkeit zur selbständigen Abfassung eines Praktikumsberichtes</td>
</tr>
<tr>
<td>Integrierter Erwerb von Schlüsselkompetenzen</td>
<td>• Integrationsfähigkeit</td>
</tr>
<tr>
<td></td>
<td>• Einhaltung von Zielvorgaben</td>
</tr>
<tr>
<td></td>
<td>• Teamfähigkeit</td>
</tr>
<tr>
<td>Lerninhalte</td>
<td>Variabel, abhängig von der gewählten Einrichtung/Firma</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</td>
<td>M.Sc. Biologie: Pflichtmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Beliebig, in der vorlesungsfreien Zeit</td>
</tr>
<tr>
<td>Semester</td>
<td>Ab 1. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch oder Englisch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Immatrifikation in den Studiengang M.Sc. Biologie</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Berufspraktikum</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>240 Stunden Präsenzzeit im Praktikum (6 Wochen zu 40 Std.), einschließlich Berichtserstellung</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>8 (davon 2 Credits für integrierte Schlüsselkompetenzen)</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td></td>
</tr>
<tr>
<td>Modulprüfungsleistung, Art und Dauer der Prüfungen</td>
<td>Schriftlicher Praktikumsbericht, der mit „Bestanden“/"Nicht Bestanden" bewertet, aber nicht benotet wird.</td>
</tr>
<tr>
<td>Literatur</td>
<td>Fachspezifisch</td>
</tr>
<tr>
<td>Modulname</td>
<td>Methodenkenntnis und Projektplanung II</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Code</td>
<td>MScBio P2</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
<td>Selbststudium</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. F. Herberg, Prof. Dr. U. Kutschera, Prof. Dr. E. Langer, Prof. Dr. W. Nellen, Dr. C. Nowack, Prof. Dr. M. Schäfer, Prof. Dr. R. Schaffrath, Prof. Dr. M. Stengl, Prof. Dr. M. Maniak, Prof. Dr. R. Wagner, Prof. Dr. K. Weising, Prof. Dr. H. Zöltzer, N.N.</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>• Selbständige Erstellung einer Literaturübersicht zum Stand der Forschung in einem Forschungsgebiet der Biologie, auf der Grundlage meist englischsprachiger Originalliteratur</td>
</tr>
<tr>
<td></td>
<td>• Themenspezifische Gliederung und Ausarbeitung eines Projektvorschlages für eine Masterarbeit</td>
</tr>
<tr>
<td>Integrierter Erwerb von Schlüsselkompetenzen</td>
<td>• Entwicklung von Arbeitshypothesen</td>
</tr>
<tr>
<td></td>
<td>• Wissenschaftliches Formulieren</td>
</tr>
<tr>
<td></td>
<td>• Skizzieren von Forschungsprojekten</td>
</tr>
<tr>
<td>Lerninhalte</td>
<td>• Erarbeitung der theoretischen Grundlagen einer wissenschaftlichen Fragestellung aus dem Forschungsgebiet der Biologie, zur unmittelbaren Vorbereitung einer Masterarbeit</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</td>
<td>M.Sc. Biologie</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Einsemestrig, jährlich (jeweils im WS und/oder der darauf folgenden vorlesungsfreien Zeit)</td>
</tr>
<tr>
<td>Semester</td>
<td>Ab 3.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch und Englisch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Erfolgreiches Absolvieren von mindestens drei Forschungsmodulen aus unterschiedlichen Fachgebieten, einschließlich desjenigen Fachgebiets, in dem die Masterarbeit angefertigt werden soll.</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Selbstdstudium sowie Anleitung zum Wissenschaftlichen Arbeiten</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>360 Std. Selbstdstudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>12 (davon 1 Credit für integrierte Schlüsselkompetenzen)</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Schriftliche, unbenotete Ausarbeitung eines Projektvorschlages für die Masterarbeit</td>
</tr>
<tr>
<td>Modulprüfungsleistung, Art und Dauer der Prüfungen</td>
<td>Themenpezifische Fachliteratur</td>
</tr>
</tbody>
</table>

Mitteilungsblatt der Universität Kassel Nr. 2/2012 vom 06.03.2012

299
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Mastermodul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>MScBio P3</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
<td>Masterarbeit</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. F. Herberg, Prof. Dr. U. Kutschera, Prof. Dr. E. Langer, Prof. Dr. W. Nellen, Dr. C. Nowack, Prof. Dr. M. Schäfer, Prof. Dr. R. Schaffrath, Prof. Dr. M. Stengl, Prof. Dr. M. Maniak, Prof. Dr. R. Wagner, Prof. Dr. K. Weising, Prof. Dr. H. Zöltzer, N.N.</td>
</tr>
</tbody>
</table>
| Lernziele und Kompetenzen | • In der Masterarbeit soll sich der/die Studierende innerhalb einer festgelegten Zeit in eine biologisch-wissenschaftliche Fragestellung einarbeiten, das erlernte Wissen bei der – in der Regel – experimentellen Bearbeitung der Fragestellung anwenden und die Ergebnisse in schriftlicher Form verständlich und überzeugend darstellen und auf der Basis des aktuellen Stands der Literatur diskutieren
• Anwendung der wissenschaftlichen Denkweise auf ein konkretes Projekt
• Kommunikations- und Diskussionsfähigkeit über wissenschaftliche Fragestellungen
• Beherrschung des wissenschaftlichen Formulierens
• Fähigkeit zur kritischen Analyse wissenschaftlicher Ergebnisse |
| Integrierter Erwerb von Schlüsselkompetenzen | • Entwicklung von Arbeitshypothesen
• Entwicklung von Problemlösungskonzepten
• Kooperations- und Teamfähigkeit |
| Lerninhalte | • Experimentelle Bearbeitung einer wissenschaftlichen Fragestellung aus dem Forschungsgebiet der Biologie |
| Verwendbarkeit des Moduls (Zuordnung zu Curriculum) | M.Sc. Biologie: Pflichtmodul |
| Dauer und Häufigkeit des Angebotes des Moduls | Einsemestrig, zum Abschluss des Studiums |
| Sprache | Deutsch und Englisch |
| Voraussetzung für Teilnahme | Folgende Module sind Voraussetzung:
• Pflichtmodul Berufliche Orientierung II
• Pflichtmodul Methodenkenntnis und Projektplanung II
• Erfolgreiches Absolvieren von mindestens zwei Forschungsmodulen aus unterschiedlichen Fachgebieten, einschließlich desjenigen Fachgebiets, in dem die Masterarbeit angefertigt werden soll. |
<p>| Lehrform | Selbststudium, experimentelle Arbeit, Anleitung zum Wissenschaftlichen Arbeiten |
| Studentischer Arbeitsaufwand | 900 Std. Präsenzzeit und Selbststudium |
| Leistungspunkte (Credits) | 30 (davon 2 Credits für integrierte Schlüsselkompetenzen) |
| Studienleistungen | |
| Modulprüfungsleistung, Art und Dauer der Prüfungen | Masterarbeit |
| Literatur | Themenspezifische Fachliteratur |
| Spezielle Informationen | Die Note des Mastermoduls setzt sich zu 80% aus der Bewertung der |</p>
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Forschungsmodul Biochemie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>MScBio F1</td>
</tr>
</tbody>
</table>
| Einzelveranstaltungen des Moduls und Lehrformen | - Biochemisches Laborpraktikum (P, 10 SWS)
- Fortgeschrittenenseminar Biochemie (S, 2 SWS) |
| Modulbeauftragter | Prof. Dr. F. Herberg |
| Dozent/in | Prof. Dr. F. Herberg und Mitarbeiter |

<table>
<thead>
<tr>
<th>Lernziele und Kompetenzen</th>
<th></th>
</tr>
</thead>
</table>
| Erlernen des sicheren und kompetenten Umgangs mit biochemischer Laborausstattung.
Selbstständiges experimentelles Arbeiten nach Anleitung und englischsprachiger Originalliteratur, jedoch ohne stete Überwachung.
Fähigkeit zur Optimierung erforderlicher Arbeitsabläufe und Organisation des Arbeitstags im Labor.
Erwerb der Fähigkeit, Grundprinzipien der molekularen Biowissenschaften auf konkrete biologische und medizinische Fallbeispiele aus der alltäglichen Umgebung anzuwenden
Kodex der guten wissenschaftlichen Praxis im Umgang mit Ergebnissen |

<table>
<thead>
<tr>
<th>Integrierter Erwerb von Schlüsselkompetenzen</th>
<th></th>
</tr>
</thead>
</table>
| Verständnis und Anwendung der Prinzipien wissenschaftlichen Arbeitsens und der hypthesenorientierten Forschung
Sicherer Umgang mit der englischen Fachsprache
Eigenständiges Arbeiten
Zeitmanagement
Teamfähigkeit
Fähigkeit zur selbständigen Vorbereitung, Gestaltung und Präsentation von klaren Seminarvorträgen
Erwerb von Problemlösungskompetenz
Erwerb der Fähigkeit zur Dokumentation von Experimenten und den daraus resultierenden Ergebnissen (Erstellung detaillierter wissenschaftlicher Protokolle)
Fähigkeit zur Reflexion der Aussagekraft von Fachliteratur |

<table>
<thead>
<tr>
<th>Lerninhalte</th>
<th></th>
</tr>
</thead>
</table>
| Molekulare Mechanismen der intrazellulären Signaltransduktion.
Biophysikalische Methoden wie die Surface Plasmon Resonance (SPR), ALPHA-Screen, Biolumineszenz Resonanz Energie Transfer (BRET), Fluoreszenzpolarisation,
Molekularbiologische Methoden
Prokaryotische (E. coli) und eukaryotische Überexpressionssysteme.
LC ESI und MALDI-Massenspektrometrie zur Proteinidentifizierung und zum Nachweis von posttranslationalen Modifikationen
Unter anderem werden, basierend auf den Kristallstrukturen von Proteinen, Schlüsselaminsäuren identifiziert, zielgerichtet mutiert, die rekombinanten Proteine exprimiert, gereinigt und dann funktionell biochemisch charakterisiert. |

Verwendbarkeit des Moduls (Zuordnung zu Curriculum) | M.Sc. Biologie: Wahlpflichtmodul |
<table>
<thead>
<tr>
<th>Dauer und Häufigkeit des Angebotes des Moduls</th>
<th>Einsemestrig, in jedem Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester</td>
<td>Ab 1. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch und Englisch (Seminar)</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Immatrskulation im Studiengang M.Sc Biologie</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Laborpraktikum und Seminar</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>180 Stunden Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>180 Stunden Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>12 (davon 1 Credit für integrierte Schlüsselkompetenzen)</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Durchführung aller Praktikumsversuche und regelmäßige, aktive Mitarbeit im Seminar</td>
</tr>
<tr>
<td>Modulprüfungsleistung, Art und Dauer der Prüfungen</td>
<td>(1) Praktikumsbericht</td>
</tr>
<tr>
<td></td>
<td>(2) Englischsprachiger Vortrag (30–60 Min.)</td>
</tr>
<tr>
<td>Literatur</td>
<td>Englischsprachige Originalliteratur wird gestellt,</td>
</tr>
<tr>
<td>Spezielle Informationen</td>
<td>Maximal zwei Praktikanten gleichzeitig werden in Anlehnung an Projekte erfahrener Mitarbeiter des Lehrstuhls für Biochemie in laufende Forschungsprojekte der Abteilung eingebunden und werden sich mit einer aktuellen wissenschaftlichen Fragestellung beschäftigen. Das Praktikum findet in Form eines 4-wöchigen, ganztägigen Blockpraktikums statt</td>
</tr>
<tr>
<td>Modulname</td>
<td>Forschungsmodul Biophysik</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Code</td>
<td>MScBio F2</td>
</tr>
</tbody>
</table>
| Einzelveranstaltungen des Moduls und Lehrformen | • Aktuelle Themen der Biophysik (S, 2 SWS)
• Forschungspraktikum Biophysik (P, 12 SWS) |
| Modulbeauftragter | N.N. |
| Dozent/in | N.N. |

Lernziele und Kompetenzen

• Verständnis der molekularbiologischen, für die Darstellung von Biopolymeren relevanten Labor- und Analysetechniken, inklusive der zugehörigen Theorie
• Fähigkeit zur selbständigen Planung und Durchführung von Laborexperimenten, u. a. Isolation und Aufreinigung von DNA; RNA und Proteinen aus unterschiedlichem Zellmaterial, Polymerase-Kettenreaktion, Klonierung, Sequenzierung, Proteinüberexpression, *in vitro* Transkription
• Erlernen von Interaktionstechniken (EMSA; isothermale Titrationskalorimetrie, Fluoreszenzpolarisation, SRP, AFM), inklusive der zugehörigen Theorie, Softwarekenntnisse und -erfahrungen zu (internetbasierten) Datenbanksuchen und Analysen
• Kodex der guten wissenschaftlichen Praxis im Umgang mit Ergebnissen

Integrierter Erwerb von Schlüsselkompetenzen

• Verständnis und Anwendung der Prinzipien wissenschaftlichen Arbeiten und der hypothesenorientierten Forschung
• Sicherer Umgang mit der englischen Fachsprache
• Eigenständiges Arbeiten
• Zeitmanagement
• Teamfähigkeit
• Fähigkeit zur selbständigen Vorbereitung, Gestaltung und Präsentation von klaren Seminarvorträgen

Lerninhalte

• Katalyse in biologischen Systemen: RNA, DNA und Proteine
• Thermodynamik und Strukturbildung von Makromolekülen und von Protein-Nukleinsäure-Interaktionen
• Analyse der Interaktionen von Proteinen und Nukleinsäuren im Ensemble (isothermale Titrationskalorimetrie, EMSA, SRP) und im Einzelmolekül (AFM)
• Vergleichende (internetbasierte) Datenbanksuchen

Verwendbarkeit des Moduls (Zuordnung zu Curriculum)

M.Sc. Biologie: Wahlpflichtmodul
M.Sc. Nanostrukturwissenschaften: Wahlpflichtmodul

Dauer und Häufigkeit des Angebotes des Moduls

Einseminatrikum, Praktikum in jedem Semester möglich, Seminar alle zwei Semester (jeweils im WS)

Semester

Ab 1. Sem

Sprache

Deutsch und Englisch (Seminar)

Voraussetzung für Teilnahme

Immatrskulation für einen der o.g. Studiengänge

Lehrform

Seminar und Laborpraktikum

Studentischer Arbeitsaufwand

210 Stunden Präsenzzeit
150 Stunden Selbststudium

Leistungspunkte (Credits)

12 (davon 1 Credit für integrierte Schlüsselkompetenzen)

