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ABSTRACT I

Abstract

This paper examines a method to model plug-in electric vehicles as part of the power
system and presents results for the contribution of plug-in electric vehicles to balance
the fluctuating electricity generation of renewable energy sources.

To reduce emissions emitted by passenger vehicles and the dependence on oil, electric
driving is discussed. The paper therefore analyses a situation assuming a high share of
plug-in electric vehicles in Germany for 2030. To avoid an incising peak load due to
electric vehicle charging and to use the load shifting and storage potential of vehicles’
batteries a mechanism to schedule charging or feeding back electricity is of high
relevance. To implement such a mechanism and analyze the contribution of plug-in
electric vehicles as a grid resource an agent- based simulation method is applied. Plug-
in electric vehicles are modeled as independent agents controlled by a mechanism
designed making use of the marginal cost- based electricity market model PowerACE.
The method allows considering single vehicles and a very high degree of details in
terms of smart charging profits, battery degradation and driving behavior.

The simulation results show that fueling passenger vehicles with electricity allows a
reduction of carbon dioxide emissions. The magnitude of emission reduction is
relatively small unless the electricity is supplied by additionally installed renewable
energy sources. A very important finding for Germany therefore is that electricity from
renewable energy sources should be used to provide sustainable transportation. In terms
of revenues from smart charging, values are in the range of 50 — 250 euros per year and
rather depend on the yearly electricity consumption than on power or battery size. In
conclusion, smart charging technology must be low cost and make use of existing
components implemented in passenger vehicles. The grid integration performance of
fluctuating electricity generation strongly depends on the generation pattern. A daily
generation pattern results in a better grid integration performance because the available
energy for load shifting also follows a daily pattern. For Germany, therefore, especially
solar power can be balanced with storage of plug-in electric vehicles.
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Zusammenfassung

Im Rahmen dieser Arbeit wird untersucht, inwieweit netzgekoppelte Elektrofahrzeuge
zum Ausgleich fluktuierender Elektrizititserzeugung von erneuerbaren Energien
beitragen konnen.

Die Elektromobilitit gilt als eine vielversprechende Option, um Emissionen im
Verkehrssektor und die Abhéngigkeit von fossilen Energietrigern zu senken. Dies gilt
im Besonderen, wenn die erforderliche Elektrizitdt aus erneuerbaren Energiequellen
stammt. In Deutschland und Europa ist im Bereich der erneuerbaren Energien vor allem
der Ausbau von fluktuierenden Erzeugern wie Windturbinen und Photovoltaikanlagen
geplant (Beurskens et al.,, 2011). Eine grof8e Herausforderung dieser Ressourcen ist
jedoch die Volatilitdit der von Sonneneinstrahlung und Windgeschwindigkeit
abhingenden Erzeugung. Inwieweit Last- und Erzeugungsmanagement mittels
Elektromobilitdt zu einer besseren Integration von erneuerbaren Energien beitragen
kann, ist daher eine entscheidende Forschungsfrage.

Die Arbeit gliedert sich wie folgt. Nach einer Einleitung zur wissenschaftlichen
Fragestellung und deren Bedeutung (Kapitel 1) werden die Grundlagen zur Steuerung
netzgekoppelter Fahrzeuge geschaffen (Kapitel 2). Darauf autbauend wird die Methodik
zur Charakterisierung der verwendeten Zeitreihen (Kapitel 3) und die Besonderheiten
mobiler Speicher (Kapitel 4) thematisiert. AnschlieBend folgt das eigentliche
Methodenkapitel (Kapitel 5), in dem das verwendete Simulationsmodell vorgestellt
wird. Die Erstellung eines Zukunftsszenarios fiir das Jahr 2030 mit hohem Anteil
erneuerbarer Energien und Elektrofahrzeugen definiert das Untersuchungsfeld der
Arbeit (Kapitel 6). Die Ergebnisse (Kapitel 7) fokussieren auf die Moglichkeit zur
Integration von erneuerbaren Energien, die mittels der in (Kapitel 3) festgelegten
Charakterisierungsparameter quantifiziert werden. AuBBerdem werden marginale CO;-
Emissionen (Kapitel 7.5) und mogliche Einsparungen durch das gesteuerte Laden
(Kapitel 7.6) diskutiert. Die sich anschlieBende Sensitivititsanalyse (Kapitel 7.7) rundet
das Ergebniskapitel ab und zeigt die groBten Unsicherheiten der Untersuchung auf.
AbschlieBend werden in Kapitel 8 wichtige Schlussfolgerungen und der sich aus der
Arbeit ergebenden weitere Forschungsbedarf aufgezeigt.

Das Kernstiick der Arbeit ist die in Kapitel 3, 4 und 5 entwickelte Methodik. Dies
beinhaltet die Festlegung und Definition von Charakterisierungsparametern mit denen
die Zeitreihen als wichtige Eingangsparameter und die Ergebnisse beschrieben werden.
Dadurch wird es moglich, den Effekt von fluktuierenden Erzeugern auf das
Energiesystem zu messen. Nur so kann anschlieBend quantifiziert werden, welchen
Beitrag die Elektromobilitit zur Integration leistet. Ein weiterer grundlegender
methodischer Inhalt ist die Beschreibung von mobilen Speichern. Zur Bestimmung von
Elektromobilitidtsnutzern wurde ein Abfrageschema entwickelt (Biere, et al. 2009) und
auf eine Mobilititsstudie (MID, 2010) angewandt. Der so gefilterte Datensatz wird
verwendet, um Wabhrscheinlichkeiten fiir die Modellierung des Mobilititsverhaltens
abzuleiten. Nach wirtschaftlichen Gesichtspunkten zeichnen sich mogliche Nutzer von
Elektrofahrzeugen durch eine hohe elektrische Fahrleistung aus. Hohere
Anschaffungskosten von Elektrofahrzeugen miissen iiber die aufgrund der hohen
Effizienz niedrigeren Betriebskosten amortisiert werden. Dies gelingt besonders im Fall
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von Nutzern, die in kleineren Gemeinden wohnen und tiglich zur Arbeit pendeln.’
Stidter sind in der Regel wesentlich weniger geeignet, weil sie oft nur ein Fahrzeug
besitzen, die Lademoglichkeit unsicherer ist und die elektrische Fahrleistung trotz
hoheren Verbrauchs im Stadtverkehr nicht ausreicht, um die Anfangsinvestition in das
Fahrzeug zu amortisieren. Durch die Filterung des Datensatzes wird erreicht, dass nur
Fahrprofile von potentiellen Nutzern in die Modellierung einbezogen werden.
AulBlerdem sind die Entladekosten ein wichtiger Einflussfaktor fiir die Bestimmung des
Riickspeiseverhaltens von mobilen Speichern. Zur Quantifizierung der Entladekosten
wurden zwei Ansidtze in Abhédngigkeit der Entladetiefe (Rosenkranz, 2003/2007) und
des Energiedurchsatzes (Peterson et al., 2009) der Batterie untersucht. Bei der
Entwicklung des Batteriealterungsmodells mussten viele Vereinfachungen getroffen
werden. Beispielsweise wurden Temperatur und C-Rate’ sowie Abhingigkeiten
zwischen Alterungsmechanismen vernachldssigt. Dariiber hinaus ist heute aufgrund der
hohen Entwicklungsdynamik nur sehr schwer abschétzbar, welche Batteriechemie sich
zukiinftig durchsetzt. Die generell fiir Lithium- Batterien entwickelten Ansétze erlauben
daher nur eine sehr vereinfachte Darstellung der durch Alterung verursachten
Entladekosten.

Die Beschreibung der verwendeten Simulationsumgebung beginnt mit einem Uberblick
zum Agenten-basierten Strommarktmodell PowerACE (Sensfull, 2007), das als
Grundlage fiir die Modellierung verwendet wird. PowerACE bildet alle wichtigen
Akteure der Angebots- und Nachfrageseite des Strommarkts in Deutschland ab und
erlaubt es Grenzkosten-basierte Strompreise zu bestimmen. Fiir die Elektromobilitit
dient der Strompreis als SteuergroBe, um das intelligente Lade- und Entladeverhalten
der Fahrzeuge zu bestimmen.

Im implementierten Steuerungsmechanismus werden einzelne Fahrzeuge einem
Fahrzeug- Pool zugeordnet der wiederum in Fahrzeug- Gruppen unterteilt ist. Fiir
Fahrzeug- Pools wird iiber eine Strompreisprognose ein spezifisches Preissignal
ermittelt. Ausgehend von diesem Steuersignal wird auf der Gruppenebene ein variables
Netzentgelt addiert, um die Situation im Verteilnetz abzubilden. Durch die
fahrzeugspezifische Anpassung des variablen Netzentgelts in Abhéngigkeit der
Trafoauslastung und die Pool-spezifische Preisvorhersage wird eine gleichméBige
Verlagerung  der  Elektrizititsnachfrage  in  Lasttidler  erreicht.  Dieser
Steuerungsmechanismus erfordert eine uneinheitliche Tarifgestaltung, die in dieser
Form heute aufgrund des Gleichheitsgedankens nicht rechtméBig ist. Der verwendete
iterative Prozess erlaubt jedoch eine sehr gute Steuerung der Fahrzeuge, ohne die
individuellen Mobilitits- und Batterieanforderungen zu vernachléssigen.

Auf Fahrzeugebene wurde ein Software- Agent entwickelt, der in Zusammenarbeit mit
dem Fraunhofer ISE in ein Versuchsfahrzeug implementiert wurde (Link, 2011).” In
PowerACE beinhaltet dieser Agent die Modellierung des Fahrverhaltens unter
Verwendung der aus Mobilitdtsstudien ermittelten Wahrscheinlichkeiten. Die einem
spezifischen Fahrzeug zugewiesenen Fahrten ermoglichen die Ermittlung der
Zeitperiode, die fiir das Erzeugungs- und Lastmanagement zur Verfiigung steht sowie
den Ausgangs- und erforderlichen Endzustand des Speichers. Uber die entwickelten
Funktionen zur Batteriealterung werden die Riickspeisekosten in Abhingigkeit des

' Der Wirtschaftsverkehr wird in dieser Arbeit nicht betrachtet. Kleine Transporter weisen jedoch ein

hohes Potential aufgrund der Fahrprofile und der guten Planbarkeit von Fahrten auf. Bei der
Betrachtung von ganz Deutschland ist das Potential aufgrund der geringen Fahrzeugzahl im Vergleich
zu privaten PKW jedoch relativ gering.