Studienleistungen

Durchführung aller Praktikumsversuche und Mitarbeit im Seminar Seminarvortrag
<table>
<thead>
<tr>
<th>Modulprüfungsleistung, Art und Dauer der Prüfungen</th>
<th>Praktikumsprotokoll oder englischsprachiger Seminarvortrag (30–60 Min.) Die Art der Prüfung wird zu Beginn des Moduls bekannt gegeben.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur</td>
<td>Englischsprachige Originalliteratur wird bekannt gegeben. Zusätzliche Literatur wird je nach Seminarchema individuell zur Verfügung gestellt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Forschungsmodul Botanik/Systematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>MScBio F3</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
<td>• Molekulare Systematik und Evolution: Eine Einführung (S, 2 SWS) • Forschungspraktikum zur pflanzlichen Molekularsystematik und Genomanalyse (P, 12 SWS)</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Prof. Dr. K. Weising</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. K. Weising und Mitarbeiter</td>
</tr>
</tbody>
</table>

| Lernziele und Kompetenzen | • Verständnis der Prinzipien molekularsystematisch und populationsgenetisch relevanter Labortechniken und Auswertemethoden einschließlich der zugehörigen Theorie • Fähigkeit zur selbständigen Planung und Durchführung von molekularsystematisch und populationsgenetisch orientierten Laborexperimenten, u.a. der DNA-Isolation aus Pflanzenmaterial, Gelelektrophorese, Polymerase-Kettenreaktion, DNA-Fingerprinting, DNA-Sequenzierung und Mikrosatelitenaanalyse • Softwarekenntnisse und -erfahrungen bezüglich der Durchführung von DNA-Sequenz-Alignments, der Rekonstruktion von DNA-basierten Stammbäumen und der Auswertung populationsgenetischer Parameter • Fähigkeit zur Durchführung von Recherchen in DNA-Datenbanken im Internet • Kodex der guten wissenschaftlichen Praxis im Umgang mit Ergebnissen |

| Integrierter Erwerb von Schlüsselkompetenzen | • Verständnis und Anwendung der Prinzipien wissenschaftlichen Arbeitens und der hypothesesorientierten Forschung • Sicherer Umgang mit der englischen Fachsprache • Eigenständiges Arbeiten • Zeitmanagement • Teamfähigkeit • Fähigkeit zur selbständigen Vorbereitung, Gestaltung und Präsentation von klaren Seminarvorträgen |

| Lerninhalte | • Makromoleküle in Systematik und Taxonomie • Vergleichende DNA-Sequenzanalyse • Molekulare Markertechniken und genetischer Fingerabdruck • Repetitive DNA: Mini- und Mikrosatelliten • Molekulare Phylogenie, Methoden und Algorithmen der Stammbaumrekonstruktion • Molekulare Systematik der Landpflanzen • Grundlagen der Populationsgenetik |