C- Rate: Lade- bzw. Entladerate definiert als Batteriekapazitit (kWh) dividiert durch eine Stunde.

?  Siehe auch Anhang B.
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spezifischen Speicherzustands ermittelt. Der implementierte Optimierungsalgorithmus
nutzt diese Informationen und das vom Steuerungsmechanismus bereitgestellte
Preissignal, um einen optimalen Lade- und Entlade- Fahrplan zu ermitteln. Die
Agenten-basierte Modellierung bietet in diesem Zusammenhang den Vorteil, dass
individuelle Nutzerbediirfnisse wie das Mobilitdtsverhalten oder die von der
Entladetiefe bzw. dem vom spezifischen Speicherzustand abhingigen Riickspeisekosten
abgebildet werden konnen. AuBerdem konnen in  zukiinftigen Arbeiten
Preissensitivititen implementiert werden, um zu beriicksichtigen, dass je Nutzer
unterschiedliche Anreize zum Last- und Erzeugungsmanagement notwendig sind.

Das Ergebniskapitel beginnt mit einer Auswertung der Verlagerungszeit bzw. der
Zeitperiode zwischen zwei Wegen, liber die das Lade- und Entlade- Verhalten optimiert
werden kann. Diese zeigt, dass die Verlagerungszeiten iiber den Tag stark schwanken
und vor allem nach dem letzten Weg lange Verlagerungsperioden moglich sind.
Generell gilt, dass Elektrofahrzeuge nur als Kurzzeitspeicher mit Verlagerungszeiten im
Bereich von wenigen Stunden bis Tagen eingesetzt werden konnen. Fiir die
wirtschaftliche Nutzung der Fahrzeuge ist eine hohe Auslastung mit nahezu tdglichen
Fahrten vorteilhaft. Der Primidrnutzen der Fahrzeuge, die Befriedigung des
Mobilitatsverhaltens, reduziert demnach die Freiheitsgrade des Speichermanagements.

Der Beitrag zur Integration von fluktuierenden Erzeugern durch die Elektromobilitit
wird anhand der entwickelten Charakterisierungsparameter gemessen und an zwei
Fallstudien zum Lastmanagement untersucht. Dafiir wurde fiir Kalifornien und
Deutschland ein Szenario mit gleichem Anteil an fluktuierenden Erzeugern und
Elektrofahrzeugen entwickelt und verglichen. Die Ergebnisse zeigen, dass die je nach
Szenarien resultierende Fluktuation der Residuallast' hohen Einfluss auf die Fahigkeit
zur Integration hat. Fiir Kalifornien wird ein hoherer Anteil an Sonnenenergie zugrunde
gelegt. AuBerdem schwankt dort die Windenergieerzeugung aufgrund des
Temperaturunterschiedes zwischen Pazifik und Festland oft in einem tiglichen
Rhythmus. Der tdgliche Rhythmus der resultierenden Residuallast begiinstigt die
Integration durch Elektrofahrzeuge deren zur Lastverlagerung verfiigbare Energiemenge
taglich durch Fahrten erneuert wird. In Deutschland wird die Windeinspeisung durch
Tiefdruckgebiete bestimmt, die Ofters zu ldngeren Perioden mit starker
Windeinspeisung fiihren. Der durch die Elektromobilitit integrierbare Uberschussstrom,
fiir Deutschland zwischen 50 % und 64 % und fiir Kalifornien von 73 %, zeigt die
Eignung von Elektrofahrzeugen zur Integration von relativ regelméfig schwankenden
Erzeugern.

Die Riickspeisung wurde ausschlieBlich fiir das Deutschland Szenario betrachtet, weil in
diesem Anwendungsfall die notwendigen Informationen zum Kraftwerkspark fiir
Kalifornien nicht verfiigbar sind. Im Besonderen beim Ausgleich der
Residuallastschwankungen wird durch die Riickspeisung eine Verbesserung gegeniiber
dem reinen Lastmanagement erreicht. Insgesamt wird die Residuallastschwankung um
38 % bis 43 % gegeniiber dem Referenzszenario ohne Elektromobilitit reduziert.
Gegeniliber dem reinen Lastmanagement werden weitere 12 % bis 18 % an
Uberschussstrom genutzt. Beim Vergleich der beiden Methoden zur Berechnung der
Riickspeisungskosten auf Fahrzeugebene zeigt sich, dass der Speicherhub bei der
Alterung basierend auf der Entladetiefe wesentlich geringer ist. Insgesamt wird Gfters
und mit geringerer Entladungstiefe zykliert. Fiir die gesamte Fahrzeugflotte resultiert
dies in einer hoheren riickgespeisten Energiemenge im Fall der energiebasierten

*  Die Residuallast ist die resultierende Last aus Systemlast minus fluktuierender Einspeisung.
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Berechnung der Entladekosten. Die Mengen des integrierten Uberschussstroms weichen
insgesamt jedoch nur um wenige Prozentpunkte voneinander ab.

Zusétzlich zur Integrationsfihigkeit wurden Grenzemissionen sowie Einsparungen
durch das intelligente Laden betrachtet. Die CO,-Grenzemissionen werden dabei stark
vom Kraftwerkspark bestimmt. Beim Laden nach dem letzten Weg erhdht sich die
Spitzenlast. Die Elektrizitdt wird in diesem Fall oft von Gasturbinen bereitgestellt, was
zu vergleichsweise geringen Emissionen flihrt. Insgesamt stammen nur 1,8 % aus
Uberschussstrom von fluktuierenden erneuerbaren Energien. Durch die Lastverlagerung
und die zusitzliche Riickspeisung wird dieser Anteil auf 8,1 % bzw. 10,4 % gesteigert.
Die Gesamtbilanz verschlechtert sich beim zugrundegelegten Szenario jedoch von 100
g COy/km fiir ungesteuertes Laden auf 113 bis 116 g CO»/km fiir das intelligente Laden.
Ursache ist die durch die Lastverlagerung erhohte Auslastung von Kraftwerken mit
niedrigen Grenzkosten. Diese Kraftwerke sind bei gewihlten Brennstoff- und CO»-
Preisen meist Kohlekraftwerke mit hohen Emissionen. Der zusétzliche Verbrauch an
Uberschussstrom reicht nicht aus, um diese héheren Emissionen aus Kohlekraftwerken
zu kompensieren. Daraus folgt, dass zusitzliche erneuerbare Energien erforderlich sind,
um die Grenzemissionen der Elektromobilitdt zu verbessern. Fiir diesen Fall werden nur
sehr wenige regelbare Kraftwerke bendtigt bzw. gelingt bei der Betrachtung inklusive
Riickspeisung sogar eine zusitzliche Verwendung von erneuerbaren Energien, die die
Nachfrage der Elektromobilitit libersteigt.

Die mit Hilfe des Modells ermittelten Einsparungen durch intelligentes Laden
gegeniiber dem Laden nach dem letzen Weg liegen im Bereich von 50 - 250 Euro pro
Fahrzeug und Jahr. Es zeigt sich, dass fiir reines Lastmanagement die Einsparungen
linear mit dem jdhrlichen Elektrizitdtsbedarf korrelieren. Die Batteriegrofle, welche
weitere  Freiheitsgrade bei der Optimierung ermoglicht, hat beim reinen
Lastmanagement keinen Einfluss. Bei Lastmanagement inklusive Riickspeisung zeigt
sich im Gegensatz dazu, dass die Batteriegrole die Einsparungen durch intelligentes
Laden beeinflusst. GroBere Batterien ermdglichen héhere Einsparungen sind jedoch
nicht iiber die Teilnahme am Elektrizititsmarkt finanzierbar. Insgesamt sind die
individuellen Einsparungen, die am Elektrizititsmarkt erreichbar sind, jedoch sehr
gering. Eine Steigerung der Anreize konnte iiber die Variabilisierung von heute fixen
Kosten der Elektrizitdtsversorgung, wie variable Netzentgelte, realisiert werden.

In einer Sensitivitdtsanalyse wurden die wesentlichen Eingangsparameter des Modells
variiert. Besonders sensitiv sind Zeitreihen und Erzeugungsmix der fluktuierenden
erneuerbaren Energien. Aullerdem weisen BatteriegroBe und -kosten eine erhdhte
Sensitivitdt auf. Der Einfluss der Beladeinfrastruktur auf die Integration ist unerwartet
gering. Eine hohe Verfiigbarkeit von Infrastruktur erhoht den elektrischen Fahranteil
und damit die verlagerbare Energiemenge. Die Verlagerungszeit an offentlicher
Infrastruktur, die meist wihrend des Tages genutzt wird, ist aber kiirzer als nach dem
letzten Heimweg des Tages. Ist nur private Infrastruktur verfiigbar fiihrt dies dazu, dass
zwar weniger Energie verlagert werden kann, die Verlagerungszeit aber ansteigt. Beide
Effekte gleichen sich weitestgehend aus und begriinden die geringe Sensitivitdt der
Verfligbarkeit von Infrastruktur. Im Fall des ungesteuerten Ladens haben auch das
Mobilititsverhalten und die Netzanschlussleistung einen sehr hohen Einfluss. Wéahrend
beim gesteuerten Laden beide Faktoren nur geringe Abweichungen zum Referenzfall
bewirken. Wird das Mobilitétsverhalten nicht beriicksichtigt bzw. stationdre Speicher
modelliert zeigt sich der hohe Stellenwert der Lastverlagerung. Trotz der erhdhten
Freiheitsgrade fiir das Speichermanagement wird durch stationdre Speicher ein
insgesamt geringerer Beitrag zur Integration erneuerbarer Energien geleistet. Dieser
Zusammenhang zeigt, dass der Nutzen durch die verlagerbare Energie hoher ist als die
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durch das Mobilititsverhalten verursachten Restriktionen. Die duale Speicher-
verwendung erweist sich im Fall der Elektromobilitit damit als ein Erfolgsfaktor.

Das untersuchte Szenario fiir das Jahr 2030 weist Unsicherheiten beziiglich der
verfiigbaren Elektrofahrzeuge sowie den Annahmen zum Elektrizititssystem aus. Die
zu erreichende Penetration von Elektrofahrzeugen ist nach wirtschaftlichen
Gesichtspunkten stark vom Preisen fiir Konkurrenzprodukte wie Ol oder Gas sowie der
Batterietechnik abhéngig. Aus heutiger Sicht erscheinen die politischen Ziele und das
gewidhlte Penetrationsszenario als eher optimistisch. Inwieweit die diskutierten
Preisanreize Nutzer motivieren am Lastmanagement teilzunehmen, wurde nicht explizit
untersucht. Es wurde angenommen, dass Nutzer in jedem Fall auf das Steuersignal
reagieren. Eine weitere Unsicherheit der Ergebnisse besteht daher darin, wie viele
Nutzer tatsidchlich zu einer Reaktion auf das Anreizsignal motiviert werden konnen.

Zusammenfassend zeigt diese Arbeit, dass die Elektromobilitit die Integration von
erneuerbaren Energien fordern kann. Dabei ist die Elektromobilitdt ein Baustein, der im
Zusammenspiel mit flexiblen Kraftwerken, anderen Speichertechnologien, der
groBflaichigen Verteilung durch Netze und dem Lastmanagement mit anderen
Verbrauchern einen hohen Anteil erneuerbarer Energien im Energiesystem ermoglicht.
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ACRONYMS AND ABBREVIATIONS

Acronyms and Abbreviations

ACE
Ah
BEV

BMU

CA
CAISO
CCGT
CcO2

CPP
DG
DoD
DR
DSM
EEX
GER
GT
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I/c
ICE
IPCC
IWES
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MID
MOP

NREL
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PHEV
PV
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RES-E
RS
RTP
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ST
TCO
TOU
USABC
V2G
WD

Agent-based Computational Economics

Ampere-hour (used for weighted energy throughput based battery aging)

Battery electric vehicle

German Federal Ministry for the Environment, Nature Conservation and Nuclear

Safety
California

California independent system operator
Combined cycle gas turbine
Carbon dioxide

Critical peak pricing
Distribution grid

Depth of discharge
Demand Response
Demand-side management
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1 Introduction

1.1 Background

The Intergovernmental Panel on Climate Change (IPCC) concludes that there is strong
evidence that the observed climate change is being caused by carbon dioxide (CO,) and
other greenhouse gas emissions caused by human activity (IPCC, 2007). Major emitters
include the transportation (23 %) and electricity sectors (41 %) which together account
for a total share of over 60 % of the worldwide energy-related CO, emissions
(IEA, 2008 p. 391). For both sectors, a rapid growth in energy use is expected to
accompany the rising prosperity in developing countries. Low carbon energy conversion
plays a key role in promoting this growth and reducing emissions in more developed
countries. The low carbon intensity of electricity from renewable energy sources
(RES-E) is one of the main measures to reduce CO, emissions in the European energy
strategy (EU, 2009a) and plays a globally important role as a mitigation instrument
(Awerbuch, 2006; IPCC, 2011; Schmid et al., 2012). In the European Union, wind and
solar are the fastest growing renewable energy sources (RES) for electricity generation.
Electricity generation from biomass faces competition from the food and transportation
sectors. Hydropower is already very well developed and the potentials to build
additional capacities are limited in most of Europe. Therefore, it is expected that time-
varying electricity generation will be expanded to reach the goals of the European
Union (Beurskens et al.,, 2011). The problem here is that the grid integration of
fluctuating RES-E generated by photovoltaic panels or wind turbines requires storage,
demand response and/or wide distribution options in order to balance the variable
electricity output. Plug-in electric vehicles (PEVs) could provide both storage and
demand response. Further, PEVs convert electricity very efficiently and can
significantly reduce emissions from passenger transportation if low carbon technologies
are used to generate the electricity consumed by electric vehicles. The interaction
between fluctuating RES-E and PEVs therefore represents a major research challenge to
reach the CO;, reduction goals of the European Union and to minimize worldwide
climate change.

1.2 Problem definition

One of the main challenges associated with an electricity system featuring a high share
of RES is the higher installed capacity and fluctuation in power (NERC, 2009;
Parsons et al., 2004). Currently in Germany, there are 25 GW of installed photovoltaic
power with a capacity factor of around 10 % (EEX, 2011). The simultaneous
generation of these power plants reaches a maximum level of 70 % to 80 % and
completely rises and declines within a time period of hours. To a lesser extent, the same
applies to wind generation in Germany, which has an installed power of 30 GW and an
average capacity factor between 20 % and 30 % (EEX, 2011). If even higher installed
capacities of fluctuating generation are assumed, this results in a highly volatile residual
load (RS) and demands a new way of thinking about the electricity system.

Besides the fluctuating generation which determines the need for storage and demand-
side management, the storage unit investigated here — plug-in hybrid vehicles — has
limitations due to consumer mobility needs. The main purpose of PEVs is to meet the
demand for mobility and not to function as a storage or load shifting device. When
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using PEVs to balance fluctuating generation, therefore, it is essential that they can be
operated as storage units without user curtailment. The main challenge in this research
paper is to account for fluctuating generation and the unique storage characteristics of
mobile battery storage in a simulation environment which makes it possible to analyze
future developments in the electricity system.

1.3 Objective and procedure

The objective of this paper is to investigates how PEVs can help to balance the
fluctuation of RES-E in Germany in order to establish an electricity system with a very
high level of low carbon electricity generation.

To investigate the contribution of PEVs to balancing the fluctuating generation output
of RES, the procedure is as follows. First, basic information about plug-in electric
vehicles and demand-side management is provided (Chapter 2). This clarifies the
scenarios and methods used in this work. Then the characteristics of fluctuating
generation (Chapter 3) and mobile storage (Chapter 4) are described. A parameter set is
defined to describe time series and the initial and resulting situation of the power
system. Generation fluctuates very individually for specific regions and years.
Therefore, time series of three generation years are analyzed for Germany. To account
for a region with RES-E and a load characteristic different to Germany, an additional
case study is provided for California. This case study is done to put the results on a
broader basis and be able to compare two electricity systems characteristic for northern
and southern countries. California differs from Germany because of the cooling load in
summer, which is distinctive for southern countries. The characteristic of RES-E also
differs because of higher solar generation potential and thermal wind caused by
temperature differences between the mainland and the Pacific Ocean. The storage and
demand-side management potential of PEVs is determined by mobility behavior and by
battery ageing costs in the case of vehicle-to-grid services. Chapter 4 provides
information from different mobility surveys and defines probabilities to characterize the
mobility behavior and the availability of PEV storage. In addition, a method to account
for battery degradation is presented. The simulation model using the fluctuation of
RES-E and the characteristics of mobile storage as input parameters is demonstrated in
Chapter 5. The simulation approach combines automated demand response and vehicle-
to-grid with an electricity market model. The electricity prices are modeled according to
a marginal cost approach. Electric vehicles are included as distributed agents using price
signals as the basis to determine their charging and vehicle-to-grid behavior. The
framework of the analyzed electricity systems is presented in the section on scenarios
(Chapter 6). Currently, fossil sources are mainly responsible for electricity generation
and passenger vehicle fuels. To account for an electricity system with high RES-E share
and PEV penetration, a future scenario is defined for 2030. This scenario distinguishes
between Germany (GER) and California (CA), but keeps the relative number of
vehicles and RES shares equal for comparison reasons. Finally, Chapter 7 presents the
results which includes a sensitivity analysis and Chapter 8 the conclusions.
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2 Controlling grid-connected vehicles

2.1 Introduction

This chapter introduces grid-connected vehicles and demand-side management (DSM)
as a method to control distributed devices and is structured in two main parts. The first
part contains basic information about electric vehicles and the relevant parameters for
the vehicle simulation. The second part provides background information on demand-
side management and the chapter finishes with a summary of the discussed topics.

2.2 Grid-connected vehicles

Vehicles using an electricity-based propulsion system are discussed in the context of
alternative transportation to reduce emissions and improve vehicle efficiency. A grid-
connected vehicle is defined as a vehicle able to charge a battery with electricity from
the grid which is used as energy source to drive the propulsion system. The basic
electric vehicle concepts and their current status in Germany are discussed in the next
section. This paper focuses on private passenger transportation. Commercial light-duty
vehicles on selected routes is another promising application for electric transport, but
this is not considered here because of the relatively small vehicle fleet compared to
private passenger vehicles.” The additional investment needed for electric vehicles and
batteries is provided. The cost structure of electric vehicles forms the basis for the
assumptions made about possible users and underlines the vehicle specifications used.
Finally, CO; emissions are discussed as a major argument for analyzing the interaction
of electric vehicle storage and RES.

2.2.1 Vehicle concepts

This paper focuses on vehicles which convert electricity from an external power source
into the kinetic energy used for driving. These vehicles are referred to as grid-connected
vehicles or plug-in electric vehicles (PEVs). They include pure battery electric vehicles
(BEVs) and plug-in hybrid electric vehicles (PHEVs)® as shown in Figure 2-1.

Conventional Plug- in hybrid electric Battery electric
vehicle vehicle (PHEV vehicle (BEV)

JI i1 8

Internal combustion
Engine (ICE)
Tank

[elele o]

o
Differential

Battery

Electric motor

Transmission system

f1CEOB]

Power electronics

=0 =

Figure 2-1: Principal concept of plug-in electric vehicles

Commercial transport accounts for less than 10 % of all registered passenger vehicles in 2011.

PHEVs are further distinguished by parallel and serial drive train concepts. For the presented work,
detailed drive train specification is not relevant. For further information on vehicle concepts see
(Naunin, 2007).
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A BEV uses a single propulsion system that mainly consists of a battery as storage,
power electronics to convert electricity and an electric motor (Chan, 1993;
Emadi, 2005). The battery is designed to store the total energy necessary to meet
mobility needs. A plug-in hybrid electric vehicle combines an electric propulsion
system with a second drive train. In the majority of the discussed cases, this comprises a
conventional internal combustion engine (ICE), but could also be a fuel cell or a
microturbine. PHEVs allow the combustion engine to be kept within the optimum speed
range so that power is transmitted more efficiently. PHEVs can be designed with
smaller battery storage but needing two propulsion systems results in increased
complexity. BEVs and PHEVs both recuperate braking energy. The main advantage of
an electric propulsion system is its high efficiency between 69 % and 88 % from tank to
wheel.” The energy density of the battery storage (150 — 250 Wh/kg)® is about one
hundred times smaller than gasoline. This results in a higher vehicle weight. The option
of generating the electricity required for vehicles from different sources enables the
diversification of fuels and reduces the reliance on oil. The specifications of the vehicles
used in the following simulation of the power system are shown in Table 2-1.