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</th>
<th>M.Sc. Biologie: Wahlpflichtmodul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Einsemestrig, Praktikum in jedem Semester möglich (auch in der vorlesungsfreien Zeit), Seminar alle zwei Semester (jeweils im WS)</td>
</tr>
<tr>
<td>Semester</td>
<td>Ab 1. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch und Englisch (Seminar)</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Immatrikulation für den Studiengang M.Sc. Biologie</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Seminar und Laborpraktikum</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Studentischer Arbeitsaufwand | 210 Stunden Präsenzzeit
150 Stunden Selbststudium |
| Leistungspunkte (Credits) | 12 (davon 1 Credit für integrierte Schlüsselkompetenzen) |
| Studienleistungen | Durchführung aller Praktikumsversuche und regelmäßige, aktive Mitarbeit im Seminar
Englischsprachiger Seminarvortrag
Vorstellung der Ergebnisse im Arbeitsgruppenseminar |
| Modulprüfungsleistung, Art und Dauer der Prüfungen | Benotetes Praktikumsprotokoll |
Die Literatur ist weitgehend in der Bereichsbibliothek vorhanden. Zusätzliche Literatur wird je nach Thema individuell zur Verfügung gestellt. |
<p>| Spezielle Informationen | Das Seminar wird z.T. als Blockseminar durchgeführt. Das Praktikum wird in Kleingruppen von 1–3 Studierenden als 4-wöchiges, ganztägiges Laborpraktikum durchgeführt. |</p>
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Forschungsmodul Zoologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>MScBio F4</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
<td>• Grundlagen der Herstellung zoologisch-anatomischer Präparate (S+Ü, 2 SWS)</td>
</tr>
<tr>
<td></td>
<td>• Vergleichende mikro- und makroskopische Anatomie (P, 12 SWS)</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Dr. C. Nowack</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Dr. C. Nowack und Mitarbeiter</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>• Erlernen der zoologischen Präparateherstellung in Theorie und Praxis, incl. Fikierung und Einbettung von tierischem Gewebe</td>
</tr>
<tr>
<td></td>
<td>• Selbständiges Erstellen von Paraffinschnittserien mit Hilfe des Minot-Mikrotoms</td>
</tr>
<tr>
<td></td>
<td>• Erstellen von Gefrierschnitten am Kryostaten</td>
</tr>
<tr>
<td></td>
<td>• Färbermethoden</td>
</tr>
<tr>
<td></td>
<td>• Photographische Dokumentation lichtmikroskopischer Präparate</td>
</tr>
<tr>
<td></td>
<td>• Planung und Durchführung eines eigenen kleinen Forschungsprojektes im Rahmen laufender Studien der Arbeitsgruppe</td>
</tr>
<tr>
<td></td>
<td>• Kodex der guten wissenschaftlichen Praxis im Umgang mit Ergebnissen</td>
</tr>
<tr>
<td>Integrierter Erwerb von Schlüsselkompetenzen</td>
<td>• Verständnis und Anwendung der Prinzipien wissenschaftlichen Arbeits der hypothesenorientierten Forschung</td>
</tr>
<tr>
<td></td>
<td>• Eigenständiges Arbeiten</td>
</tr>
<tr>
<td></td>
<td>• Zeitmanagement</td>
</tr>
<tr>
<td></td>
<td>• Teamfähigkeit</td>
</tr>
<tr>
<td></td>
<td>• Fähigkeit zur selbständigen Vorbereitung, Gestaltung und Präsentation von klaren Seminarvorträgen</td>
</tr>
<tr>
<td>Lerninhalte</td>
<td>• Einführung in die theoretischen Hintergründe zur vergleichenden und funktionellen Anatomie, Histologie, Embryologie und Phylogenie der offaktorischen Organe verschiedener Vertebraten</td>
</tr>
<tr>
<td></td>
<td>• Gewebekunde</td>
</tr>
<tr>
<td></td>
<td>• Durchführung eines eigenen Forschungsprojektes inklusive theoretischer Vorbereitung (Literaturarbeit), Bearbeitung und Auswertung des Materials sowie Interpretation der gewonnenen Ergebnisse im Kontext des aktuellen Forschungsstandes.</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</td>
<td>M.Sc. Biologie: Wahlpflichtmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Einsemestrig, jährlich (jeweils im WS)</td>
</tr>
<tr>
<td>Semester</td>
<td>Ab 1. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch und Englisch (Seminar)</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Immatrikulation für den M.Sc. Biologie</td>
</tr>
<tr>
<td></td>
<td>Grundkenntnisse der zoologischen Anatomie</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Seminar, Übung, Laborpraktikum</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>210 Stunden Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>150 Stunden Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>12 (davon 1 Credit für integrierte Schlüsselkompetenzen)</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Regelmäßige, aktive Mitarbeit im Kurs</td>
</tr>
<tr>
<td></td>
<td>Erstellung von diversen mikroskopischen Präparaten</td>
</tr>
<tr>
<td></td>
<td>Vorstellen der Ergebnisse im Arbeitsgruppenseminar (englisch)</td>
</tr>
<tr>
<td>Modulprüfungsleistung, Art und Dauer der Prüfungen</td>
<td>Benotetes Praktikumsprotokoll</td>
</tr>
<tr>
<td>Literatur</td>
<td>Romeis, B.: Mikroskopische Technik. Oldenbourg München</td>
</tr>
<tr>
<td>Spezielle Informationen</td>
<td>Das Praktikum ist eine 4-wöchige Blockveranstaltung (max. je 1–2 Studierende) mit individueller zeitlicher Absprache. Das Seminar findet halbsemestrisch mit 4 SWS statt</td>
</tr>
<tr>
<td>Modulname</td>
<td>Forschungsmodul Genetik</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Code</td>
<td>MScBio F5</td>
</tr>
<tr>
<td>Einzelveranstaltungen des</td>
<td>Seminar der Arbeitsgruppe Genetik (S, 2 SWS)</td>
</tr>
<tr>
<td>Moduls und Lehrformen</td>
<td>Laborpraktikum (P, 12 SWS)</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Prof. Dr. W. Nellen</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. W. Nellen und Mitarbeiter</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>- Kritische Auseinandersetzung mit eigenen Ergebnissen, Diskussion aktueller Ergebnisse der Arbeitsgruppe</td>
</tr>
<tr>
<td></td>
<td>- Selbständige wissenschaftliche Arbeit unter Beaufsichtigung</td>
</tr>
<tr>
<td></td>
<td>- Kodex der guten wissenschaftlichen Praxis im Umgang mit Ergebnissen</td>
</tr>
<tr>
<td>Integrierter Erwerb von</td>
<td>- Verständnis und Anwendung der Prinzipien wissenschaftlichen Arbeitens und der hypothesenorientierten Forschung</td>
</tr>
<tr>
<td>Schlüsselkompetenzen</td>
<td>- Sicherer Umgang mit der englischen Fachsprache</td>
</tr>
<tr>
<td></td>
<td>- Eigenständiges Arbeiten</td>
</tr>
<tr>
<td></td>
<td>- Zeitmanagement</td>
</tr>
<tr>
<td></td>
<td>- Teamfähigkeit</td>
</tr>
<tr>
<td></td>
<td>- Fähigkeit zur selbständigen Vorbereitung, Gestaltung und Präsentation von klaren Seminarvorträgen</td>
</tr>
<tr>
<td>Lerninhalte</td>
<td>- Molekulargenetische, biochemische, biophysikalische und mikroskopische Arbeitstechniken im Routineeinsatz.</td>
</tr>
<tr>
<td></td>
<td>- Forschungsnahe individuelle Aspekte der Zellphysiologie</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>M.Sc. Biologie: Wahlpflichtmodul</td>
</tr>
<tr>
<td>(Zuordnung zu Curriculum)</td>
<td>M.Sc. Nanostrukturwissenschaften: Wahlpflichtmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des</td>
<td>Einsemestrig, in jedem Semester</td>
</tr>
<tr>
<td>Angebotes des Moduls</td>
<td></td>
</tr>
<tr>
<td>Semester</td>
<td>Ab 1. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch und Englisch (Seminar)</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Immatrikulation für einen der o.g. Studiengänge</td>
</tr>
<tr>
<td></td>
<td>Grundlegende Kenntnisse der Zellbiologie, Entwicklungsbiochemie, Biochemie und Genetik</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Praktikum und Seminar</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>210 Stunden Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>150 Stunden Selbstdstudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>12 (davon 1 Credit für integrierte Schlüsselkompetenzen)</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Durchführung aller Praktikumsversuche</td>
</tr>
<tr>
<td>Modulprüfungsleistung, Art</td>
<td>Englischsprachiger Abschlussvortrag (30–60 Min.)</td>
</tr>
<tr>
<td>und Dauer der Prüfungen</td>
<td>Relevante Publikationen zum Forschungsbereich der Abteilung sowie Abschlussarbeiten und Dissertationen von Mitarbeitern werden gestellt</td>
</tr>
<tr>
<td>Literatur</td>
<td>Das Praktikum wird in Kleingruppen von 1–2 Studierenden als 4–wöchiges, ganztägiges Laborpraktikum durchgeführt.</td>
</tr>
<tr>
<td>Modulname</td>
<td>Forschungsmodul Mikrobiologie</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Code</td>
<td>MSciBio F6</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
<td>Laborpraktikum (P, 12 SWS)</td>
</tr>
<tr>
<td></td>
<td>Mikrobiologisches Fortgeschrittenenseminar (S, 2 SWS)</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Prof. Dr. R. Schaffrath</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. R. Schaffrath</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>• Selbstständiges experimentelles, mikrobiologisches Arbeiten nach Anleitung</td>
</tr>
<tr>
<td></td>
<td>• Selbstständige Analyse und Interpretation von experimentellen Ergebnissen</td>
</tr>
<tr>
<td></td>
<td>• Fähigkeit zur Optimierung von Arbeitsschritten und -abläufen</td>
</tr>
<tr>
<td></td>
<td>• Kodex der guten wissenschaftlichen Praxis im Umgang mit Ergebnissen</td>
</tr>
<tr>
<td>Integrierter Erwerb von Schlüsselkompetenzen</td>
<td>• Verständnis und Anwendung der Prinzipien wissenschaftlichen Arbeitens und der hypothesenorientierten Forschung</td>
</tr>
<tr>
<td></td>
<td>• Sicherer Umgang mit der englischen Fachsprache</td>
</tr>
<tr>
<td></td>
<td>• Eigenständiges Arbeiten</td>
</tr>
<tr>
<td></td>
<td>• Zeitmanagement</td>
</tr>
<tr>
<td></td>
<td>• Teamfähigkeit</td>
</tr>
<tr>
<td></td>
<td>• Fähigkeit zur selbständigen Vorbereitung, Gestaltung und Präsentation von klaren Seminarvorträgen</td>
</tr>
<tr>
<td>Lerninhalte</td>
<td>Molekularbiologische, biochemische, physiologische und mikroskopische Arbeitstechniken in der experimentellen Routine der mikrobiologischen Forschung. Forschungsauf Aspekte der mikrobiellen Molekularbiologie</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</td>
<td>• M.Sc. Biologie: Wahlpflichtmodul</td>
</tr>
<tr>
<td></td>
<td>• M.Sc. Nanostrukturwissenschaften: Wahlpflichtmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Einsemestrig, jährlich (jeweils im WS)</td>
</tr>
<tr>
<td>Semester</td>
<td>Ab 1. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch und Englisch (Seminar)</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Immatrikulation für den M.Sc. Biologie. Grundkenntnisse der Mikrobiologie, Biochemie und Genetik</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Praktikum, Seminar</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>210 Stunden Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>150 Stunden Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>12 (davon 1 Credit für integrierte Schlüsselkompetenzen)</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Durchführung aller Praktikumsversuche und regelmäßige, aktive Mitarbeit in den begleitenden Seminaren</td>
</tr>
<tr>
<td>Modulprüfungsleistung, Art und Dauer der Prüfungen</td>
<td>Englischsprachiger Abschlussvortrag (30–60 Min.) plus ergebnisorientiertes, im wiss. Stil verfasstes Praktikumsprotokoll (Abstract, Einleitung, Material & Methoden, Ergebnisse, Diskussion etc.)</td>
</tr>
<tr>
<td></td>
<td>Süßmuth et al. (1999) Biochemisch-Mikrobiologisches Praktikum, Thieme</td>
</tr>
<tr>
<td></td>
<td>Weitere Literaturempfehlungen zu Beginn der Veranstaltungen</td>
</tr>
<tr>
<td>Spezielle Informationen</td>
<td>Praktikum und Seminar werden als Blockveranstaltung durchgeführt</td>
</tr>
<tr>
<td>Modulname</td>
<td>Forschungsmodul Ökologie/Mykologie</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Code</td>
<td>MScBio F7</td>
</tr>
</tbody>
</table>
| Einzelveranstaltungen des Moduls und Lehrformen | • Spezielle Ökologie und Morphologie der Pilze (S, 2 SWS)
• Wissenschaftliche Dokumentation von Pilzen (P, 2 SWS)
• Labor- und Freilandpraktikum Mykologie (P, 10 SWS) |
| Modulbeauftragter | Prof. Dr. E. Langer, Dr. C. Douanla-Meli |
| Dozent/in | Prof. Dr. E. Langer, Dr. C. Douanla-Meli |
| Lernziele und Kompetenzen | • Kenntnis der zellulären Baupläne und der Ökologie spezieller Pilze
• Selbstständige mikroskopische Bearbeitung und Dokumentation von Pilzen
• Strategien der Probennahme im Gelände
• Mykologische Artenkenntnis
• Umgang mit Spezialliteratur
• Naturschutzfachliche Datenerhebung
• Steriles Arbeiten mit Reinkulturen
• Beherrschung grundlegender molekularsystematischer Methoden
• Umgang mit Gendatenbanken
• Umgang mit computergestützten Programmen zur Rekonstruktion von Stammbäumen
• Aufbau von Kontakten zur Deutschen Gesellschaft für Mykologie
• Kodex der guten wissenschaftlichen Praxis im Umgang mit Ergebnissen |
| Integrierter Erwerb von Schlüsselkompetenzen | • Verständnis und Anwendung der Prinzipien wissenschaftlichen Arbeitens und der hypothesesorientierten Forschung
• Sicherer Umgang mit der englischen Fachsprache
• Eigenständiges Arbeiten
• Zeitmanagement
• Teamfähigkeit
• Fähigkeit zur selbständigen Vorbereitung, Gestaltung und Präsentation von klaren Seminarvorträgen
• Selbständige Projektdurchführung
• Fähigkeit, wissenschaftliche Inhalte allgemeinverständlich wieder zu geben |
| Lerninhalte | • Morphologie und Ökologie spezieller Pilze
• Zeltypen der Pilze
• Wissenschaftliche Dokumentation von Pilzen
• Biodiversität der Pilze
• Biogeographie spezieller Pilzarten
• Ökosystemische Funktionen spezieller Pilzarten
• Kulturmethoden bei Pilzen
• RFLP, AFLP, DNA–Isolation, PCR, DNA–Sequenzierung
• Molekularphylogenetische cladistik |
<p>| Verwendbarkeit des Moduls (Zuordnung zu Curriculum) | M.Sc. Biologie: Wahlpflichtmodul |
| Dauer und Häufigkeit des Angebotes des Moduls | Einsemestrig, in jedem Semester (im Wintersemester als Laborpraktikum, im Sommersemester als Freilandpraktikum) |
| Semester | Ab 1. Sem. |
| Sprache | Deutsch und Englisch (Seminars) |
| Voraussetzung für Teilnahme | Immatrakulation für den M.Sc. Biologie. Grundlegende Kenntnisse der Ökologie und Mykologie |</p>
<table>
<thead>
<tr>
<th>Lehrform</th>
<th>Praktikum und Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>210 Stunden Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>150 Stunden Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>12 (davon 1 Credit für integrierte Schlüsselkompetenzen)</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Regelmäßige Mitarbeit im Praktikum</td>
</tr>
<tr>
<td></td>
<td>Zeichnerische und textliche Dokumentation von mindestens drei Pilzarten</td>
</tr>
<tr>
<td></td>
<td>Englischsprachiger Seminarvortrag</td>
</tr>
<tr>
<td>Modulprüfungsleistung, rt und Dauer der Prüfungen</td>
<td>Benoteter schriftlicher Bericht (Pilzdokumentationen und Praktikum)</td>
</tr>
<tr>
<td>Literatur</td>
<td>Spezialliteratur je nach Spezialthema</td>
</tr>
<tr>
<td>Spezielle Informationen</td>
<td>Es kann nur entweder das Wahlmodul „Arbeitsgemeinschaft Pilze“ oder das „Forschungsmodul Ökologie/Mykologie“ belegt werden.</td>
</tr>
<tr>
<td>Modulname</td>
<td>Forschungsmodul Zellbiologie</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Code</td>
<td>MScBio F8</td>
</tr>
<tr>
<td>Einzeleranwendungen des Moduls und Lehrformen</td>
<td>• Laborpraktikum (P, 15 SWS)</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Prof. Dr. M. Maniak</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. M. Maniak und Mitarbeiter</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>• Selbständiges experimentelles Arbeiten nach Anleitung jedoch ohne stete Überwachung.</td>
</tr>
<tr>
<td></td>
<td>• Fähigkeit zur Optimierung erforderlicher Arbeitsabläufe und Organisation des Arbeitsalltags.</td>
</tr>
<tr>
<td></td>
<td>• Fähigkeit zur Entscheidung der Wahl und Anordnung von Teilschritten zur Klärung einer wissenschaftlichen Fragestellung.</td>
</tr>
<tr>
<td></td>
<td>• Analyse von experimentellen Ergebnissen und Ziehen von Schlüssen.</td>
</tr>
<tr>
<td></td>
<td>• Kodex der guten wissenschaftlichen Praxis im Umgang mit Ergebnissen</td>
</tr>
<tr>
<td>Integrierter Erwerb von Schlüsselkompetenzen</td>
<td>• Verständnis und Anwendung der Prinzipien wissenschaftlichen Arbeitens und der hypothesesorientierten Forschung</td>
</tr>
<tr>
<td></td>
<td>• Eigenständiges Arbeiten</td>
</tr>
<tr>
<td></td>
<td>• Zeitmanagement</td>
</tr>
<tr>
<td></td>
<td>• Teamfähigkeit</td>
</tr>
<tr>
<td>Lerninhalte</td>
<td>• Molekulargenetische, biochemische, spektralphotometrische, mikroskopische Arbeitstechniken im Routineeinsatz.</td>
</tr>
<tr>
<td></td>
<td>• Forschungsnähe individuelle Aspekte der Zellphysiologie</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls Zuordnung zu Curriculum</td>
<td>M.Sc. Biologie: Wahlpflichtmodul</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Nanostrukturwissenschaften: Wahlpflichtmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Einsemestrig, jedes Semester</td>
</tr>
<tr>
<td>Semester</td>
<td>ab 1. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch und Englisch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Immatrikulation für o.g. Studiengang</td>
</tr>
<tr>
<td></td>
<td>Grundkenntnisse der Zellbiologie, Entwicklungsbiologie, Biochemie und Genetik</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Praktikum</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>225 Stunden Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>135 Stunden Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>12 (davon 1 Credit für integrierte Schlüsselkompetenzen)</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Durchführung aller Praktikumsversuche</td>
</tr>
<tr>
<td></td>
<td>Laborprotokoll</td>
</tr>
<tr>
<td>Modulprüfungsleistung, Art und Dauer der Prüfungen</td>
<td>Englischsprachiges Abschlussgespräch (60 Min.)</td>
</tr>
<tr>
<td>Literatur</td>
<td>Eichinger und Rivero, Dictyostelium discoideum Protocols, Humana Press, 2006</td>
</tr>
<tr>
<td></td>
<td>Relevante Publikationen zum Forschungsgebiet der Abteilung sowie Abschlussarbeiten und Dissertationen von Mitarbeitern</td>
</tr>
<tr>
<td>Modulname</td>
<td>Forschungsmodul Entwicklungsbioleogie</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Code</td>
<td>MScBio F9</td>
</tr>
</tbody>
</table>
| Einzelveranstaltungen des Moduls und Lehrformen | • Aktuelle Probleme in der Entwicklungsbioleogie (S, 2 SWS)
| | • Molekularbiologische und zytologische Analysen zur Entwicklung bei Insekten (P, 12 SWS) |
| Modulbeauftragter | Prof. Dr. M. Schäfer |
| Dozent/in | Prof. Dr. M. Schäfer und Mitarbeiter |
| Lernziele und Kompetenzen | • Verständnis der Prinzipien molekularbiologischen und zellbiologischen Arbeitsens, der relevanten Auswertemethoden einschließlich der entsprechenden Theorie
| | • Fähigkeit zur selbständigen Planung und Durchführung von Laborexperimenten, u.a. der Expressionsanalyse auf unterschiedlichen Ebenen mit verschiedenen Methoden, der Etablierung von Stämmen mit neuen Merkmalen
| | • Fähigkeit zur möglichst objektiven, breiten Auswertung und Interpretation der gewonnenen Ergebnisse
| | • Fähigkeit zur Durchführung von Recherchen in DNA-Datenbanken im Internet und zum Einsatz von Analyseprogrammen für DNA, RNA und Protein
| | • Kodex der guten wissenschaftlichen Praxis im Umgang mit Ergebnissen |
| Integrierter Erwerb von Schlüsselkompetenzen| • Verständnis und Anwendung der Prinzipien wissenschaftlichen Arbeitsens
| | • Fähigkeit zur selbständigen Vorbereitung, Gestaltung und Präsentation von informativen und wissenschaftlich präzisen Seminarvorträgen, incl. Recherche englischsprachiger Fachliteratur
| | • Fähigkeit zum Führen einer wissenschaftlichen Diskussion
| | • Sicherer Umgang mit der englischen Fachsprache
| | • Eigenständiges Arbeiten
| | • Zeitmanagement
| | • Teamfähigkeit |
| Lerninhalte | • Klonierung von DNA-Fragmenten
| | • Erzeugung transgener Fliegen
| | • RNA-Isolierung und -Analyse
| | • Hybridisierungstechniken
| | • Proteinsolierung
| | • gewebsspezifische Expressionsanalysen
| | • praktische Kreuzungsgenetik |
| Verwendbarkeit des Moduls | M.Sc. Biologie: Wahlpflichtmodul |
| (Zuordnung zu Curriculum) | |
| Dauer und Häufigkeit des Angebotes des Moduls| Ein- bzw. zweisemestrig, Seminar jeweils im WS |
| Semester | Ab 1. Sem. |
| Sprache | Deutsch und Englisch (Seminar) |
| Voraussetzung für Teilnahme | Immatritulation für den M.Sc. Biologie |
| Lehrform | Seminar und Laborpraktikum |
| Studentischer Arbeitsaufwand | 210 Stunden Präsenzzeit
<p>| | 150 Stunden Selbststudium |
| Leistungspunkte (Credits) | 12 (davon 1 Credit für integrierte Schlüsselkompetenzen) |
| Studienleistungen | Durchführung aller Praktikumsversuche und regelmäßige, aktive Mitarbeit |</p>
<table>
<thead>
<tr>
<th>Modulprüfungsleistung, Art und Dauer der Prüfungen</th>
<th>Benotetes Praktikumsprotokoll</th>
</tr>
</thead>
</table>
Zusätzliche Literatur wird je nach Thema individuell zur Verfügung gestellt |
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Forschungsmodul Neurobiologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>MScBio F10</td>
</tr>
</tbody>
</table>
| Einzelveranstaltungen des Moduls und Lehrformen | - Laborpraktikum Neurobiologie (P, 12 SWS)
- Seminar zur Neurobiologie (S, 2 SWS) |
| Modulbeauftragter | Prof. Dr. M. Stengl |
| Dozent/in | Prof. Dr. M. Stengl |
| Lernziele und Kompetenzen | - Erarbeiten von Spezialwissen aus Bereichen der Stoffwechselephysiologie: circadiane Rhythmen, Neuropeptid-Funktion
- Kritische und selbständige Erarbeitung eines Seminarthemas aus dem Bereich der Sinnesphysiologie
- Kodex der guten wissenschaftlichen Praxis im Umgang mit Ergebnissen |
| Integrierter Erwerb von Schlüsselkompetenzen | - Verständnis und Anwendung der Prinzipien wissenschaftlichen Arbeiten und der hypothesenorientierten Forschung
- Sicherer Umgang mit der englischen Fachsprache
- Eigenständiges Arbeiten
- Zeitmanagement
- Teamfähigkeit
- Fähigkeit zur selbständigen Vorbereitung, Gestaltung und Präsentation von klaren Seminarvorträgen
- Fähigkeit zum analytischen Denken
- Kritischer Umgang mit wissenschaftlichen Ergebnissen
- Verantwortungsvolles kompetentes Umgehren mit Versuchsapparaturen |
| Lerninhalte | Es werden verschiedene Techniken erlernt, indem an aktuellen Forschungsprojekten aus den Themenbereichen Circadiane Rhythmen und Struktur und Funktion von Neuropeptiden mitgearbeitet wird. Elektrophysiologische Techniken: Extrazelluläre Ableitungen, Klonieren von circadianen Uhr molekülen; Etablierung von Verhaltensessays; Neuroanatomische und immunzytochemische Untersuchungen, 3-D-Rekonstruktionen neuronaler Schaltkreise; Biochemische Versuche zur Messung sekundärer Botenstoffe |
| Verwendbarkeit des Moduls (Zuordnung zu Curriculum) | M.Sc. Biologie: Wahlpflichtmodul
M.Sc. Nanostrukturwissenschaften: Wahlpflichtmodul |
| Dauer und Häufigkeit des Angebotes des Moduls | Einsemestrig, jährlich (jeweils im SoSe) |
| Semester | ab 2. Sem. |
| Sprache | Deutsch und Englisch (Seminar) |
| Voraussetzung für Teilnahme | Immatrikulation für einen der o.g. Studiengänge
Grundkenntnisse der Tierphysiologie |
| Lehrform | Seminar und Praktikum |
| Studentischer Arbeitsaufwand | 210 Stunden Präsenzzeit
150 Stunden Selbststudium |
<p>| Leistungspunkte (Credits) | 12 (davon 1 Credit für integrierte Schlüsselkompetenzen) |
| Studienleistungen | Durchführung aller Praktikumsversuche und regelmäßige, aktive Mitarbeit im Seminar |
| Modulprüfungsleistung, Art und Dauer der Prüfungen | Bewerteter, englischsprachiger Abschlussvortrag (30–60 Min.) oder bewertetes Protokoll |
| Literatur | Originalliteratur nach Vereinbarung |</p>
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Forschungsmodul Entwicklungspphysiologie der Pflanzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>MScBio F11</td>
</tr>
</tbody>
</table>
| Einzelveranstaltungen des Moduls und Lehrformen | • Seminar: Wachstum und Phytohormone (2 SWS)
• Laborpraktikum Entwicklungspphysiologie (8 SWS) |
| Modulbeauftragter | U. Kutscherer |
| Dozent/in | U. Kutscherer und Mitarbeiter |
| Lernziele und Kompetenzen | • Kritische Auseinandersetzung mit eigenen Ergebnissen, Diskussion aktueller Ergebnisse der Arbeitsgruppe
• Selbständige wissenschaftliche Arbeit unter Beaufsichtigung
• Kodex der guten wissenschaftlichen Praxis im Umgang mit Ergebnissen
• Vertiefte Kenntnisse zur Entwicklungspphysiologie der Pflanzen |
| Integrierter Erwerb von Schlüsselkompetenzen | • Verständnis und Anwendung der Prinzipien wissenschaftlicher Arbeitens und der hypothesenorientierten Forschung
• Eigenständiges Arbeiten
• Zeitmanagement
• Teamfähigkeit
• Fähigkeit zur selbständigen Vorbereitung, Gestaltung und Präsentation von klaren Seminarvorträgen
• Erwerb der Fähigkeit zur Dokumentation von Experimenten und den daraus resultierenden Ergebnissen (Erstellung detaillierter wissenschaftlicher Protokolle)
• Die moderne Pflanzenphysiologie, auch Systembiologie der Pflanzen genannt, ist eine General-Disciplin der Life Sciences. Das interdisziplinäre Denken in großen Zusammenhängen (Phänotyp) soll exemplarisch geschult werden. |
| Lerninhalte | In diesem Modul werden spezielle Themen aus der Entwicklungspphysiologie höherer Pflanzen behandelt. Es werden schwerpunktmäßig Forschungsarbeiten, die aus internationalen Kooperationen des Kursleiters entstanden sind, diskutiert und praktisch durchgeführt. Das Themenspektrum reicht von biophysisches Zellwachstums über die Entdeckungsgeschichte des Auxins bis zu Biosynthese und molekularen Wirkungsmechanismen ausgewählter Phytohormone, z. B. Brassinosteroiden. |
| Verwendbarkeit des Moduls (Zuordnung zu Curriculum) | M.Sc. Biologie: Wahlpflichtmodul |
| Dauer und Häufigkeit des Angebotes des Moduls | Einsemestrig, jährlich (jeweils im SoSe) |
| Semester | ab 2. Sem. |
| Sprache | Deutsch und Englisch (Seminar) |
| Voraussetzung für Teilnahme | Immatrikulation für den M.Sc. Biologie, Grundkenntnisse der Pflanzenphysiologie |
| Lehrform | Seminar mit Laborpraktikum |
| Studentischer Arbeitsaufwand | 150 Stunden Präsenzzeit
210 Stunden Selbststudium |
<p>| Leistungspunkte (Credits) | 12 (davon 1 Credit für integrierte Schlüsselkompetenzen) |
| Studienleistungen | Durchführung und Protokollierung der Experimente |
| Modulprüfung, Art und Dauer der Prüfungen | Englischsprachiger Seminarvortrag (30–60 Min.) mit schriftlicher Ausarbeitung |</p>
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Methoden der Molekularbiologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>MScBio W1</td>
</tr>
<tr>
<td>Einzelveranstaltungen des</td>
<td>• Methodenpraktikum Molekularbiologie und Biophysik (P+S, 7 SWS)</td>
</tr>
<tr>
<td>Moduls und Lehrformen</td>
<td>• Vorlesung und praktikumbegleitendes Seminar (V, S, 1 SWS)</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>N.N.</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>N.N.</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>• Eigenständiges Arbeiten</td>
</tr>
<tr>
<td></td>
<td>• Entwickeln eigener Lösungsansätze zu neuen Forschungsfragen</td>
</tr>
<tr>
<td></td>
<td>• Unsetzung der Lösungsansätze in praktische Experimente</td>
</tr>
<tr>
<td></td>
<td>• Sicherer Umgang mit den verschiedenen praktischen Labormethoden sowie Datenbanksuchen</td>
</tr>
<tr>
<td></td>
<td>• Evaluation und kritische Diskussion der erhaltenen Ergebnisse</td>
</tr>
<tr>
<td>Integrierter Erwerb von</td>
<td>• Praktische Vertiefung in der Wissenschaftssprache Englisch, auch durch Präsentationen in</td>
</tr>
<tr>
<td>Schlüsselkompetenzen</td>
<td>englischer Sprache</td>
</tr>
<tr>
<td></td>
<td>• Eigenständigkeit in der praktischen Forschungsarbeit, bei gleichzeitiger Kooperationsfähigkeit</td>
</tr>
<tr>
<td></td>
<td>• Zeitmanagement</td>
</tr>
<tr>
<td></td>
<td>• Befähigung zur Darstellung komplexer Fragestellungen und Sachverhalte in klaren Seminarvorträgen</td>
</tr>
<tr>
<td>Lerninhalte</td>
<td>• Vertiefung der Kenntnisse molekularbiologischer Techniken (Klonierung, Proteinexpression in</td>
</tr>
<tr>
<td></td>
<td>homologen und heterologen Systemen, PCR: in vitro Transkription, DNA Sequenzierung)</td>
</tr>
<tr>
<td></td>
<td>• Quantitative Aspekte in biologischen Systemen</td>
</tr>
<tr>
<td></td>
<td>• Praktische Erfahrung mit kinetischen Analysen katalysierter Reaktionen</td>
</tr>
<tr>
<td></td>
<td>• Praktische Erfahrung mit Fluoreszenzpolarisation</td>
</tr>
<tr>
<td></td>
<td>• Praktische Erfahrung mit biophysikalischen Methoden der Interaktionsanalyse</td>
</tr>
<tr>
<td></td>
<td>(isothermale Titrationskalorimetrie, Rasterkraftmikroskopie und -spektroskopie)</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>M.Sc. Biologie: Wahlmodul</td>
</tr>
<tr>
<td>(Zuordnung zu Curriculum)</td>
<td>M.Sc. Nanostrukturwissenschaften: Wahlmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des</td>
<td>Einsemestrig, jährlich (jeweils im WS)</td>
</tr>
<tr>
<td>Angebotes des Moduls</td>
<td></td>
</tr>
<tr>
<td>Semester</td>
<td>Ab 1. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch und Englisch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Immatrikulation für einen der o.g. Studiengänge, Eingangskolloquium</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung, Seminar und Laborpraktikum</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>120 Stunden Präsenzzeit, 60 Stunden Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>6 (davon 1 Credit integrierte Schlüsselkompetenzen)</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Durchführung aller Praktikumsversuche</td>
</tr>
<tr>
<td>Modulprüfungsleistung, Art und</td>
<td>Benotetes Praktikumsprotokoll</td>
</tr>
<tr>
<td>Dauer der Prüfungen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>neuere Auflage)</td>
</tr>
<tr>
<td>Spezielle Informationen</td>
<td></td>
</tr>
<tr>
<td>Modulname</td>
<td>DNA-Diagnostik</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Code</td>
<td>MScBio W2</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
<td>Seminar (S, 2 SWS)</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>PD Dr. I. Pfeiffer</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>PD Dr. I. Pfeiffer</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>Verständnis der Prinzipien und experimentellen Grundlagen von aktuell eingesetzten Verfahren der DNA-Diagnostik</td>
</tr>
<tr>
<td></td>
<td>Populationsgenetischer Aspekte der Begutachtung von DNA-Profilen.</td>
</tr>
<tr>
<td>Integrierter Erwerb von Schlüsselkompetenzen</td>
<td>DNA-Profiling: Arbeitstechniken, theoretischer Hintergrund</td>
</tr>
<tr>
<td></td>
<td>Low copy number DNA: Risiken und Chancen</td>
</tr>
<tr>
<td></td>
<td>Aktuelle Fallbeispiele: Was eine biologische Spur verrät</td>
</tr>
<tr>
<td></td>
<td>Labormanagement</td>
</tr>
<tr>
<td></td>
<td>Forensische Genetik (STR-Analysen, mitochondriale DNA, Y-Chromosomale Marker)</td>
</tr>
<tr>
<td></td>
<td>„Ancient“ DNA und der Umgang mit DNA aus wenigen Zellen.</td>
</tr>
<tr>
<td></td>
<td>Biostatistische Verfahren</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</td>
<td>M.Sc. Biologie: Wahlmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Einsemestrig, in jedem Semester</td>
</tr>
<tr>
<td>Semester</td>
<td>ab 1. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Immatrifikation für o.g. Studiengang</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Seminar</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>30 Stunden Präsenzzeit (2 SWS)</td>
</tr>
<tr>
<td></td>
<td>60 Stunden Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>3</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Regelmäßige, aktive Mitarbeit im Seminar</td>
</tr>
<tr>
<td>Modulprüfungsleistung, Art und Dauer der Prüfungen</td>
<td>Seminarvortrag (30 Min.)</td>
</tr>
<tr>
<td>Literatur</td>
<td>Biologische Spurenkunde, Band 1: Kriminalbiologie (2007) Herrmann, Bernd; Saturnus, Klaus-Steffen (Hrsg.) Springer, Berlin</td>
</tr>
<tr>
<td>Modulname</td>
<td>Molekulare Systematik und Evolution</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Code</td>
<td>MScBio W3</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
<td>• Molekulare Systematik und Evolution: Eine Einführung (S, 2 SWS)</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Prof. Dr. K. Weising</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. K. Weising</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>• Verständnis der Prinzipien und experimentellen Grundlagen von molekularen Markern sowie von molekularsystematisch und populationsgenetisch relevanten Labortechniken und Auswertemethoden</td>
</tr>
<tr>
<td>Integrierter Erwerb von Schlüsselkompetenzen</td>
<td>• Fähigkeit zur selbständigen Vorbereitung, Gestaltung und Präsentation von klaren Seminarvorträgen</td>
</tr>
<tr>
<td>Lerninhalte</td>
<td>• Makromoleküle in Systematik und Taxonomie</td>
</tr>
<tr>
<td></td>
<td>• Vergleichende DNA-Sequenzanalyse</td>
</tr>
<tr>
<td></td>
<td>• Molekulare Markertechniken und genetischer Fingerabdruck</td>
</tr>
<tr>
<td></td>
<td>• Repetitive DNA: Mini- und Mikrosatelliten</td>
</tr>
<tr>
<td></td>
<td>• Molekulare Phylogenie und Methoden der Stammbaum-Rekonstruktion</td>
</tr>
<tr>
<td></td>
<td>• Molekulare Systematik der Samenpflanzen</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</td>
<td>M.Sc. Biologie: Wahlmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Einsemestrig, jährlich (jeweils im WS)</td>
</tr>
<tr>
<td>Semester</td>
<td>Ab 1. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch und Englisch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Immatrifikation für den Studiengang M.Sc. Biologie</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Seminar</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>30 Stunden Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>60 Stunden Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>3</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Regelmäßige, aktive Mitarbeit im Seminar</td>
</tr>
<tr>
<td>Modulprüfungsleistung, Art und Dauer der Prüfungen</td>
<td>Seminarvortrag (30 Min.)</td>
</tr>
</tbody>
</table>