Table 2-1:  Technical design of plug-in vehicles

Technical data PHEV (25) PHEV (57) BEV (100) BEV (167)
Usable battery storage [kWh] 4.5 12 15 30
Battery depth of discharge [%] 80 80 80 80
Engine power [kW] 65 40

Electric motor power [kW] 40 60 66 100
Equivalent energy use [kWh/100 km, tank] 0.18 0.21 0.15 0.18
Electric range [km] 25 57 100 167

Two PHEV concepts are considered: The PHEV (25) with 25 km electric driving range
accounts for a small to mid-size passenger vehicle.” The bigger PHEV (57) can be
characterized as typical mid-size sedan.'” The BEV concepts distinguish a 100 km
(small sedan) and a 167 km (mid-size sedan) driving range. The specifications are based
on own assumptions and research results from (Wietschel et al., 2008),
(Biere et al., 2009), (Kley, 2011) and (P16tz et al., 2012). The studies rely on cost
calculations and imply that the battery should be utilized as much as possible to recoup
the higher investment of PEVs. Considering typical driving data results in a vehicle
specification with a relatively small battery and favors PHEVs to account for the less
frequent longer trips that do not justify a larger battery."!

7 Lithium-based battery: Mmin = 90 % and Mmx = 95 % (Vandenbossche et al., 2006) and
(Schuster, 2009); Power electronics: Ny, = 92 % (Tang, 2009) with IGBTs at 3.2 kW and My = 97 %
Fraunhofer ISE prototype with silicon carbide transistors (SiC-JFETs); electric motor: asynchronous
motor Ny, =90 % and permanent magnet motors Ny, = 95 % (Maggetto et al., 2000).

The value varies with the battery technology used, see (Kalhammer, 2007). For gasoline, the energy
density is 11 - 12 kWh/kg.

The Prius plug-in hybrid provides 73 kW engine output and approximately 23 km electric range with
a 4.4 kWh battery (Toyota, 2012).

The Chevrolet Volt or Opel Ampera provides 63 kW/111 KW engine/electric motor output,
respectively, and approximately 60 km electric range with 16 kWh battery (Opel, 2012).

For research on the optimal design of PEVs, see (Shiau et al., 2010).
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2.2.2 Current status

A rising share of vehicles using electric engine assistance are being sold in Germany
and across the world. Currently, these are mainly hybrid electric vehicles (HEVs) sold
in the USA and in Japan with a share of 2—-10 % of passenger car sales (DOE, 2012). In
2011, Germany had 42.3 million registered passenger vehicles. The total number of
HEVs on German roads is 37 thousand, representing a 2011 market share of 2.8 % of
newly registered vehicles. The number of 2011 registered PEVs is 2.3 thousand
(KBA, 2012). The model range of PEVs available in Germany is low compared to
conventional vehicles. Announcements of new models, however, have increased
strongly since 2008.'> Today, electric vehicles in Germany are only used by a small
minority of innovative individuals and in research projects. Despite this, the market
share of PEVs is expected to grow in the future (Mock, 2011) due to government
support,13 legislation to reduce vehicle emissions (see EU, 2009b14; CARB, 2012) and
the expectation of rising oil prices (e.g. Aleklett et al., 2010).

2.2.3 Total costs of ownership

The total costs of ownership (TCO) are an indicator for the economic success of
alternative vehicles. A detailed TCO analysis in which the author was involved is
available in (Wietschel et al., 2008 and Biere et al, 2009). In the following, additional
investments are summarized for the vehicle concepts discussed to provide background
information on the PEV types. The cost assumptions are based on (CONCAWE, 2008)
referring to the year 2010+. The cost estimations are in line with (Thiel, 2010) and
(Bandivadekar et al., 2008).

Cost savings of the PEV design compared to the reference vehicle (77 kW)" arise from
downsizing the internal combustion engine and eliminating the standard alternator and
starter. In case of BEVs, eliminating the fuel tank accounts for additional savings. Extra
costs are caused by the electric motor, transmission and battery. Battery costs are
adopted from (Kalhammer et al., 2007) and consider technology learning that could be
achieved by 2030. In case of PHEVs, the power train also has to be adapted to account
for the parallel or serial use of two transmission systems. The assumed additional
investments are summarized in Table 2-2.

The website (UMBReLA, 2012) of the research project “Umweltbilanzen Elektromobilitat” provides

an overview of available and announced vehicles.

The German government has set the goal of at least 1 million PEVs on German roads in 2020

(BMBF, 2009).

4" The Regulation (EC) No. 443/2009 of April 23, 2009 (EU, 2009b.) setting emission performance
standards for new passenger cars as part of the Community's integrated approach to reduce CO,
emissions from light-duty vehicles.

"> For details see (CONCAWE, 2008, p. 4).
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Table 2-2:  Additional investments for PEVs compared to a conventional vehicle'®

Economic data PHEV (25)  PHEV (57) BEV (100) BEV (167)
Alternative engine + transmission (downsizing)" -257€ -794 € -2,541 € -2,541 €
Electric motor + modified transmission’ 1,120 € 1,520 € 1,640 € 2,320 €
Power train and vehicle components® 2,442 € 1,503 €

Credit for standard alternator + starter + tank® -300 € -300 € -450 € -450 €
Battery [euros/kWh]’® 281 247 247 233
Battery 1,581 € 3,705 € 4,631 € 8,738 €
Additional investment compared to ICE (77 KW) 4,585 € 5,634 € 3,280 € 8,067 €

Note:! 33 curos/kW for BEV and 21.5 euros /KW, for PHEVs (downsizing); 2 Fixed cost 320 euros +
20 euros /KW o ° 37.5 euros /KW engines 4300 euros for alternator and starter, 150 euros fuel tank; Source: Derived
from (CONCAWE, 2008);5 Derived from (Kalhammer, 2007), assumes a volume of >50k units per annum for 2020+.

The higher investment needed for PEVs can be compensated for by their lower
operating costs, mainly due to the fuel savings made during electric driving. Under
optimistic assumptions about battery cost reduction and battery lifetime, amortization
periods between 3 and 10 years are possible (Wietschel et al., 2008). The development
of gasoline and electricity prices are crucial for the TCO of PEVs. This includes
uncertainty about taxation because of the high taxes on German gasoline. It can be
concluded that increasing electrification of passenger transport is likely given the
expectation of rising oil prices.

2.2.4 Carbon dioxide emissions

The CO, emissions of PEVs are strongly determined by the electricity generation
source. The following discussion therefore focuses on the electricity generation mix for
electric vehicles. The analysis does not consider the complete life cycle of electric
vehicles including vehicle and battery production as well as recycling and transportation
issues. A general literature analysis reveals that the emissions during the production of
electric vehicles are higher than for conventional vehicles due to the materials and
energy necessary to produce the battery (Helms et al., 2011; CONCAWE, 2007a;
Burnham et al., 2006). The CO, equivalent for combustion engine vehicles is in the
range of 5200 kg CO, per vehicle, whereas a PHEV accounts for 7200 kg CO, per
vehicle (TTAX LLC, 2007; Notter et al., 2009; Serensen, 2004). The emissions per
kilometer driven depend strongly on vehicle lifetime and driving range. For an vehicle
with a life time of 12 years and 12,500 km driven per year the CO; equivalent per km is
3.6 g for a conventional vehicle and 4.8 g for an PHEV.

Figure 2-2 illustrates the estimates'’ of the fuel and/or technology pathway averages of
CO; emissions of an electric drive train compared to conventional vehicles. A strong
variation depending on the fuel used can be observed for the conversion of electricity.
Fossil fuels, especially coal and lignite, do not considerably alter PEV emissions per
kilometer relative to conventional vehicles. Only a very efficient conversion technology
using combined cycle gas turbines and renewable energy sources'® such as wind and

The component costs assume a volume of >50k units per annum and are projected for 2010+. The
reduction estimates through volume production for some of the key components could be very
optimistic and it is uncertain how much and at what rate future costs will decline under different
circumstances.

Values can vary in the range of 10 to 20 % because of assumptions about efficiency and emission
factors.

Note: For wind and solar, the CO, emissions of production and transport are included in Figure 2-2.
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solar can reduce PEV emissions significantly. The wide span between lignite and wind
also underlines the importance of the electricity source for the life cycle analysis. It can
be concluded that RES-E is decisive for PEVs’ related emissions (further see
Schmid et al., 2012).

500 Electric motor Internal combustion engine
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Figure 2-2: Comparison of CO, emissions by fuel and conversion technology

Assumptions: Efficiency: Gas turbine (GT) 37 %; combined cycle gas turbine (CCGT) 64.5 %; coal power plant
46.5 %; lignite power plant 45 %; electric drive train 90 %; diesel engine 0.32 %; gasoline engine 28 %; Energy use
at the wheel 0.18 kWh/km; Emission factors [CO, eq/kWh]: Gas 201.6; coal 352.8; lignite 399.6, oil 266.4; wind 21;
solar 106; For literature on emission factors e.g. see (Lenzen, 2008).

The CO, emissions of PEVs related to the electricity consumed can be determined with
the following methods:

o Average emissions: To calculate the CO, emissions from electricity
consumption, the average of the total power plant park is used, including RES-E,
nuclear and fossil sources. In this approach the CO, emissions from electricity
production are attributed equally to all consumers.

o Marginal emissions: The marginal emissions account for the emissions of the
additional consumption of electricity. Only the power plants utilized for the
additional electricity demand are considered when -calculating the CO;
emissions. The method is very precise in determining the total emissions of the
power plant park, but different electricity consumers are treated differently.

e Cap and trade: In the European CO, emissions trading system, the total
emissions are fixed by a cap. Assuming an unchanged cap and no exchange with
other trading systems, additional electricity demand will not result in additional
emissions. In this theoretical case, the CO, emissions of PEVs would be zero.