Literatur
- Zusätzliche Literatur wird je nach Thema individuell zur Verfügung gestellt

Spezielle Informationen
Es kann nur entweder das Wahlmodul „Molekulare Systematik und Evolution“ oder das „Forschungsmodul Botanik/Systematik“ belegt werden
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Nanostrukturen aus biologischer Sicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>MScBio W4</td>
</tr>
</tbody>
</table>
| Einzelveranstaltungen des Moduls und Lehrformen | Nanostrukturen aus biologischer Sicht I (V, 2 SWS)
 | Nanostrukturen aus biologischer Sicht II (V, 2 SWS) |
| Modulbeauftragter | Prof. Dr. W. Nellen |
| Dozent/in | Prof. Dr. M. Maniak, Prof. Dr. W. Nellen, Prof. Dr. M. Schäfer, Prof. Dr. M. Stengel, Dr. W. Schwippert |
| Lernziele und Kompetenzen | Erlangung vertiefter Kenntnisse über polymerisierende Proteine und molekulare Motoren
 | Erkenntnis über Möglichkeiten sowie Vor- und Nachteile verschiedener Präparations- und Manipulationsmethoden von Nukleinsäuren und Proteinen
 | Überblick über Methoden zur Untersuchung biol. Nanostrukturen
 | Einblicke in zelluläre Funktionsnetzwerke
 | Einblicke in den Zusammenhang zwischen Struktur und Funktion
 | Kenntnisse über Selbst–Organisation von Molekülen |
| Integrierter Erwerb von Schlüsselkompetenzen | Aneignung von Wissen über die Fachliteratur
 | Fähigkeit zum analytischen Denken schulen
 | Kritikfähigkeit ausbilden |
| Lerninhalte | Funktion von Nervenzellen
 | Struktur und Funktion von Ionenkanälen
 | Signaltransduktionskaskaden erregbarer Membranen
 | Synaptische Übertragung
 | Informationsverarbeitung im Gehirn
 | Methoden und Anwendungen zur Präparation biol. Materialien
 | Molekulare Manipulation funktioneller zellulärer Komponenten in vivo und in vitro
 | Methoden zur Untersuchung biologischer Nanostrukturen
 | Nano–Oberflächen und deren Funktion im Tier- und Pflanzenreich
 | Moleküle mit besonderen Eigenschaften
 | Selbst–Organisation im Nano–Bereich |
| Verwendbarkeit des Moduls (Zuordnung zu Curriculum) | M.Sc. Biologie: Wahlmodul |
| Dauer und Häufigkeit des Angebotes des Moduls | Zweisemestrig, jährlich (erster Teil im WS, zweiter Teil im SoSe) |
| Semester | ab 1. Sem. |
| Sprache | Deutsch und Englisch |
| Voraussetzung für Teilnahme | Immatrifikulation für M.Sc. Biologie |
| Lehrform | Vorlesung |
| Studentischer Arbeitsaufwand | 60 Stunden Präsenzzeit
 | 120 Stunden Selbststudium |
| Leistungspunkte (Credits) | 6 |
| Studienleistungen | |
| Modulprüfungsleistung, Art und Dauer der Prüfungen | 2 Klausuren je 45 Min. |
| Literatur | B. Hille: Structure and Function of Ion Channels
<p>| | Foliensammlung, aktuelle Lehrbücher nach Ankündigung |</p>
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Biologische AFM-Applikationen (atomic force microscope)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>MScBio W5</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
<td>Biologische Applikationen der Rasterkraftmikroskopie (AFM) (P, 3 SWS)</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Prof. Dr. W. Nellen</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. W. Nellen und Mitarbeiter</td>
</tr>
</tbody>
</table>
| Lernziele und Kompetenzen | - Verständnis der Möglichkeiten und Grenzen des AFM (Rasterkraftmikroskop; atomic force microscope)
- Interpretation von AFM-Topografien
- Verständnis der Aussagekraft unterschiedlicher biochemischer und biophysikalischer Methoden
- Verständnis für Eigenschaften und Handhabung biol. Materialien |
| Integrierter Erwerb von Schlüsselkompetenzen | |
| Lerninhalte | - Präparation von biologischen Materialien für AFM
- Funktionsweise des AFM
- Rasterkraftmikroskopie (Topografie)
- Rasterkraftspektroskopie
- Derivatisierung von Oberflächen (optional)
- Auswertung von AFM-Daten |
| Verwendbarkeit des Moduls (Zuordnung zu Curriculum) | M.Sc. Biologie: Wahlmodul
M.Sc. Nanostrukturwissenschaften: Wahlmodul |
| Dauer und Häufigkeit des Angebotes des Moduls | Einsemestrig, in jedem Semester |
| Semester | ab 2. Sem. |
| Sprache | Deutsch und Englisch |
| Voraussetzung für Teilnahme | Immatrikulation für einen der o.g. Studiengänge
Teilnahme am Modul „Nanostrukturen aus biologischer Sicht“ |
| Lehrform | Praktikum |
| Studentischer Arbeitsaufwand | 45 Stunden Präsenzzeit
45 Stunden Selbststudium |
<p>| Leistungspunkte (Credits) | 3 |
| Studienleistungen | Durchführung aller Praktikumsversuche |
| Modulprüfungsleistung, Art und Dauer der Prüfungen | Klausur (ca. 1 h) |
| Literatur | Skripte, Arbeitsprotokolle, Originalliteratur je nach Aufgabenstellung |
| Spezielle Informationen | Das Praktikum wird in Kleingruppen von 4 bis max. 8 Teilnehmern als 1-wöchige Blockveranstaltung durchgeführt |</p>
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Mikrobielle Molekulargenetik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>MScBio W6</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
<td>Mikrobielle Molekulargenetik (5, 2 SWS)</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Prof. Dr. R. Schaffrath</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. R. Schaffrath und Mitarbeiter</td>
</tr>
</tbody>
</table>
| Lernziele und Kompetenzen | - Fortgeschrittene Kenntnisse über genetische und molekularbiologische Vorgänge bei pro- und eukaryontischen Mikroorganismen und deren Interaktion in Natur und/oder Umwelt
- Verständnis für die molekularen Mechanismen der Anpassung von Mikroorganismen an abiotische Faktoren
- Vertiefung wissenschaftlicher und anwendungsbezogener Qualifikation
- Nutzung biologischer Systeme in der Technik (Biotechnologie, Nanotechnik etc.)
- Kritische und selbstständige Erarbeitung eines Seminarthemas aus dem aktuellen Themenbereich Mikrobielle Molekulargenetik |
| Integrierter Erwerb von Schlüsselkompetenzen | - Effiziente Literaturrecherche und Aneignung von Fachliteratur
- Software-Kompetenzen (Powerpoint etc)
- Diskussionsbereitschaft und -vermögen sowie Kritikfähigkeit
- Fähigkeit zur selbstständigen Gestaltung und Präsentation eines klar strukturierten (multimedialen) Seminarvortrags in der wissenschaftlichen Fachsprache Englisch |
| Lerninhalte | Molekulargenetische u. biologische Aspekte von Mikroorganismen:
- Genetische Rekombination
- DNA-Transformation, Konjugation und Transduktion
- Insertions-Elemente und Transposonen
- Plasmide und ihre biologische Bedeutung
- Mobilisierung chromosomaler Gene und horizontaler Gentransfer
- Genetik von Bakteriophagen und extrachromosomaler DNA-Elemente in eukaryontischen Mikroorganismen
- Plasmid-kodierte Eigenschaften (Antibiotikaresistenzen, Virulenz, Killerphänotypen etc.)
- Mikrobielle Interaktionen unter Mikroorganismen und innerhalb mikrobieller Gemeinschaften
- GVO - gentechnisch veränderte Mikroorganismen |
| Verwendbarkeit des Moduls (Zuordnung zu Curriculum) | M.Sc. Biologie: Wahlmodul
M.Sc. Nanostrukturwissenschaften: Wahlmodul |
| Dauer und Häufigkeit des Angebotes des Moduls | Einsemestrig, im SS oder WS |
| Semester | Ab 1. Sem. |
| Sprache | Deutsch/Englisch |
| Voraussetzung für Teilnahme | Immatrifikulation für einen der o.g. Studiengänge
Grundkenntnisse der Mikrobiologie, Biochemie und Genetik |
| Lehrform | Seminar f. Fortgeschrittene |
| Studentischer Arbeitsaufwand | 30 Stunden Präsentzeit
60 Stunden Selbststudium |
<p>| Leistungspunkte (Credits) | 3 (davon 1 Credit für integrierte Schlüsselkompetenzen) |
| Studienleistungen | Regelmäßige, aktive Mitarbeit im Seminar |
| Modulprüfungsleistung, Art und Dauer der Prüfungen | Englischsprachiger Seminarvortrag |</p>
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Spezielle Aspekte der molekularen EntwicklungsbioLogie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>MScBio W7</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
<td>• Spezielle Aspekte der molekularen EntwicklungsbioLogie (S, 2 SWS)</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Prof. Dr. M. Schäfer</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. M. Schäfer</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>• Verständnis der molekularen Zusammenhänge in unterschiedlichen entwicklungsbiologischen Schwerpunkten</td>
</tr>
<tr>
<td></td>
<td>• eigenständiges Nachvollziehen der Argumentationskette in Publikationen</td>
</tr>
<tr>
<td></td>
<td>• Fähigkeit, Experimente aus mehreren Publikationen didaktisch und inhaltlich sinnvoll zusammenzufassen</td>
</tr>
<tr>
<td>Integrierter Erwerb von Schlüsselkompetenzen</td>
<td>• Fähigkeit zur selbständigen Vorbereitung, Gestaltung und Präsentation von klaren Seminarvorträgen</td>
</tr>
<tr>
<td>Lerninhalte</td>
<td>• unterschiedlich je nach angebotenem Themenkreis, z. B. Stammzellen, Modelsystem Zebrafisch</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</td>
<td>M.Sc. Biologie: Wahlmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Einsemestrig, jährlich (jeweils im WS)</td>
</tr>
<tr>
<td>Semester</td>
<td>Ab 1. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch und Englisch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Immatrifikulation für den Studiengang M.Sc. Biologie</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Seminar</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>30 Stunden Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>60 Stunden Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>3</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Regelmäßige, aktive Mitarbeit im Seminar</td>
</tr>
<tr>
<td>Modulprüfungsteilnahme, Art und Dauer der Prüfungen</td>
<td>Seminarvortrag (30 Min.)</td>
</tr>
<tr>
<td>Literatur</td>
<td>Literatur wird je nach Thema individuell zur Verfügung gestellt</td>
</tr>
<tr>
<td>Modulname</td>
<td>Große Ökologische Exkursion/Forschungsreise</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>Code</td>
<td>MScBio W8</td>
</tr>
</tbody>
</table>
| Einzelveranstaltungen des Moduls und Lehrformen | • Vorbereitungsseminar zur Forschungsreise (S, 2 SWS)
• Forschungsexkursion (E, 7,5 SWS) |
| Modulbeauftrager | Prof. Dr. Ewald Langer |
| Dozent/in | Prof. Dr. Ewald Langer |
| Lernziele und Kompetenzen | • Planung und Durchführung einer Forschungsreise
• Umgang mit Behörden und NGOs im In- und Ausland
• Kontaktnähe zu ausländischen Universitäten und Forschungseinrichtungen
• Artenkenntnis ausländischer Flora
• Fundraising
• Auslandserfahrung |
| Integrierter Erwerb von Schlüsselkompetenzen | |
| Lerninhalte | • Spezielle Biodiversität ausländischer Pilz- und Pflanzenarten
• Ökosystemische Funktionen ausländischer Pilz- und Pflanzenarten |
| Verwendbarkeit des Moduls (Zuordnung zu Curriculum) | M.Sc. Biologie: Wahlmodul |
| Dauer und Häufigkeit des Angebotes des Moduls | Einsemestrig, jährlich oder alle zwei Jahre, nach Nachfrage (jeweils WS) |
| Semester | Ab 1. Sem. |
| Sprache | Deutsch |
| Voraussetzung für Teilnahme | Solide Vorkenntnisse zur Floristik und Ökologie, gute körperliche Verfassung |
| Lehrform | Exkursion und Seminar |
| Studentischer Arbeitsaufwand | 96 Stunden Präsenzzeit Exkursion (12 Tage x 8 Stunden)
30 Stunden Präsenzzeit Seminar
54 Stunden Selbststudium |
| Leistungspunkte (Credits) | 6 |
| Studienleistungen | Regelmäßige, aktive Mitarbeit im Seminar
Aktive Exkursionsteilnahme und Übernahme eines Exkursions-Tagesprotokolls |
<p>| Modulprüfungsleistung, Art und Dauer der Prüfungen | Schriftlicher Exkursionsbericht |
| Literatur | Spezialliteratur je nach Exkursionsziel und Spezialthema |</p>
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Arbeitsgemeinschaft Pilze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>MScBio W9</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
<td>• Spezielle Ökologie und Morphologie der Pilze (S, 2 SWS)</td>
</tr>
<tr>
<td></td>
<td>• Wissenschaftliche Dokumentation von Pilzen (P, 2 SWS)</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Prof. Dr. E. Langer</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. E. Langer</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>• Kenntnis der zellulären Baupläne und der Ökologie spezieller Pilze</td>
</tr>
<tr>
<td></td>
<td>• Selbstständige mikroskopische Bearbeitung und Dokumentation von Makropilzen</td>
</tr>
<tr>
<td></td>
<td>• Fähigkeit wissenschaftlich–mykologische Inhalte</td>
</tr>
<tr>
<td></td>
<td>allgemeinverständlich wieder zu geben</td>
</tr>
<tr>
<td></td>
<td>• Umgang mit nichtuniversitären Mykologen</td>
</tr>
<tr>
<td>Integrierter Erwerb von Schlüsselkompetenzen</td>
<td></td>
</tr>
<tr>
<td>Lerninhalte</td>
<td>• Morphologie und Ökologie spezieller Pilze</td>
</tr>
<tr>
<td></td>
<td>• Spezielle Zelltypen der Pilze</td>
</tr>
<tr>
<td></td>
<td>• Wissenschaftliche Dokumentation</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</td>
<td>M.Sc. Biologie: Wahlmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Einsemestrig, in jedem Semester</td>
</tr>
<tr>
<td>Semester</td>
<td>Ab 1. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Grundkenntnisse der Mykologie</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Seminar, Praktikum</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>60 Stunden Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>60 Stunden Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>4</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Zeichnerische und textliche Dokumentation von mindestens drei Pilzarten, 3 Seminar...</td>
</tr>
<tr>
<td>Modulprüfungsleistung, Art und Dauer der Prüfungen</td>
<td>Schriftlicher Bericht (Pilzdokumentationen)</td>
</tr>
<tr>
<td>Literatur</td>
<td>Breitenbach, J., Kränzlin, F.: Pilze der Schweiz, Bde. 1–6: Mykologia.</td>
</tr>
<tr>
<td>Spezielle Informationen</td>
<td>Es kann nur entweder das Wahlmodul „Arbeitsgemeinschaft Pilze“ oder das „Forschungen...</td>
</tr>
<tr>
<td>Modulname</td>
<td>Große Botanische Exkursion</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Code</td>
<td>MScBio W10</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Vorbereitungsseminar zur Exkursion (S, 1 SWS)</td>
</tr>
<tr>
<td></td>
<td>- Exkursion (E, 4 SWS)</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Prof. Dr. Kurt Weising</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. Kurt Weising</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Erweiterung der floristischen Artenkenntnisse</td>
</tr>
<tr>
<td></td>
<td>- Kennen lernen nicht einheimischer Habitate und Ökosysteme</td>
</tr>
<tr>
<td></td>
<td>- Souveräner Umgang mit Bestimmungsschlüsseln und Florenwerken</td>
</tr>
<tr>
<td></td>
<td>- Durchführung einfacher Vegetationsaufnahmen</td>
</tr>
<tr>
<td>Integrierter Erwerb von Schlüsselkompetenzen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Orientierung im Gelände</td>
</tr>
<tr>
<td></td>
<td>- Fähigkeit zur selbständigen Vorbereitung, Gestaltung und Präsentation von klaren Seminarvorträgen</td>
</tr>
<tr>
<td></td>
<td>- Auslandererfahrung</td>
</tr>
<tr>
<td></td>
<td>- Teamfähigkeit</td>
</tr>
<tr>
<td>Lerninhalte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Geologie, Fauna und Flora am Exkursionsziel (z.B. Nordseeküste, Alpen, Kanarische Inseln)</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</td>
<td>M.Sc. Biologie: Wahlmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Einsemestrig, jährlich oder alle zwei Jahre, nach Nachfrage (jeweils SS)</td>
</tr>
<tr>
<td>Semester</td>
<td>Ab 2. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Solide Vorkenntnisse zur Floristik u. Ökologie, gute körperliche Verfassung</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Exkursion und Seminar</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>48 Stunden Präsenzzeit Exkursion (6 Tage x 8 Stunden)</td>
</tr>
<tr>
<td></td>
<td>15 Stunden Präsenzzeit Seminar</td>
</tr>
<tr>
<td></td>
<td>57 Stunden Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>4</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Regelmäßige, active Mitarbeit im Seminar</td>
</tr>
<tr>
<td></td>
<td>Aktive Exkursionssteilnahme und Übernahme eines Exkursions-Tagesprotokolls</td>
</tr>
<tr>
<td>Modulprüfungsleistung, Art und Dauer der Prüfungen</td>
<td>Seminarvortrag (30 Min.)</td>
</tr>
<tr>
<td>Literatur</td>
<td>Spezialliteratur je nach Exkursionsziel und Spezialthema</td>
</tr>
<tr>
<td>Modulname</td>
<td>Limnologie</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>Code</td>
<td>MScBio W11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Einzelveranstaltungen des Moduls und Lehrformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Limnologie der Fließ- und Stehgewässer (V) 1 SWS</td>
</tr>
<tr>
<td>- Systematik und Ökologie der Süßwasserorganismen (V 1 SWS) WS</td>
</tr>
<tr>
<td>- Aspekte der angewandten Limnologie (V 1 SWS) SS</td>
</tr>
<tr>
<td>- Limnologisches Grundpraktikum incl. Seminar (1 SWS) WS</td>
</tr>
<tr>
<td>- Limnologische Praktikum incl. Seminar (2 SWS) SS</td>
</tr>
<tr>
<td>- Limnologische Exkursionen (1/2 oder ganztägig) (1 SWS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulbeauftragter</th>
<th>Prof. Dr. R. Wagner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. R. Wagner</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele und Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Erkennen von Wasser als überlebensnotwendige Ressource</td>
</tr>
<tr>
<td>- Kenntnis der Funktion und des Wertes aquatischer Ökosysteme</td>
</tr>
<tr>
<td>- Grundkenntnisse über aquatische Organismen</td>
</tr>
<tr>
<td>- Fähigkeit zur Beurteilung der Rolle aquatischer Ökosysteme in den Stoffkreisläufen auf der Erde sowie der Ansprüche des Menschen an aquatische Ökosysteme und der Grenzen der Nutzung.</td>
</tr>
<tr>
<td>- Kenntnis der Zusammenhänge zwischen Biotop und Biozönose in limnischen Systemen sowie der Störanfälligkeit limnischer Systeme und der Auswirkungen auf den Menschen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Integrierter Erwerb von Schlüsselkompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Literaturrecherche</td>
</tr>
<tr>
<td>- Fähigkeit zur selbständigen Vorbereitung, Gestaltung und Präsentation von informativen und wissenschaftlich prazisen Vorträgen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lerninhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Grundlagen der Limnologie stehender und fließender Gewässer</td>
</tr>
<tr>
<td>- Aquatische Lebensräume und ihre Besiedler</td>
</tr>
<tr>
<td>- Biogeographie limnischer Wirbelloser</td>
</tr>
<tr>
<td>- Menschliche Bevölkerung u. Wasserressourcen, Abwasserproblematik, Krankheiten durch Wasserarmut u. Wasserverschmutzung</td>
</tr>
<tr>
<td>- Effekte des „Global Change“</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Sc. Biologie: Wahlmodul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer und Häufigkeit des Angebotes des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zweiseitrig, jährlich (Beginn im WS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ab 1. Sem.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzung für Teilnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immatrikulation für den Studiengang M.Sc. Biologie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung, Praktikum, Exkursion, Seminar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studentischer Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>105 Stunden Präsenzzeit (7 SWS)</td>
</tr>
<tr>
<td>75 Stunden Selbststudium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leistungspunkte (Credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 (davon 1 Credit aus integrierten Schlüsselkompetenzen)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studienleistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regelmäßige, aktive Mitarbeit in Seminar und Exkursionen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulprüfungsleistung, Art und Dauer der Prüfungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolloquium (30 Min.), Seminarvortrag (30 Min.)</td>
</tr>
<tr>
<td>Gewichtung Kolloquium zu Seminarvortrag im Verhältnis 2:1</td>
</tr>
<tr>
<td>Qualität des Vortrages (Inhalte, Präsentation) und Sicherheit in der Diskussion sind ebenso Grundlagen für die Benotung der erbrachten Leistung, wie die im Kolloquium abgefragten Kenntnisse.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weitere Literatur wird nach Themen bereit gestellt</td>
</tr>
<tr>
<td>Modulname</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Code</td>
</tr>
</tbody>
</table>