In the work conducted, the marginal emission approach is applied because it allows the
exact calculation of the PEVs’ CO, emissions. The results are strongly influenced by
the merit-order, which mainly depends on power plant efficiencies and fuel prices as
well as the residual load curve to which the PEVs’ demand is added. Therefore, results
are compared to average emissions. The marginal emissions resulting from PEVs’
electricity demand have been examined by various other studies (e.g. see
Park et al., 2007; McCarthy et al., 2010; Sioshansi et al., 2011). However, power
systems with a high share of RES-E have not yet been analyzed nor has how balancing
RES-E could change the CO, emissions of PEVs. Chapter 7.5 of this paper focuses on
the interaction of RES-E and PEVs.
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2.3 Demand-side management

Demand-side management (DSM) is described as the active effort to modify electricity
customers’ usage patterns (Eto, 1996). This includes regulatory measures to improve the
efficiency of appliances. In this paper, the focus is on DSM intended to realize load
shaping objectives, which is also referred to as “demand response” (DR) (DOE, 2006)."
Demand response is used to reduce the electricity demand in time periods with high
wholesale electricity prices or when the system’s security is jeopardized. Besides load
shifting, peak clipping and valley filling, the generation of small distributed units and
vehicles feeding back power into the grid (vehicle-to-grid) are also considered in the
context of DSM. The chapter is structured as follows. First, the framework conditions
are discussed including the advantages of DSM in power systems with a large share of
fluctuating generation. Then the current status in Germany and possible load
management devices are described. The control strategies used for demand response
and the necessary equipment make up sections 2.2.3 and 2.2.4. Finally, possible
revenues are discussed. Chapter 2.3 is partly published in (Dallinger et al., 2012¢).

2.3.1 Framework conditions

Methods to control the demand-side of the electricity system have been a subject of
discussion since the very beginning of electricity supply (Hausman et al., 1984). In the
USA, DSM became more important due to least-cost planning in the 1970s, when
utilities realized that demand-side technologies can be used to limit the installed
capacity needed and to reduce overall system costs (Eto, 1996). Especially in areas
where high loads occur only rarely, such as air conditioning in California,” DSM has
been successful in reducing the under-utilization of the standing capacity of power
plants and increasing system security. In Germany, peak load reduction is not as
relevant because of the different load duration curve,”' the high capacity installed** and
the better connections with neighboring countries.”> In northern Europe (France,
Germany, Denmark), night storage heating controlled by a radio ripple signal was
introduced during the sixties and seventies to increase the demand during night load
valleys which resulted due to the enforced use of nuclear power plants
(Quaschning et al., 1999).

DR services are mainly used for operation scheduling — organized in day-ahead
electricity markets - and system balancing - organized in the regulation reserve markets.
Through these applications, DR enhances the elastic demand needed for electricity
markets to function properly (Talukdar et al., 2005; Wellinghof et al. 2007), to increase
the efficiency of electricity production and allow for higher system security
(Andersen et al., 2006; DOE, 2006).

“Demand response is a tariff or program established to motivate changes in electric use by end-use
customers in response to changes in the price of electricity over time, or to give incentive payments
designed to induce lower electricity use at times of high market prices or when grid reliability is
jeopardized.” (DOE, 2006)

See load duration curve for California and Germany in Figure 3-4 in Chapter 3 and compare the
values of cfy<s in Table 3-6.

No summer peaks; peak load is during the winter and the utilization of peak load power is higher, see
Figure 3-4, Chapter 3.

The total capacity of dispatchable power plants is 100 GW (BMWi, 2012) with a maximal peak load
of approximately 80 GW. Note: Even the rapid nuclear phase-out of 8.4 GW after the Fukushima
catastrophe in Japan has not caused critical shortages in the German power system.

Note that the electricity prices in Germany are higher partially due to the greater security of supply.

20
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Barriers to residential demand response arise because revenues in electricity markets are
determined by the energy that can be shifted to a later time period (energy arbitrage)
and real-time adoption of power (system services). Both applications favor large
customers because of less complex control as well as higher individual incentives.

Other discussed DR barriers to the mass addition of small residential appliances are:

e Efficiency gains stand in contrast to possible DR revenues. Especially in the
residential sector, more efficient household devices reduce the demand available
for load shifting.** Potential revenues and the amortization time of smart grid
technology are affected by efficiency gains and render the investments less
attractive.

e Almost all electricity markets are characterized by a oligopolistic structure with
a dominant supply side. A higher price elasticity of demand reduces the
revenues made during peak hours. Hence, there is only a low level of support
from the dominant supply market players.

e Customer stakeholder support is limited because of concerns about the impact
on customer bills in the residential sector in the case of price-based incentives
and because of low consumer acceptance of direct control and/or automation
technology.

e Changes to market rules and operation as well as regulatory policies are
necessary to allow a higher share of DR services to participate in the markets.

e Time-resolved energy consumption measures enable conclusions to be drawn
regarding consumer habits and can therefore cause data security concerns.

Two current developments that are helping to tackle some of the main barriers are the
mass use of communications technology in the residential sector and a rising share of
fluctuating generation in power systems. The costs of communications technology are
decreasing and high network availability allows more and more applications and
participants to be included. Additionally, a higher degree of automation of DR devices
and electricity billing is possible. In combination with heat or electricity storage
technologies, this development can reduce consumer curtailment and DR participation
efforts (Franz et al., 2006). In terms of power systems, the rising share of fluctuating
generation with mostly prioritized dispatch reduces the residual load® or energy to be
produced by dispatchable power plants (see Figure 2-3). Thereby, the capacity credit
(Ensslin et al., 2008) of fluctuating RES-E is lower and the dispatchable capacity
required — to ensure system security on the same level — cannot be reduced to the same
extent as the added capacity of fluctuating generation. This lead to a power system with
a higher share of under-utilized peak capacity, volatility in electricity prices and the
need for higher ramping capacities to stabilize the system (see Chapter 7.3.1 and
Cappers et al., 2011). Under these conditions, DR could be an attractive alternative to
limit the necessary peak capacity and reduce overall system costs.

* In terms of heating, e.g. for a passive house with extremely low heating and/or cooling needs, fossil

heating is likely to be replaced by electric heating, which increases the electricity demand and
possible DR revenues. The total energy demand is still reduced which can reduce the overall DSM
potential if combined heat and power is an included option.

Definition: The residual load is the remaining load for dispatchable power plants calculated by
subtracting the fluctuating generation from RES from the load curve.

25
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Figure 2-3: Fluctuation of renewable generation

Source: Own calculation, data basis (Nitsch et al., 2010) Lead Scenario A 2030; installed capacity: Wind onshore
37.8 GW; wind offshore 25 GW; photovoltaics 63 GW.

In Germany, the installed capacity of wind power and photovoltaic was 54 GW or
67.6 % of the annual peak load of approximately 80 GW by the end of 2011
(ENTSO-E, 2011). Until 2030, a further increase to 162 % of the annual peak load is
expected (Nitsch et al., 2010). In other European countries, similar developments are
anticipated supported by the European policy in order to reduce greenhouse gas
emissions, increase supply security and stimulate innovative industries (e.g. Held, 2010;
Beurskens et al., 2011). In conclusion, the increasing installed capacity of fluctuating
generation and the decreasing costs of applying DR programs are very promising
starting points for further research.

2.3.2 Current status

The appliances available for DR can be assigned to the industry, tertiary and residential
sectors (Klobasa, 2010). The potential of different DR technologies or processes is
characterized by the energy available for load shifting, the positive or negative control
power available and the length of time by which a process can be postponed — in the
following referred to as the grid management time. Appliances which allow for the
decoupling of demand and supply can be defined as follows.*®

e Process shifting appliances: Processes in the industry or residential sectors are
postponed to a later time period. Typical examples include chlorine-alkali and
aluminum electrolysis or electrical arc furnaces (industry sector) as well as
dishwashers, washing machines and dryers (residential sector).

e Demand reduction appliances: Demand reduction appliances are mostly
limited to ornamental functionalities (Nestle, 2007). Typical examples include
Christmas illuminations or water fountains. The demand of these appliances is
not increased after the demand reduction.”’

e Storage appliances: An appliance coupled to a storage device allows load
shifting without or only little curtailment (e.g. storage losses). Most common is
the use of thermal storage in cooling devices (e.g. in the food retail sector) and
electrical heaters (e.g. night storage heating or heat pump applications). This
group also includes ventilation systems using the air inside a building as storage
(Stadler, 2008) or PEVs using battery storage and generation from distributed,
combined heat and power with thermal storage.

% This definition follows (Nestle, 2007).
7 Referring to the type of customer load response defined in (DOE, 2006, p. 20), demand reduction
appliances correspond to “foregoing”.
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The potential for DR applications in Germany has been analyzed by (Stadler, 2005) for
the residential sector and in general by (Klobasa, 2007). A virtual power plant®® is
currently in use including DR industrial appliances (>1MW) that operate in the tertiary
regulation reserve market (Steag, 2012). In the residential sector, 14 GW (Stadler, 2008)
of night storage heating®® are currently in use with a yearly electricity demand of 15.4
TWh.** The grid management time of typical night storage heating is 6-24 hours
depending on the ambient temperature (see Stadler, 2005). For a single household, the
energy needed is in the range of 9500 kWh/a and is mainly obtainable in winter.
Because of their low efficiency, new night storage heaters have now been prohibited
(EnEV, 2009, § 10a). New installations’' of electric heating systems are therefore
mainly heat pumps. Because an ambient heat source is used, the energy required is two
to three times lower than in the case of night storage heating. In 2010, the total power
installed of heat pumps was 0.93 GW with an energy demand of 2.4 TWh (GZB, 2010).
The grid management time depends on the thermal water storage and is in the same
range as night storage heating.

The DR potential from cooling applications is not widely used at present. Applications
exist mainly in the tertiary and the residential sectors. Accessing big appliances in the
tertiary sector is easier than single refrigerators in the residential sector (Klobasa, 2010).
The potential of the different sectors is about 1.5 GW (tertiary sector) and 3 GW
(residential sector). The grid management time ranges between a few minutes and up to
10 hours (Stadler, 2005). The DR demand varies with temperature and consumer
behavior but is available throughout the entire year. A typical residential refrigerator
uses 80 — 100 W of power with an annual energy demand of 120 — 250 kWh. As for
electric heating, efficiency gains are expected that reduce the potential of existing
cooling devices.

Air conditioning in Germany is mostly used in the tertiary sector and not included in
current DR programs. There is more than 5 GW power available but the shifting
potential is heavily dependent on the ambient temperature (Klobasa, 2007). The grid
management time is assumed to be relatively short (without curtailment of personal
comfort) due to the limited heat storage capacity of many buildings. Especially
California, with its huge demand for air conditioning, has a low shifting potential
because of the generally poor insulation of buildings.