Einzelforschungsansätze des Moduls und Lehreinheiten

- Humanökologie (S, 2 SWS)

Modulbeauftragter

Prof. Dr. H. Zölter

Dozent/in

Prof. Dr. H. Zölter

Lernziele und Kompetenzen

- Erkenntnisse über die Problematik zur Erreichung einer stabilen Bevölkerung und einer Wirtschaft ohne Wachstum, welches nur über eine Änderung des menschlichen Verhaltens erreichbar ist.

Integrierter Erwerb von Schlüsselkompetenzen

- Fähigkeit zur selbständigen Vorbereitung, Gestaltung und Präsentation von informativen und wissenschaftlich präzisen Seminarvorträgen
- Erkenntnisse über die Begrenztheit und Störanfälligkeit des menschlichen Lebensraums
- Erkenntnisse über die Einflussnahme von Umweltfaktoren auf den menschlichen Organismus

Lerninhalte

- Grundlagen der Humanökologie
- Lebensraum des Menschen
- Menschliche Bevölkerung
- Einwirkungen von Umwelteinflüssen auf den Menschen und ihre Folgen für den menschlichen Organismus:
 - Klima
 - Luft und Luftverschmutzung
 - Licht und Strahlen
 - Geräusche und Lärm
 - Wasser und Wasserverschmutzung

Verwendbarkeit des Moduls (Zuordnung zu Curriculum)

M. c Biologie: Wahlmodul
Lehramt L3 Biologie: Wahlpflichtmodul

Dauer und Häufigkeit des Angebotes des Moduls

Einsemestrig, jährlich (jeweils im SoSe)

Semester

2. Sem.

Sprache

Deutsch

Voraussetzung für Teilnahme

Immatrikulation für einen o.g. Studiengänge. Grundkenntnisse der Humanbiologie

Lehrform

Seminar

Studentischer Arbeitsaufwand

30 Stunden Präsenzzeit
60 Stunden Selbststudium

Leistungspunkte (Credits)

3 (davon 1 Credit für integrierte Schlüsselkompetenzen)

Studienleistungen

Regelmäßige, aktive Mitarbeit im Seminar

Modulprüfung

Zwei Seminarvorträge (jeweils ca. 30min) inklusive Anfertigung von dazu gehörigen Handouts (1–2 Seiten). Die Qualität der beiden Seminarvorträge (Inhalte, Präsentation, Handout) und Sicherheit in der Diskussion sind Grundlagen für die Benotung der erbrachten Leistung.

Literatur

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Sinnesphysiologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>MScBio W13</td>
</tr>
</tbody>
</table>
| Einzelveranstaltungen des Moduls und Lehrformen | • Sinnesphysiologie (V, 2 SWS)
• Seminar Sinnesphysiologie für Fortgeschrittene (S, 2 SWS) |
| Modulbeauftragter | Prof. Dr. M. Stengl |
| Dozent/In | Prof. Dr. M. Stengl |
| Lernziele und Kompetenzen | • Kenntnis der einzelnen Sinnessysteme von Vertebraten (incl. Mensch) und Invertebraten und ihrer Integration
• Kritische und selbständige Erarbeitung eines Seminarthemas aus dem Bereich der Sinnesphysiologie |
| Integrierter Erwerb von Schlüsselkompetenzen | • Aneignung von Fachliteratur
• Software-Kompetenzen
• Fähigkeit zum analytischen Denken
• Kritikfähigkeit
• Gedächtnis- und Konzentrationstraining
• Effiziente Literaturrecherche
• Logischer Aufbau eines Vortrages
• Erstellung einer multimedialen Präsentation |
| Lerninhalte | • Allgemeine Sinnesphysiologie, Olfaktorik
• Gustatorik
• Visuelles System I: Säugetiervaue
• Visuelles System II: Zentrale Sehbahn, Visueller Kortex
• Visuelles System III: Insekten
• Mechanosensorik I: Somatosensorik, Propriozeption
• Mechanosensorik II: Gleichgewichtssinn; Auditorisches System Insekten
• Mechanosensorik III: Auditorisches System Säugetiere
• Thermoperzeption, Nocizeption
• Elektro-, Magnetoperzeption
• Multisensorische Integration |
| Verwendbarkeit des Moduls (Zuordnung zu Curriculum) | M.Sc. Biologie: Wahlmodul
M.Sc. Nanostrukturwissenschaften: Wahlmodul |
| Dauer und Häufigkeit des Angebotes des Moduls | Einsemestrig, jährlich (jeweils im WS) |
| Semester | Ab 1. Sem. |
| Sprache | Deutsch |
| Voraussetzung für Teilnahme | Immatrskulation für einen der o.g. Studiengänge. |
| Lehreform | Vorlesung und Seminar |
| Studentischer Arbeitsaufwand | 60 Stunden Präsenzzeit (SWS)
90 Stunden Selbststudium |
| Leistungspunkte (Credits) | 5 (davon 1 Credit integrierte Schlüsselkompetenzen) |
| Studienleistungen | Regelmäßige, aktive Mitarbeit im Seminar |
| Modulprüfungsleistung, Art und Dauer der Prüfungen | Seminarvortrag (ca. 30 Min.) mit Powerpointpräsentation |
| Literatur | Heldmaier/Neuweiler: Vergleichende Tierphysiologie, Bd.2, Vegetative Physiol., Springer 2004
Penzlin: Lehrbuch der Tierphysiologie, 7. Aufl., Elsevier 2005
Dudel/Menzel/Schmidt: Neurowissenschaft, Springer 1996
Eckert: Tierphysiologie, 4. Aufl., Thieme 2002 |
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Wissenschaftliches Arbeiten mit Multimedia und Internet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>MScBio W14 (Modul H12 in B.Sc. Ökologische Landwirtschaft)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Einzelveranstaltungen des Moduls und Lehrformen</th>
<th>Vorlesung, Übung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbeauftragter</td>
<td>PD Dr. M. Raubuch</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>PD Dr. M. Raubuch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele und Kompetenzen</th>
<th>Selbstständiges Entwerfen von Drehbüchern (Storyboards)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Umsetzen von Lehrinhalten in Homepages und Animationen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Integrierter Erwerb von Schlüsselkompetenzen</th>
<th>Umgang mit Präsentationssoftware</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lerninhalte</th>
<th>Konzepte des e-Learning.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vermittlung von Informationen</td>
</tr>
<tr>
<td></td>
<td>Erstellung von Drehbüchern</td>
</tr>
<tr>
<td></td>
<td>Erstellen von Homepages und Animationen</td>
</tr>
<tr>
<td></td>
<td>Vermittlung von Lehrinhalten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</th>
<th>M.Sc. Biologie, Wahlmodul</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B.Sc. Ökologische Landwirtschaft, Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer und Häufigkeit des Angebotes des Moduls</th>
<th>Einsemestrig, jährlich (jeweils im WS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester</td>
<td>Ab 1. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzung für Teilnahme</th>
<th>Immatrikulation für M.Sc. Biologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrform</td>
<td>Vorlesung, Übung</td>
</tr>
</tbody>
</table>

| Studentischer Arbeitsaufwand | 60 Stunden Präsenzzeit |
| | 120 Stunden Selbststudium |

<table>
<thead>
<tr>
<th>Leistungspunkte (Credits)</th>
<th>6 (davon 2 Credits integrierte Schlüsselkompetenzen)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Studienleistungen</th>
<th>Regelmäßige Mitarbeit bei den Übungen (Zwischenpräsentation)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
<th>Vorlesungsbegleitende Materialien, Fachbücher und Fachpublikationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spezielle Informationen</td>
<td>Die Lehrveranstaltung findet am Standort Witzenhausen statt!</td>
</tr>
</tbody>
</table>
Modulname
Bodenkunde

Code
MScBio W15 (Modul G 09 im B.Sc. Ökologische Landwirtschaft)

Einzelveranstaltungen des Moduls und Lehrformen
- Vorlesung (4 SWS)

Modulbeauftragter
Prof. Dr. R.G. Jörgensen

Dozent/in
Prof. Dr. R.G. Jörgensen , N.N.

Lernziele und Kompetenzen
- Kenntnisse zu Grundlagen und Aspekten der Bodenkunde

Integrierter Erwerb von Schlüsselkompetenzen

Lerninhalte
- Böden als:
 - Elemente der Pedosphäre
 - Verwitterungsprodukt von Gesteinen und Mineralen
 - Gemisch unterschiedlicher Korngrößen und Aggregatzustände
 - Lebensraum (Habitat) und Humusbildner
 - Wasserspeicher und Filter
 - Ionenaustauscher, Nährstoffspeicher und -transformator
 - Puffer- und Kolloidsystem
 - Bodenentwicklung und -systematik
 - Bodengenetische Faktoren und Prozesse
 - Bodenschätzung, Bodenschutz

Verwendbarkeit des Moduls (Zuordnung zu Curriculum)
- M.Sc. Biologie, Wahlmodul
- B.Sc. Ökologische Landwirtschaft, Pflichtmodul

Dauer und Häufigkeit des Angebotes des Moduls
- Einsemestrig, jährlich (jeweils im WS)

Semester
- Ab 1. Sem.

Sprache
Deutsch

Voraussetzung für Teilnahme
Immatrikulation für einen der o. g. Studiengänge

Lehrform
Vorlesung

Studentischer Arbeitsaufwand
- 60 Stunden Präsenzzeit
- 120 Stunden Selbststudium

Leistungspunkte (Credits)
6

Studienleistungen

Modulprüfungsleistung, Art und Dauer der Prüfungen
Klausur (2 h)

Literatur
- Scheffer/Schachtschabel 2002: Lehrbuch der Bodenkunde. Heidelberg

Spezielle Informationen
Die Lehrveranstaltung findet am Standort Witzenhausen statt.
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Grundlagen und angewandte Aspekte der Bodenbiologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>MScBio W16 (Modul H29 im B.Sc. Ökologische Landwirtschaft)</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
<td>Vorlesung, Übung (4 SWS)</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Prof. Dr. R. Jörgensen, Dr. Chr. Wachendorf</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. R. Jörgensen, Dr. Chr. Wachendorf</td>
</tr>
<tr>
<td>Integrierter Erwerb von Schlüsselkompetenzen</td>
<td></td>
</tr>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Einsemestrig, jährlich (jeweils im WS).</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Immatrikulation für M.Sc Biologie. Erfolgreicher Abschluss von MScBio W14 (Modul G09, Bodenkunde).</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung, Seminar, Referat, Exkursion, Übung.</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>60 Stunden Präsenzzeit. 120 Stunden Selbststudium.</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>6</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Regelmäßige Mitarbeit bei den Übungen. Präsentation als unbenotete Eingangsvoraussetzung für das Fachgespräch.</td>
</tr>
<tr>
<td>Modulprüfungsteilnahme, Art und Dauer der Prüfungen</td>
<td>Fachgespräch (30 min) oder experimentelle Projektarbeit mit schriftlicher Ausarbeitung (ca. 10 Seiten).</td>
</tr>
<tr>
<td>Spezielle Informationen</td>
<td>Die Lehrveranstaltung findet am Standort Witzenhausen statt.</td>
</tr>
<tr>
<td>Modulname</td>
<td>Nutzpflanzenkunde II</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Code</td>
<td>MScBio W17 (=Modul C10 im B.Sc. Ökologische Landwirtschaft)</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
<td>Vorlesung (4 SWS)</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Prof. Dr. R. Jörgensen, Prof. Dr. A. Bürkert, J. Gebauer, Q.Wember</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. R. Jörgensen, Prof. Dr. A. Bürkert, J. Gebauer, Q.Wember</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>Studierende erwerben fundierte Grundlagen des Pflanzenhauses.</td>
</tr>
<tr>
<td></td>
<td>Kenntnis der Grundlagen der Pflanzenzüchtung, insbesondere der genetischen Grundlagen und Fähigkeit, diese anzuwenden.</td>
</tr>
<tr>
<td></td>
<td>Verständnis der Ernährung der Pflanzen und der Wechselbeziehungen zwischen Pflanze und Boden</td>
</tr>
<tr>
<td>Integrierter Erwerb von Schlüsselkompetenzen</td>
<td></td>
</tr>
<tr>
<td>Lerninhalte</td>
<td>Ertragsphysiologie: CO₂-Assimilation (Licht, CO₂-Gehalt, Blattflächenindex, C3-/C4-Pflanzen)</td>
</tr>
<tr>
<td></td>
<td>Wasserhaushalt (Wurzelsysteme, Wasseraufnahme, Wasserabgabe, Wassermangel, Wasserüberschuss)</td>
</tr>
<tr>
<td></td>
<td>Wachstum und Entwicklung (thermo- und photoperiodische Reaktionen, Entwicklungsskalen)</td>
</tr>
<tr>
<td></td>
<td>Einfluss der Faktoren Temperatur, Wasserhaushalt, Strahlung und Photoperiode auf die Ertragsbildung</td>
</tr>
<tr>
<td></td>
<td>Generative Vermehrung (Organe, Fremd- u. Selbstbefruchtung)</td>
</tr>
<tr>
<td></td>
<td>Merkmale und Kenngrößen als Basis für Züchtung und Bewertung des Zuchtfortschritts)</td>
</tr>
<tr>
<td></td>
<td>Selektions- und Kreuzungszüchtung</td>
</tr>
<tr>
<td></td>
<td>Vom Zuchtturm zur Sorte</td>
</tr>
<tr>
<td></td>
<td>Genetische Grundlagen der Pflanzenzüchtung, Resistenzzüchtung</td>
</tr>
<tr>
<td></td>
<td>Pflanzenzüchtung: Nährstoffaufnahme und -transport in Pflanzen</td>
</tr>
<tr>
<td></td>
<td>Bestimmung der Düngerbedürftigkeit (Pflanzen- und Bodenanalysen, Mangel- und Überschuss symptome)</td>
</tr>
<tr>
<td></td>
<td>Nährstoffmobilisierung in der Rhizosphäre</td>
</tr>
<tr>
<td></td>
<td>Organische und mineralische Düngung und deren Beeinflussung von Ertrag und Qualität pflanzlicher Ernteprodukte.</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</td>
<td>M.Sc. Biologie, Wahlmodul</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Ökologische Landwirtschaft, Pflichtmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Einsemestrig, jährlich (jeweils im SoSe)</td>
</tr>
<tr>
<td>Semester</td>
<td>Ab 2. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Immatrikulation für M.Sc. Biologie oder erfolgreicher Abschluss des Moduls Nutzpflanzenkunde I (im Studiengang BSc Ökologische Landwirtschaft)</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung, Seminar</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>60 Stunden Präsenzzeit (4 SWS)</td>
</tr>
<tr>
<td></td>
<td>120 Stunden Selbstdstudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>6</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Klausur (2 h) oder im Einzelfall nach Absprache mit dem Koordinator Projektarbeit (schriftliche Ausarbeitung von 40 Seiten)</td>
</tr>
<tr>
<td></td>
<td>Becker H. 1993: Pflanzenzüchtung. UTB. Ulmer-Verlag Stuttgart</td>
</tr>
<tr>
<td>Spezielle Informationen</td>
<td>Die Lehrveranstaltung findet am Standort Witzenhausen statt,</td>
</tr>
<tr>
<td>Modulname</td>
<td>Phytopathologischer Feldkurs</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Code</td>
<td>MScBio W18 (= Modul L24 im MSc Ökologische Landwirtschaft)</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls und Lehrformen</td>
<td>• Exkursion, Übung, Seminar (4 SWS)</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Prof. Dr. M. R. Finckh</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Prof. Dr. M. R. Finckh, Dr. H. Saucke</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>• Kompetent mit aktuellen phytomedizinischen Problemen im Feld umgehen lernen</td>
</tr>
<tr>
<td></td>
<td>• Kennen lernen von wichtigen phytomedizinischen Methoden</td>
</tr>
<tr>
<td>Integrierter Erwerb von Schlüsselkompetenzen</td>
<td>• Rhetorik</td>
</tr>
<tr>
<td></td>
<td>• Ausarbeiten und Präsentation eines Themas</td>
</tr>
<tr>
<td>Lerninhalte</td>
<td>• Phytomedizinisches Sampling</td>
</tr>
<tr>
<td></td>
<td>• Samenbürtige Krankheiten</td>
</tr>
<tr>
<td></td>
<td>• Biologische Kontrolle</td>
</tr>
<tr>
<td></td>
<td>• Steriles Arbeiten und Umgang mit Feldproben im Labor</td>
</tr>
<tr>
<td></td>
<td>• Bonituren und Datenaufnahme im Feld</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</td>
<td>M.Sc. Biologie, Wahlmodul</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Ökologische Landwirtschaft, Wahlpflichtmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Einsemestrig, jährlich (jeweils im SoSe)</td>
</tr>
<tr>
<td>Semester</td>
<td>Ab 2. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch und Englisch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Immatrikulation für einen der o.g. Studiengänge</td>
</tr>
<tr>
<td></td>
<td>Grundlagenwissen in Phytomedizin wird vorausgesetzt (z.B. BSc Kurs G11</td>
</tr>
<tr>
<td></td>
<td>(und BSc Kurs: H22: Regulation von Agrarbiozönosen)</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Seminar, Exkursion, Übung</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>60 Stunden Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>120 Stunden Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>6 (davon 1 Credit integrierte Schlüsselkompetenzen)</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Regelmäßige, aktive Mitarbeit in Seminar, Exkursionen und praktischen Übungen</td>
</tr>
<tr>
<td>Modulprüfungsleistung, Art und Dauer der Prüfungen</td>
<td>Protokoll über eine Übung / Exkursion, schriftlich,</td>
</tr>
<tr>
<td></td>
<td>auch als Gruppenarbeit: Gewichtung 30%</td>
</tr>
<tr>
<td></td>
<td>Referat über ein Thema (15 Min plus 10 Min Diskussion)</td>
</tr>
<tr>
<td></td>
<td>mit schriftlicher Ausarbeitung: Gewichtung 70%</td>
</tr>
<tr>
<td>Literatur</td>
<td>Agrios G.N. 2004: Plant Pathology. 5th Ed.</td>
</tr>
<tr>
<td></td>
<td>Dent D. 2000: Insect Pest Management. 2nd Ed.</td>
</tr>
<tr>
<td></td>
<td>Skripte</td>
</tr>
<tr>
<td>Spezielle Informationen</td>
<td>Die Lehrveranstaltung findet am Standort Witzenhausen statt.</td>
</tr>
<tr>
<td>Modulname</td>
<td>GIS-Anwendungen</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Code</td>
<td>MSc Bio W 19</td>
</tr>
</tbody>
</table>
| Einzelveranstaltungen des Moduls und Lehrformen | Seminar (2 SWS)
| Modulbeauftragter | Prof. Dr. G. Rosenthal |
| Dozent/in | Dr. W. Hakes, U. Stein |
| Lernziele und Kompetenzen |
| • Sicherer Umgang mit Geographischen Informationssystemen (GIS)
| • Habitatanalyse zur qualitativen Bewertung von Fließgewässern hinsichtlich ihrer Eignung für eine dauerhafte Besiedlung durch ausgewählte Leitarten
| • Standortsuche für Windkraftanlagen auf der Ebene des Flächennutzungsplans |
| Integrierter Erwerb von Schlüsselkompetenzen |
| Lerninhalte |
| • Grundlagen und einfache GIS-Anwendungen
| • Vegetationsökologie mit GIS ArcView 9.2
| • Geodatenverarbeitung
| • Räumliche Bilanzierung
| • Datenkonvertierung und Datenbankanalyse
| • Landschaftsstrukturanalyse
| • Rasterdatenmodelle und Rasterdatenverarbeitung
| • Digitale Geländemodelle
| • Digitale Reliefanalyse
| • Landschaftsökologische Modellierung |
| Verwendbarkeit des Moduls (Zuordnung zu Curriculum) | M.Sc. Biologie, Wahlmodul
| B.Sc./M.Sc. Landschaftsarchitektur und -planung, Wahlmodul |
| Dauer und Häufigkeit des Angebotes des Moduls | Einsemestrig, in jedem Semester |
| Semester | Ab 1. Sem. |
| Sprache | Deutsch |
| Voraussetzung für Teilnahme | Immatrikulation für einen der o.g. Studiengänge |
| Lehrform | Seminar, Übung |
| Studentischer Arbeitsaufwand | 60 Stunden Präsenzzeit
| 120 Stunden Selbststudium |
| Leistungspunkte (Credits) | 6 |
| Studienleistungen | Protokolle, Herbarium, Seminarvortrag |
| Modulprüfungsleistung, Art und Dauer der Prüfungen | Fachgespräch (30 Min.)
| Klausur (60 Min.)
<p>| (Gewichtung in der Endnote zu je 50%) |
| Literatur |

| Spezielle Informationen | Die Lehrveranstaltung findet am Standort Holländischer Platz statt. |</p>
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Ökologische Grundlagen der Umweltplanung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>MSc Bio W 20</td>
</tr>
</tbody>
</table>

Einzeleranvagtungen des Moduls und Lehrformen
Seminar, Übung

Modulbeauftragter
Prof. Dr. G. Rosenthal, Prof. Dr. U. Braukmann, Dr. J. Godt

Dozent/in
Prof. Dr. G. Rosenthal, Prof. Dr. U. Braukmann, Dr. J. Godt

Lernziele und Kompetenzen
- Verständnis des ökosystemaren Zusammenwirkens einzelner Standortsfaktoren in der Landschaft unter besonderer Berücksichtigung von Nutzungsaspekten
- Kenntnis der planerisch relevanten Pflanzenfamilien und
 charakteristischer Arten der heimischen Vegetation
- Fähigkeit, flächendeckende Biotop- und Nutzungstypenkartierung
 sowie Erfassung des Landschaftscharakters selbständig
 durchzuführen und die Ergebnisse planungsrelevant darzustellen
 und zu präsentieren.
- Kenntnis der wichtigsten Bodenformen der gemäßigten Klimazone,
 der wichtigsten Gewässertypen mit ihrem charakteristischen
 morphologischen und biologischen Formenspektrum, verbunden
 mit der Fähigkeit, Boden-, Gewässer- und Klimatypen an Hand der
 Literatur selbständig zu bestimmen und ihre Einordnung in die
 Systematik vorzunehmen.
- Anwendung theoretischer Fachkenntnisse aus Geo- und
 Biowissenschaften im landschaftsökologischen Kontext und
 Fähigkeit zur Verknüpfung unterschiedlicher Teildisziplinen der
 Naturwissenschaften in planerischen Zusammenhängen.

Integrierter Erwerb von Schlüsselkompetenzen

Lerninhalte
- Vegetationsgeschichte, Vegetationsbeschreibung, – gliederung und
 -analyse, Vegetation und Standort, Vegetation dynamik,
 Vegetationskartierung, angewandte Vegetationsökologie, Beispiele
 wichtiger mitteleuropäischer Vegetationseinheiten
- Grundzüge der Ökologie stehender Gewässer (Typen, Entstehung,
 Stoffhaushalt, Belastungen)
- Längs- und regionale Fließgewässertypen
- Aspekte der Gewässerstruktur mit ihrer Bedeutung für aquatische
 Lebensgemeinschaften sowie Besonderheiten im Stoffhaushalt der
 Fließgewässer. Hierauf baut ein angewandter Teil auf, in dem die
 wichtigsten Verfahren der Gewässerbewertung (z. B.
 Saprobienkriterien, Versauerung, Strukturgüte) einschließlich der
 Wasserrahmenrichtlinie der EU vermittelt werden.

Verwendbarkeit des Moduls (Zuordnung zu Curriculum)
M.Sc. Biologie, Wahlmodul
B.Sc. Landschaftsarchitektur u. Landschaftsplanung, Pflichtmodul?

Dauer und Häufigkeit des Angebotes des Moduls
Zweisemestrig, jährlich, beginnend im SoSe

Semester
Ab 2. Sem.