Process shifting appliances in the industry sector account for 2.8 GW and 1350 GWh of
shiftable load (Klobasa, 2007). Large industry consumers participate on the European
Energy Exchange market (EEX) and in some cases on regulation reserve markets.
Dishwashers, dryers and washing machines are typical process shifting appliances in the
residential sector. The grid connection power is in the range of 1.81 GW with an annual
energy demand of 3.1 TWh** (Klobasa, 2007). The maximal grid management time is
assumed to be one day but depends strongly on user preferences.

28
29

Including total generation capacities of 400 MW.

For technical details on night storage heating see (Moditz, 1975). In West and East Germany, 4.5 %
and 2.2 % f the households, respectively, use night storage heating (RWI/forsa, 2011).

Note: The demand depends on the ambient temperature.

Approximately 30% of the heating systems installed in new buildings in 2011 use a heat pump. In
2000, this share was only 0.6 % of the heating systems and by 2008 heat pumps represented 18.5 % of
heating systems installed in new buildings (GZB, 2010).

32 This equals 11 % (Geiger et al., 2005) of the total residential electricity demand of 141 TWh in 2010
(BMWi, 2012).

30
31
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Table 2-3: Demand response applications in the residential sector

Device Power Energy demand Gri'd managemg:nt Typc—:: of
[kW] [kWh/a] time [hours] device

Refrigerator /freezer 0.08 0.1 120'— 4272 0.1-42

Freezer 0.08 - 0.14 211' - 3757 0.1-2

Night storage heating 10-18 9902 ' 6-24 apsgfirailgcees

Heating with heat pump 3-6 2581*-3670° 624

Electric vehicle 35-12 1000° — 4000’ 0-—48

Washing machine 2-25 160 — 192 0-24 Process

Dishwasher 2-25 230 —-467 0-24 shifting

Dryer 25-3.1 280 — 362 0-24 appliances

Note: ' New device (manufacturer specifications); > four-person household (RW1/forsa, 2011); * Average 2006-2008
(RW1/forsa, 2011); * Coefficient Of Performance = 2.7 (GZB, 2010); ° Power installed 0.93 GW; electricity demand
2.4 TWh (GZB, 2010); ® PHEV: Range 10,000 km/a; 50 % el. Driving share; 720,000 km/a: 100 % el. Driving share;
8 Own estimations based on (Stadler, 2005) and (Klobasa, 2007).

Table 2-3. summarizes typical power and demand values for residential DR appliances
and gives an estimate of the grid management time. Unlike other home appliances being
discussed, PEVs use electric battery storages. Electric storages enable vehicle-to-grid
(V2G) services (e.g. see Brooks et al., 2001 or Kempton et al., 2008) and long grid
management times (see Chapter 7.2.2) with low storage losses in the case of lithium
batteries, but are associated with significantly higher costs (see Chapter 2.2.3) than the
thermal storages used by devices such as freezers and heat pumps. A typical German
grid connection for a PEV is single-phase 220 volt with 16 ampere which results in a
power of 3.5 kW. Three-phase connections with 12 kW are also available or could
easily be installed in German households. The energy demand and the grid management
time depend on mobility behavior (see Chapter 4.2). PEVs have high DSM potential
because of the battery storage — enabling low curtailment of consumer behavior — and
the higher electricity demand compared to other appliances.

2.3.3 Control mechanism

Since the liberalization of the electricity market, prices have been the driving force for
the dispatch decisions of power plants and storage devices. The order of magnitude of
players operating on the supply side of the EEX does not allow typical consumers from
the residential or tertiary sector to participate in the market. Trading costs and effort as
well as the prequalification rules mean this is not feasible for residential consumers.
Individual consumers are bundled by service providers who operate at the EEX. If DR
is to be used, the question is how to control demand and small distributed generation
within these consumer pools? Two possible approaches are discussed referred to as
direct and indirect” control. These approaches distinguish the parties taking the
dispatch decision (Nestle, 2007; Chassin et al., 2008). In direct control, the decision is
taken by the service providers on a system level and in indirect control, the decision is
made by the consumers.

Direct control or centralized optimal dispatch implies that a service provider can shut
down or reduce loads and directly control distributed generation units. To do so,
communication of the status and a signal to switch devices are necessary. This concept
is traditionally used when utilities control a power plant portfolio, hydro pumped
storage or very large demand from industry applications. Examples for the residential
sector include the direct load control of water heaters (Ericson, 2009) and air

33 Also referred to as customer driven control.
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conditioning loads in California. The advantages of direct control are prompt and
predictable reactions in order to control signals. Drawbacks arise from reduced
consumer acceptance in the case of controlling loads in private homes or vehicles and
the communication and optimization efforts involved in controlling a large number of
small storages or generation devices with varying consumer needs.

Indirect control uses price signals to manage loads or generation units. The service
provider sends price signals and the consumer (or an automatically controlled device
programmed by the consumer) decides to either reduce or shift the load when the price
is high, or to pay the higher price. The decision to participate in a specific event remains
with the consumer. In this case, consumer acceptance should be higher than is the case
for direct control (Valocchi, 2007). Disadvantages arise from the possibility of
avalanche effects or simultaneous reactions to the signal (Schey et al.,, 2012;
Dallinger et al., 2012a)** and inherent forecasting errors due to the necessity to predict
the reaction of consumers to different price signals.

Another distinction made is between price-based and incentive-based DR, which
describes how the change in consumer behavior is obtained (DOE, 2006, p.9). Price-
based demand response options are the same as indirect control. Incentive-based options
include direct control but also interruptible/curtailable (I/C)*° services or the
participation on capacity or ancillary service markets. In cases of I/C and specific
markets, the operation decision is made by the consumer. Incentive-based options
excluding direct control are only offered to large industry customers and are therefore
not considered in detail. Micro-level self-organizing systems or markets that bundle
consumption are regarded as indirect control.

The discussed price-based signals are time-of-use (TOU) rates,’® real-time prices
(RTP)*’ and critical peak pricing (CPP).*® Compared to incentive-based options, time-
based retail rates account for the vast majority of DR offerings in the USA but have
lower efficiency in peak load reduction® (Cappers et al., 2010). Research projects™

3% Avalanche effects are electricity demand peaks caused by automated demand response which occur if

several consumers start using electricity at the same time when rates are low; see
(Ramchurn et al., 2011; Schneider et al., 2011).

“Interruptible/curtailable (I/C) service: programs integrated with the customer tariff that provide a rate
discount or bill credit for agreeing to reduce load, typically to a pre-specified firm service level (FSL),
during system contingencies. Customers that do not reduce load typically pay penalties in the form of
very high electricity prices that come into effect during contingency events or may be removed from
the program. Interruptible programs have traditionally been offered only to the largest industrial (or
commercial) customers.” (DOE, 2006, p. 9).

“Time-of-use (TOU): a rate with different unit prices for usage during different blocks of time, usually
defined for a 24-hour day. TOU rates reflect the average cost of generating and delivering power
during those time periods. TOU rates often vary by time of day (e.g., peak vs. off-peak period), and by
season and are typically pre-determined for a period of several months or years.” (DOE, 2006, p. 9).
“Real-time pricing (RTP): a rate in which the price for electricity typically fluctuates hourly reflecting
changes in the wholesale price of electricity. RTP prices are typically known to customers on a day-
ahead or hour-ahead basis.” (DOE, 2006, p. 9).

“Critical Peak Pricing (CPP): CPP rates include a pre-specified high rate for usage designated by the
utility to be a critical peak period. CPP events may be triggered by system contingencies or high
prices faced by the utility in procuring power in the wholesale market, depending on the program
design. CPP rates may be super-imposed on either a TOU or time-invariant rate and are called on
relatively short notice for a limited number of days and/or hours per year. CPP customers typically
receive a price discount during non-CPP periods.” (DOE, 2006, p. 9).

The drop in demand is in the range of 13 — 20 % (Faruqui et al., 2009).

E.g. the GridWise project described in (Hammerstrom et al., 2007a; Hammerstrom, et al., 2007b)
shows that automated DR significantly increases DR performance. The same conclusion is drawn
from other projects such as DINAR (IWES, 2012) or the e-Energy model regions (e-Energy, 2012).
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using real-time pricing showed that automated control of DR devices can improve the
DR services from retail customers, but require low-cost standardized technology.
Hourly prices in combination with smart devices represent an adequate tool to involve
consumers in the electricity markets (Wolak, 2010). Since 2011, the German Energy
Act (EnWG, 2012, §40, (5)) requires every retail supplier to provide a tariff reflecting
the demand and supply situation in Germany. However, due to the expectation of time-
of-use tariffs for electric heating, DR is currently rarely used in the German residential
sector. Experiences with advanced DR technology mainly stem from research projects
on new communication and information technology (e-Energy, 2012).

The degree of control accuracy of price-based options is lower than direct control.
Therefore direct control is better for units with a high system impact because of the
higher relevance of forecasting errors.” The time scale of control and notice
requirements are lower for direct control. Time-based retail rates must be available in
advance to allow for reactions. Hence, indirect control is better suited to (day-ahead)
operation scheduling.*” System balancing requires higher accuracy and short notice
times which favor direct control or self-organization (e.g. via frequency or voltage
measurement by distributed devices). Direct control can best be applied to control
problems with a manageable number of participants and individual constraints. Indirect
control is preferable for an increasing number of individual objectives (e.g.
Nestle, 2007; Chassin et al., 2008; Ma et al., 2010). Since consumer acceptance seems
to be crucial for managing mobility-related systems and because of the high number of
distributed devices with inherent objectives,* an indirect energy management system is
considered the most promising option to control mass applications with plug-in electric
vehicles.

2.3.4 Control equipment

A communication unit and a meter are the minimum requirements for a vehicle to be
capable of automatically controlled smart charging (see Figure 2-4). In principle, these
components can be installed in the car or directly at the grid connection. At present, the
billing point of electricity is a meter installed at the grid connection with the exception
of railway metering. Hence, each grid connection point is coupled to a contract with an
energy supplier. As shown in Figure 7-1 (Chapter 7.2), charging at home is the most
likely option for PEVs. The standing time and the energy demand at home is the
highest. Therefore, a smart meter at home offers the individual consumer the biggest
benefits. To extend the smart grid connection time, other meters could be installed at
work or at different commercial and leisure locations. In unbundled electricity markets
it is possible that each of these grid connections has a different supplier contract. The
moving vehicle needs to adopt the grid connection contract and the electricity rate or
smart grid service agreement at each connection. Another contract is necessary to share
the revenues of smart grid services at public grid connections. Recent research projects
have shown that billing customers at public charging stations with relatively low
utilization comes at a very high cost (Kley et al., 2010). In addition, infrastructure at the

(Faruqui et al., 2009) and (Barbose et al., 2005) gives an overview of recent research in this direction

in the US and France. For a field test on automated critical peak pricing see (Piette et al., 2006).