Sprache
Deutsch

Voraussetzung für Teilnahme
Immatrikulation für einen der o.g. Studiengänge

Lehrform
Seminar und Übung

Studentischer Arbeitsaufwand
90 Stunden Präsenzzeit
90 Stunden Selbststudium
<table>
<thead>
<tr>
<th>Leistungspunkte (Credits)</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistungen</td>
<td></td>
</tr>
<tr>
<td>Modulprüfungsleistung, Art und Dauer der Prüfungen</td>
<td>Fachgespräch (30–60 Min.)</td>
</tr>
<tr>
<td>Literatur</td>
<td></td>
</tr>
<tr>
<td>Spezielle Informationen</td>
<td>Die Lehrveranstaltung findet am Standort Holländischer Platz statt.</td>
</tr>
<tr>
<td>Modulname</td>
<td>Schutzgüter in Umweltplanung und Landschaftsmanagement I</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>Code</td>
<td>MScBio W21</td>
</tr>
</tbody>
</table>
| Einzelveranstaltungen des Moduls und Lehrformen | Vorlesung (2 SWS)
| | Übung (2 SWS) |
| Modulbeauftragter | Prof. Dr. A. Mengel, Prof. Dr. D. Bruns |
| Dozent/in | Prof. Dr. A. Mengel, Prof. Dr. D. Bruns, Prof. Dr. U. Braukmann, Prof. Dr. G. Rosenthal, Prof. Dr. L. Katzschner |
| Lernziele und Kompetenzen | Vertiefte Kenntnisse und grundlegende Methodenkompetenz in den Bereichen:
| | Schutzgutbezogene Erfassung, Auswertung, Zielfindung und Bewertung.
| | Schutzgutaspekte
| | Maßnahmenentwicklung und –evaluierung (Management im physischen Sinn)
| | Auswahl und Anwendung von Umsetzungsinstrumenten (Management im administrativgesellschaftspolitischen Sinn) |
| Integrierter Erwerb von Schlüsselkompetenzen | |
| Lerninhalte | Vertiefte Behandlung der Schutzgüter Luft und Klima, Wasser und Gewässer, Gestein und Boden sowie Pflanzen
| | Umweltpolitik und Umweltplanung
| | Luft und Klima (Klimapolitik, Immissionsschutz, Regional- und Lokalklima, Luftreinhalteplanung)
| | Wasser (Wasserver- und –entsorgung, Hochwasserschutz, Grundwasserschutz, Wasserrecht, Wasserwirtschaftliche Planung)
| | Gestein und Boden (Ziele des Bodenschutzes und Bodenfunktionen, Bodenschutzrecht, Abbau von Bodenschäden)
| | Grundzüge des Lärmschutzrechts/der Lärmschutzpolitik
| | Überblick zur Thematik Erneuerbare Energien
| | Gute fachliche Praxis/Umweltstandards in Land- und Forstwirtschaft sowie Landschaft/Landschaftsentwicklung (Wahrnehmung von Landschaft, Umgang mit Landschaft, Partizipation) |
| Verwendbarkeit des Moduls (Zuordnung zu Curriculum) | M.Sc. Biologie: Wahlmodul
| | M.Sc. Landschaftsarchitektur und Landschaftsplanung |
| Dauer und Häufigkeit des Angebotes des Moduls | Einsemestrig, jährlich (jeweils im WS) |
| Semester | Ab 1. Sem. |
| Sprache | Deutsch |
| Voraussetzung für Teilnahme | Immatrikulation für einen der o.g. Studiengänge |
| Lehrform | Vorlesung, Übung |
| Studentischer Arbeitsaufwand | 60 Stunden Präsenzzeit
| | 120 Stunden Selbststudium |
| Leistungspunkte (Credits) | 6 |
| Studienleistungen | |
| Modulprüfung - Art und Dauer der Prüfungen | Schriftlicher Bericht (Gewichtung 50%)
<p>| | Fachgespräch von 30–60 Min. (Gewichtung 50%) |
| Literatur | Die Lehrveranstaltung findet am Standort Holländischer Platz statt. |</p>
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Schutzgüter in Umweltplanung und Landschaftsmanagement II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>MScBio W22</td>
</tr>
</tbody>
</table>
| Einzelveranstaltungen des Moduls und Lehrformen | • Vorlesung (2 SWS)
• Übung (2 SWS) |
| Modulbeauftragter | Prof. Dr. A. Mengel, Prof. Dr. D. Bruns |
| Dozent/in | Prof. Dr. A. Mengel, Prof. Dr. D. Bruns, Prof. Dr. U. Braukmann, Prof. Dr. G. Rosenthal, Prof. Dr. L. Katzchner |
| Lernziele und Kompetenzen | Vertiefte Kenntnisse und grundlegende Methodenkompetenz in den Bereichen:
• Schutzgutaspekte
• Schutzgutbezogene Erfassung und Auswertung, Zielfindung und Bewertung,
• Maßnahmenentwicklung und –evaluierung (Management im physischen Sinn),
• Auswahl und Anwendung von Umsetzungsinstrumenten (Management im administrativ-gesellschaftspolitischen Sinn)
Fähigkeit zur Bewertung der Schutzgüter Vegetation, Tiere, Biozönosen, Ökosysteme, Mensch/ Kultur- und Sachgüter, Landschaften |
| Integrierter Erwerb von Schlüsselkompetenzen | |
| Lerninhalte | Vertiefte Behandlung der Schutzgüter Vegetation, Tiere, Biozönosen, Ökosysteme, Mensch/ Kultur- und Sachgüter, Landschaften |
| Verwendbarkeit des Moduls (Zuordnung zu Curriculum) | M.Sc. Biologie, Wahlmodul
M.Sc. Landschaftsarchitektur und Landschaftsplanung |
| Dauer und Häufigkeit des Angebotes des Moduls | Einsemestrig, jährlich (jeweils im SoSe) |
| Semester | Ab 2. Sem. |
| Sprache | Deutsch |
| Voraussetzung für Teilnahme | Immatrikulation für einen der o.g. Studiengänge |
| Lehrform | Vorlesung, Übung |
| Studentischer Arbeitsaufwand | 60 Stunden Präsenzzeit
120 Stunden Selbststudium |
| Leistungspunkte (Credits) | 6 |
| Studienleistungen | |
| Modulprüfungsleistung, Art und Dauer der Prüfungen | Schriftlicher Bericht (Gewichtung 50%)
Fachgespräch von 30–60 Min. (Gewichtung 50%) |
<p>| Literatur | |
| Spezielle Informationen | Die Lehrveranstaltung findet am Standort Holländischer Platz statt. |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Modulinhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbeauftragter</td>
<td>Prof. Dr. M. Stengl</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>Grundlegende Kenntnisse der Verhaltensforschung, Verständnis von Struktur-Funktionszusammenhängen</td>
</tr>
<tr>
<td>Integrierter Erwerb von Schlüsselkompetenzen</td>
<td>Aneignung von Fachliteratur, Halten eines wissenschaftlichen Vortrags, Software-Kompetenzen, Fähigkeit zum analytischen Denken, Gedächtnis- und Konzentrationstraining, Effiziente Literaturgerecherche</td>
</tr>
<tr>
<td>Lerninhalte</td>
<td>Grundlagen der Verhaltensforschung, Angeborenes und erlerntes Verhalten, Lernen und Gedächtnis, Orientierung in Raum und Zeit, Aggressionsverhalten</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</td>
<td>M.Sc. Biologie: Wahlmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Einsemestrig, jährlich (jeweils im SS)</td>
</tr>
<tr>
<td>Semester</td>
<td>Ab 1. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Immatrikulation für den M.Sc. Biologie</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Vorlesung und Seminar</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>60 h Präsenzzeit, 60 h Selbststudium</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>4 (davon 1 Credit integrierte Schlüsselkompetenzen)</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Regelmäßige, erfolgreiche Mitarbeit in den Seminaren</td>
</tr>
<tr>
<td>Modulprüfungsleistung, Art und Dauer der Prüfungen</td>
<td>Seminarvortrag (ca. 30 Min.)</td>
</tr>
<tr>
<td>Literatur</td>
<td>Literatur nach Vereinbarung, Behavioral Neurobiology, TJ Carew</td>
</tr>
<tr>
<td>Modulname</td>
<td>Pflanzliche Evolutionsbiologie</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Code</td>
<td>MScBio W24</td>
</tr>
</tbody>
</table>
| Einzelveranstaltungen des Moduls und Lehrformen | - Spezielle Themen der Pflanzensystematik und Evolutionsbiologie (S. 1 SWS)
- Systematik und Evolution von Algen, Pilzen und Pflanzen (V, 2 SWS)
- Morphologie und Anatomie von Algen, Pilzen u. Pflanzen (P, 8 SWS) |
| Modulbeauftragter | Prof. Dr. K. Weising |
| Dozent/in | Prof. Dr. K. Weising und Mitarbeiter |
| Lernziele und Kompetenzen | - Fähigkeit zur Einordnung pflanzlicher und pflanzenähnlicher Organismen in systematische Großgruppen
- Grundlegendes Verständnis der pflanzlichen Anpassungen an das Landleben
- Kompetenter Umgang mit dem Lichtmikroskop
- Zeichnerische Dokumentation mikro- und makroskopischer Präparate von Pflanzen, Pilzen und Algen |
| Integrierter Erwerb von Schlüsselkompetenzen | - Fähigkeit zur selbständigen Vorbereitung, Gestaltung und Präsentation von informativen und wissenschaftlich präzisen Seminarvorträgen, incl. Literaturrecherche
- Erlernen des eigenständigen Arbeitens mit Fachliteratur für Fortgeschrittene
- Teamfähigkeit |
| Lerninhalte | - Systematik, Morphologie, Anatomie, Lebenszyklen, Ökologie und Evolution der Cyanobakterien, der eukaryotischen Algen, Joch-, Schlauch- und Säugerpilze, Flechten, Laub-, Leber- und Hornmoose, farnartigen Pflanzen (Farne, Schachtelhalm, Bärlappe) und Gefäßpflanzen (Theorie und Praxis) |
| Verwendbarkeit des Moduls (Zuordnung zu Curriculum) | M.Sc. Biologie: Wahlmodul |
| Dauer und Häufigkeit des Angebotes des Moduls | Einsemestrig, jährlich (jeweils im SS) |
| Semester | Ab 1. Sem. |
| Sprache | Deutsch |
| Voraussetzung für Teilnahme | Immatrskulation in den M.Sc.-Studiengang Biologie |
| Lehrform | Vorlesung und Praktikum |
| Studentischer Arbeitsaufwand | 165 Stunden Präsenzzeit (11 SWS)
105 Stunden Selbststudium |
| Leistungspunkte (Credits) | 9 (davon 1 Credit integrierte Schlüsselkompetenzen) |
| Studienleistungen | Regelmäßige, aktive Mitarbeit im Praktikum und Anfertigung korrekter Zeichnungen Seminarvortrag |
| Modulprüfungsleistung, Art und Dauer der Prüfungen | Klausur (2,5 Stunden) |
| Literatur | Strasburger: Lehrbuch der Botanik. 36. Auflage 2008, Spektrum Akademischer Verlag
or
Eine Liste mit Spezialliteratur wird zu Beginn des Kurses bekannt gegeben. |
<p>| Spezielle Informationen | Seminar, Praktikum und Vorlesung finden als integrierte Blockveranstaltung in der ersten Hälfte des SS (vormittags) statt. |</p>
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Fachübergreifende Schlüsselkompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>MScBio W25</td>
</tr>
<tr>
<td>Einzelveranstaltungen des Moduls</td>
<td>Eine oder mehrere Veranstaltungen, die im Veranstaltungsverzeichnis der Universität Kassel unter der Rubrik „Schlüsselkompetenzen fachübergreifend“ gelistet und für jedes Semester aktualisiert werden. Für die einzelnen Veranstaltungen können in Absprache mit dem anbietenden Dozenten jeweils 1 bis 4 Credits vergeben werden. Mitarbeit in Gremien der Universität Kassel (z.B. Fachbereichsrat, Fachschaft, Studienausschuss, ASTA) sowie die Tätigkeit als studentische Hilfskraft in der Selbstverwaltung, zur Unterstützung des Lehrbetriebes oder bei der Beratung von Studierenden (z.B. als Tutor) können ebenfalls als Veranstaltung angerechnet werden.</td>
</tr>
<tr>
<td>Modulbeauftragter</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent/in</td>
<td>Lehrende aus allen Fachbereichen und zentralen Einrichtungen der Universität Kassel</td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td>Studierende erwerben Kompetenzen, die das fachlich erworbene Kompetenzraster erweitern und für ein späteres Berufsleben von Bedeutung sind, zum Beispiel in Wissenschaftsethik, Recht, Ökonomie, englischer Fachsprache, Publizistik, Sozial- und Selbstkompetenz, Kommunikationsfähigkeit, analytischem Denken, Gremien- und Teamarbeit</td>
</tr>
<tr>
<td>Lerninhalte</td>
<td>Die Inhalte sind abhängig von den gewählten Veranstaltungen. Beispielhaft könnten folgende Veranstaltungen im Rahmen dieses Moduls belegt werden: • Arbeiten mit Lern- und Kommunikationsplattformen • Entscheiden, Konflikt und Handeln • Globalisierung – Einführung in die Int. Politische Ökonomie • Grundlagen und Konzepte des Managements • Moderationstechnik • Spanisch für das Berufsleben • Technisches Englisch • Multidiciplinary research in tropical production systems • Visualisierung für Architektur und Landschaftsarchitektur • Zeit- und Stressmanagement</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls (Zuordnung zu Curriculum)</td>
<td>M.Sc. Biologie: Wahlmodul</td>
</tr>
<tr>
<td>Dauer und Häufigkeit des Angebotes des Moduls</td>
<td>Veranstaltungen zu fachübergreifenden Schlüsselkompetenzen werden in jedem Semester angeboten (siehe Lehrveranstaltungsverzeichnis unter der Rubrik „Schlüsselkompetenzen fachübergreifend“)</td>
</tr>
<tr>
<td>Semester</td>
<td>Ab 1. Sem.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch, Englisch oder andere Fremdsprache, abhängig von der gewählten Veranstaltung</td>
</tr>
<tr>
<td>Voraussetzung für Teilnahme</td>
<td>Immatrikulation für den M.Sc. Biologie</td>
</tr>
<tr>
<td>Lehrform</td>
<td>Abhängig von der jeweils gewählten Veranstaltung</td>
</tr>
<tr>
<td>Studentischer Arbeitsaufwand</td>
<td>Die Verteilung von Präsenzzeit und Selbststudium ist abhängig von der gewählten Veranstaltung. Die Summe des gesamten Arbeitsaufwands</td>
</tr>
<tr>
<td>Leistungspunkte (Credits)</td>
<td>beträgt 120h.</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>4</td>
<td>Die Anzahl der für die besuchte Veranstaltung zu vergebenden Credits wird durch die anbietenden Dozenten bzw. Bereiche geregelt. Der Nachweis für studentisches Engagement (Gremienarbeit) sowie der hierfür geleistete studentische Arbeitsaufwand/Zahl der Credits muss durch das Wahlamt der Universität Kassel, den ASTA, der Leiterin/den Leiter des betreffenden Gremiums oder die Studiendekanin/den Studiendekan bescheinigt werden. Außerdem ist dem Modulverantwortlichen eine schriftliche Leistung im Umfang von 5 bis 10 Seiten vorzulegen (Bericht, Ausarbeitung zu einem verwandten Thema).</td>
</tr>
<tr>
<td>Studienleistungen</td>
<td>Nachweis von Studienleistungen in allen besuchten Veranstaltungen nach Vorgabe der anbietenden Dozenten bzw. Bereiche,</td>
</tr>
<tr>
<td>Literatur</td>
<td>Gemäß den Hinweisen zu den gewählten Veranstaltungen</td>
</tr>
</tbody>
</table>