Note: It is not accurate here to refer to kW or MW to define the unit impact. In a micro-grid, a device

with a power consumption of less than 1 kW can still have a high impact, whereas in a power system

at the level of, e.g. Germany, the impact will be negligible.

2 See (DOE, 2006, p. 13).

# Compared to a heating system the objectives of individual drivers are much more diverse
(see Chapter 4).
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grid connection and in the vehicle should provide the same functionality. For example,
if the vehicle provides V2G, but the grid connection only allows unidirectional
metering, only a reduced service can be offered and the utilization of the bidirectional
components would be lower.

Installing the meter and the communication unit in the PEVs makes the vehicles more
independent of the available infrastructure. But in this case the electricity is metered
twice and it is necessary to deduct the PEV’s electricity consumption from the regular
electricity demand. From today’s perspective, off-board metering without special PEV
billing is the easiest option. In the long term, however, onboard metering could
guarantee a more efficient expansion of the infrastructure. Shorter vehicle life cycles
also facilitate faster technology adoption and therefore favor the mobile metering
concept. The components required for automated control are illustrated in Figure 2-4.

Indirect tariff- based control Direct control PEY owner
l:‘ General components (external application)
Server infrastructure Server infrastrudure
l:‘ Indirect contraol Human- machine-
. Tariff Il ks Communication Central Central Communication USRS
Direct contral desi of PEY'= hard ] mizati ]
Esign reaction arare cortrol optimization arcnare A N
. Bitirectional enersy flow hardhware
Grid connection Communication
harweare .
Communication Distributed
hardware S optimization

dowwn
converter

- —
communication Multi-rate
Multi-rate meter hardware meter Step

Circuit breaker Meter
Meter e W 0] A current

L B [onkoard Traction

Circuit breaker protection I netwark converters [ ] 5
Al unidirectional DCOC) (DG L] Electric
protection NGIEADE) sy [ mE

I I I
| Lithium-ian (Li-ion) battery

Figure 2-4: Components for automated control of electric vehicles

Note: PEV: Plug-in electric vehicle. Figure design by Jakob Zwick.

Looking at the costs for grid connections and smart grid services, power and real-time
capability play an especially important role. Increasing the power increases the costs*
for circuit breakers, current protection, plugs, wiring and power electronics. Real-time
capability only comes with permanent communication links and the need for reliable
communication technology also costs more. For example, the price for a 22 kW mode 3
International Electrotechnical Commission standard 61851 plug is about 300 euros
today.*> A regular household plug (about 3 kW), which is sufficient to charge a vehicle
over night, costs less than 5 euros.*® The costs for control equipment are hard to
quantify because it is not clear yet which equipment in vehicles could also be used for
the control system. (Tomi¢ et al., 2007) assumes 50 dollars for a meter and 100 dollars
for the communication system. Costs of power inverters used in photovoltaic systems
can be taken as a guideline for bidirectional V2G electronics. According to

# Especially the step from 1-phase to 3-phase increases the costs.

* Economies of scale could reduce the price in the future. Costs are expected to be about 100 euros.

A wall box (excluding smart charging) is offered by different suppliers for prices above
1000 euros.
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(Meinhardt et al., 2007), power inverter costs are in the range of 0.15 to 0.2 euros/W in
2020. Costs for the billing process and providing a control signal are not yet clear.

Especially in the near future, the author expects PEVs to use low power standard
technology. In the medium term, it will be necessary to exploit synergies between
components already available in the vehicle and smart grid applications and therefore
move the meter into the vehicle. Car-PCs or smart phone processors are able to schedule
charging depending on the electricity rate, or record meter data. Communication
hardware will probably be available in vehicles by 2020. Transaction and charging
inverters could be integrated in one device using the same power electronics. In this
case, a bidirectional grid connection would come at a lower extra cost
(AC Propulsion, 2003). In contrast, installing additional charging infrastructure with its
own communications, processor, meter, circuit breaker and current protection does not
seem to be the best approach in a world with rapidly evolving technologies and
consumer needs.

2.3.5 Revenue potential

PEVs with DR or V2G can generate revenues due to operation scheduling and system
balancing. Classical operation scheduling takes place on the day-ahead and to a lesser
extent intraday markets. System balancing uses regulation reserve markets to trade
different services. Besides the common markets, PEV services could be used in the
portfolios of network and system operators, utilities and micro grids*’
(Momber et al., 2010).

A detailed analysis of regulation reserve markets conducted by the author is available in
(Dallinger et al., 2011). It is concluded here that revenues on regulation reserve markets
are restricted because of driving behavior and current legislation. Furthermore,
regulation reserve requires more sophisticated and expensive control than demand
scheduling. The market volume is limited and does not account for mass participation of
PEVs. In addition, generation from RES is mainly traded over the day-ahead market.
This is why this paper focuses on the day-ahead electricity market. For additional
research on regulation reserve see (Kempton et al., 2001; Kempton et al., 2005;
Tomi¢ et al., 2007; Andersson et al., 2010).

The earning potential of smart grid devices on the electricity markets is determined by
the spread between low and high prices over the load management time. Figure 2-5
illustrates possible spreads in electricity markets and compares the marginal and total
electricity generation costs depending on the operating hours. The price spread between
the base (a coal power plant n= 49 %) and the peak (a gas turbine n= 37.5 %) in
Figure 2-5 is 44 euros/MWh. For electricity systems with a high share of fluctuating
RES-E, the total generation costs of a power plant become more relevant for pricing.
The difference between the total costs of a coal power plant with 6,000 hours of
operation and a gas turbine with 500 hours of operation is about 130 euros/MWh
(see Figure 2-5).

7 One example is the self-consumption of photovoltaic generation in terms of photovoltaics grid parity
or under the current feed-in tariff in Germany that provides an extra subsidy for local consumption of
photovoltaic generation.
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Figure 2-5: Marginal versus total costs of different power plant options 2010

Assumptions: Gas turbine (GT): specific investment: 350 euros/KW, efficiency: 37.5 % ; combined cycle gas turbine
(CCGT): specific investment: 750 euros/kW, efficiency: 59 %; gas price 27.1 euros/MWhypem; coal power plant:
specific investment: 20 euros/kW, efficiency: 49 %; coal price 12 euros/MWhye; CO, price 15 euros/t;

interest rate 10 %.

The total cost curves rise sharply at low operating hours. This shows the tendency for
price peaks in high capacity electricity systems used to provide back-up power for
fluctuating generation from RES. A recent study estimating revenues from energy
arbitrage (Peterson et al., 2010), which includes battery degradation but not costs for
smart grid technology, reports possible annual profits of 10 — 120 US dollars. For the
base peak spread of 44 euros/MW and a PEV demand of 1000 — 4000 kWh/a, a
theoretical load shifting revenue of 44 — 176 euros could be made. This implies no costs
and perfect use of the base-peak spread. Hence, achievable DR revenues are lower and
do not provide incentives. Rising fuel prices and a high share of fluctuating generation
could accentuate the base-peak spread and result in higher revenues as discussed in
Chapter 7.4.2.

On a residential level, electricity prices also include additional components such as grid
fees and service costs. Making these fixed price components more flexible could also
cause greater price spreads. Today, however, flat retail rates, which do not provide load
shifting incentives, are most common in Germany.

2.4 Summary

Chapter 2 aimed to provide the basic knowledge needed to understand this thesis.
Today, PEVs do not play an important role for transportation or DR. This is mainly
because of their significantly higher costs and storage limitations. Overall, PEVs only
offer cost advantages if their operating savings due to their lower fuel costs exceed the
higher vehicle investment. PEVs are discussed as a promising option to reduce CO;
emissions in the transportation sector and balance RES-E in the future. This paper
concentrates on PEVs as a device which could offer a mass application for DR with a
high load shifting potential compared to other devices in the residential sector.
Especially in combination with RES-E as the enabler for low PEVs’ emissions, the
research question on how PEVs can contribute to integrate fluctuating supply is of
highest relevance.
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3 Characteristics of fluctuating generation

3.1 Introduction

The residual load, which is defined as the system load curve minus the fluctuating
generation, forms the starting point of analyzing the contribution of storage devices in
electricity systems with a high share of RES-E. In contrast to the system load, the
residual load is characterized by a non-recurring time-dependent demand. Because of
the individual characteristics of fluctuating generation, it is important to specify the time
series of RES-E used. Further, it is necessary to investigate different weather years to
reduce the uncertainty associated with only analyzing one specific generation time
series. As a result, three different weather years with specific RES generation are
analyzed for Germany. Additionally, a case study for California is conducted. Both
areas are leaders in green technology adoption but have different climate conditions and
load behavior. In Germany, the focus is on wind power, including offshore, and on
photovoltaic with a very low capacity factor. The load peak here occurs in winter. In
California, solar power including photovoltaic and solar thermal is more important. In
terms of wind energy, mainly onshore farms are discussed, offshore installations are not
included. The load peak is sharper and occurs during the summer months. A comparison
of these two states should deliver insights into the specific demand-side management
capabilities of integrating RES-E into the grid. The next section introduces the time
series used. Then, the criteria used to measure the effects of different charging strategies
and compare time series of renewable generation technologies are defined. Finally, the
time series used are discussed and characterized by applying the defined parameters.

3.2 Method and input data

Hourly-resolved generation time series of RES representing the fluctuation in the
investigated area are required as model input to analyze the contribution of PEVs as a
grid resource. The transmission within the investigated area is not considered.
Therefore, a single time series is used representing all the generation units of a specific
RES. Compared to the generation output of a single site, combining data from several
sites results in a smoothing effect” (Holttinen, 2005). The energy output of the
available data is scaled up to the assumed generation output in the scenario (see
Chapter 5.3.2). This method relies on simplified assumptions that weather, site-specific
and RES technology data can be used to describe future RES-E output with a higher
installed capacity. Methodological weaknesses stem from limited weather data
availability, technological change and changes in the geographic distribution of
installation sites.

Table 3-1 gives an overview of the time series used as input for the simulation as well
as the data source, underlying weather years, and information about the method of data
preparation as well as the scenario in which the time series are used.

* The smoothing effect describes a reduction in standard variation when more turbines and a higher
separation of the turbines are used to generate one time series. The smoothing effect of a specified
area is limited.
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Table 3-1:  Overview of the renewable energy input data

Method of data Weather
Time series Scenario preparation year Source
Wind onshore GER Measured 2007/2008/  EEX, 2011
Wind offshore GER Measured 2009 Schubert, 2010/11
Wind offshore INES GER ~ GER 2030 Weather data (model) 2007 Lange, 2011
Photovoltaics GER Weather data (measured) 2007/2008/ ~ Schubert, 2011
Load GER Measured 2009 ENTSO-E, 2011
Wind CA
Solar thermal CA CA 2030  Weather data (measured 2005 CAISO, 2011 and
Photovoltaics CA and model data) NREL, 2009
Load CA Measured 2005

There are three different methods of generating RES-E time series. Measured data from
areas with many well developed sites is of very high quality such as wind onshore
generation in Germany. If such data is insufficient, additional time series can be
generated from weather data (wind speed and irradiation) using weather models and
weather data measured at weather stations. In general, measured weather data represents
the characteristics of a specific site more accurately. However, such data is also prone to
measurement errors and measuring stations are often not available in sufficient
numbers. Measured energy data is available for wind onshore in Germany and the total
system load. All other time series are taken from sources that use weather data to
calculate the generation output of RES.

The German photovoltaic (PV) time series are taken from (Schubert, 201 1)* and were
created using irradiation data from over 750 metering stations (SoDa, 2011) spread all
over Germany. To generate the time series of different weighted cell technologies, site
categories as well as the different installation angles are taken into account. Diffuse and
direct radiation, reflection and temperature-dependent efficiencies of modules and
inverters are also included. The time series is considered to be of high quality because
of the advanced method used and the large quantity of radiation measurement data
considered.

The German wind offshore time series 2007 — 2009 are also taken from
(Schubert, 2010 and 2011). Data from up to 24 measurement stations
(Meteomedia AG, 2009) at off- and near shore locations in the German North and Baltic
Sea are considered. A multi turbine power curve (McLean, 2008) is used to calculate
the power output with a hub height of ninety meters. The number of measurement
stations considered is relatively low and includes near-shore measurement stations.
Additionally, a 2007 weather data offshore time series from Fraunhofer Institute for
Wind Energy and Energy System Technology (IWES, 2011) is used. To calculate the
data, 50 wind speed time series from weather model data® and common offshore
turbine power curves’> with ninety meter hub height are used (Nitsch et al., 2010). Real
offshore turbine output and measured wind speed data are limited and the real output of
several wind parks is not known. Therefore, the data quality is considered to be

# The used method refers to Quaschning, 2009, Klucher, 1979 and Vallo, M. et al., 2004.

9 2007: 21 stations; 2008: 24 stations; 2009: 19 stations

31 COSMO EU: spatial resolution 7 x 7km?, temporal resolution 1 hour, height 68.8 m and 116.2 m,
respectively.

32 Possible examples are Vestas V112, ENERCON E126 and AREVA M5000 (see Vestas, 2011,
AREVA, 2011 and ENERCON, 2011)
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adequate with the potential for improvements as soon as measured German offshore
time series become available.

The basis of the German onshore wind time series are quarter hourly measured data
from the years 2006/07/08 from 18,685/19,460/20,301 installed turbines with a capacity
at the end of the respective year~ of 20.622/22.247/23.903 GW
(Bundesverband Windenergie e.V., 2011). The hourly data is published by national
transmission system operators and the European Energy Exchange AG (EEX, 2011).
The data quality is considered to be excellent because of the high diversity of turbines
and sites. For a time series referring to a future scenario, the data underestimates the
generation output because many older turbine types are installed (average turbine power
is between 1.10 and 1.18 MW). The geographic distribution of the turbines is expected
to be similar in the future.

The time series for solar thermal, photovoltaics, load and wind output in California are
taken from the California independent system operator (CAISO, 2011). The source
distinguishes between different time series for photovoltaics and solar thermal (ST) (see
Table 3-2). In this paper, the time series are aggregated and weighted by the installed
capacity to obtain single time series for PV and ST.

Table 3-2:  Installed capacity assumptions of CAISO data.

Technology Installed capacity [MW]
Total photovoltaics (PV) 6,661

Large PV 3,527
Distribute PV 1,045
Customer Side PV 1,749

Out of State PV 340

Total solar thermal (ST) 4,458

Large Solar Thermal 4,058

Out of State ST 400

Wind 9,436

Source: (CAISO, 2011); Scenario: 33 percent trajectory case”

The CA time series are generated using measured data from existing sites as well as
weather data from numerical weather prediction models. For details on the CA time
series for the total system load as well as wind, PV and ST generation, see
(NREL 2009; Solar Anywhere, 2011; CPUC, 2012).

> The average installed capacity is assumed to be 50 % of the total newly installed capacity plus the
capacity already installed at the beginning of the year.
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3.3 Evaluation criteria of energy fluctuation

To describe the generation of intermittent RES-E and the resulting residual load, the
following three types of criteria are distinguished:

e Factors counting the available energy. These factors are the most common ones
used but do not consider fluctuation and availability aspects. These factors are
discussed and supplemented in Chapter 3.3.1.

e The load change rate or the ramp rate. This factor describes the change in
generation and load output between time steps. To compare different time series,
the ramp rate factor as well as the mean and standard deviation of the ramp rate
are considered in Chapter 3.3.2.

e The interval availability is introduced to account for the average time
intermittent power output is available (see Chapter 3.3.3). This factor is related
to the capacity credit but takes different power levels into account.

These evaluation criteria are used to describe PEVs’ contribution to better integrating
intermittent RES-E into the electricity grid (Chapter 7) and to characterize the input
data.

3.3.1 Duration curve

Table 3-3: Nomenclature duration curve parameter

Parameter Unit
cfhos Capacity factor -
Clee Capacity factor to characterize the negative residual load -
flh Full load hours h

T Time periodte T 8760 h/a
t Time period of time step t € {0...T} h
E(t). Energy produced in a certain time period MWh
Prated Rated power MW
Pyax Maximal power MW
Puin Minimal power MW
Tefo.8 Ratio between cfy<o g and cfp-—gg -
cfo<os Capacity factor for sorted power values smaller than the 0.8 quantile -
cfos—os Capacity factor for sorted power values equal to and bigger than the 0.8 quantile -
Index

t Time step -

Q Quantile -

The energy produced by generation units is often described using the capacity factor cf
or the full load hours fIh respectively.

"E@ "E
cf :% and flh =M 3-1

rated rated

Both factors are related to the energy produced E(?) in a certain time period T. Pryeq 18
the rated power of a generation unit. In terms of the negative residual load, cf,., and
cfy=o are used to indicate the intercept of the duration curve with the y-axis. For
fluctuating RES-E, part load (generation) operation dominates the duration curve (see
Figure 3-1). Therefore, an additional factor, the capacity factor ratio rp s, is introduced.
to describe the energy production.
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P cfQ<O48
cf0.8
cfQ>=0A8

(3-2)

ren.s 1s defined as the ratio between the capacity factor cfp<g.s for sorted power values
smaller than the 0.8 quantile and the capacity factor cfp--¢s for sorted power values
equal to and bigger than the 0.8 quantile. The normalized area under the curve in
Figure 3-1 represents the capacity factor and the areas left and right of the 0.8 quantile
represent cfp--g.s and cfp<g.s, respectively. In addition, the maximal and minimal power
Py and Py, (1 hourly mean) and the correlation between fluctuating RES-E and the
total system load are used as indicators for aggregated time series.

0.8- quantile
100% B

90%
80% -
70% -
60%

[ Wind onshore turbine (NREL data set 3568_CA)

50% -
40%
30%
20% -
10% -
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Sorted normalized power [%]

Time period [% one year]

Figure 3-1: Duration curve of a wind turbine illustrating the characterization parameters used

Source: Wind onshore turbine: (NREL, 2009), P, = 100 % = 10 MW; Note: cf: capacity factor; Q: quantile;
CA: California; NREL: National Renewable Energy Laboratory.

The information value of the capacity factor and the full load hours serves to compare
the energy production of different technologies and installation sites. The capacity
factor ratio allows for a more detailed analysis of the energy availability. A .55 of 0.2
indicates that the energy generation over the total time period is the same. A r.mg of 1
shows that, for 20 % of the time with the highest output, the energy production equals
the output of the other 80 % in the time period. A capacity factor cfp--¢.s close to 20 %
indicates a high share of full-load operation (e.g. photovoltaics CA). Hence, lower
values indicate higher part-load operation (e.g. photovoltaics GER).
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3.3.2 Ramp rates

Table 3-4: Nomenclature ramp rate parameter

Parameter Unit
P(t) Mean power of time step MW
T Ramp rate -
RR Total set of ramp rates

rrf Ramp rate factor -
Ppeak Peak power MW
Prated Rated power MW
T Total time period 8760 h/a
t Time period of time step t € {0...T} h
c standard deviation -

i mean value -
Index

t Time step -

An important value to characterize the fluctuation of wind time series is the ramp rate
(Serensen et al., 2009; Gottschall et al., 2007).’ * The ramp rate 77 is defined as:

P.-P P, -P
I’V(f) — T+l t or t+1 t (3_3)
f)rated Ppeak

where P is the mean power (hourly mean power) and n the counting index of one time
step ¢ in the time period T.>® The values are normalized to the rated power P,qq for
generation technologies and the peak power P, (1 hour mean) for the system load. A
positive ramp rate reflects an increase in either generation or load.

To quantify the ramp rate 7 of different technologies and scenarios, the following
parameters are introduced. The ramp rate factor r7f gives the area under the sorted ramp
rate curve for positive 77, and negative rrf,., ramp rates (see Figure 3-2). The two
areas are equal.”® The ramp rate factor allows a comparison of the overall ramping of
duration curves. Using the trapezoid function approach, rrf is calculated using
Equation 3-4.
1
rrf = Z?(g_l —1,)-(rr,, +71,)-0.5 5 rrf, € RR>0 5 rrf,,, e RR<0 (3-4)

t
In addition, the standard deviation Opsnee, the mean value of rr U po5nee and the
intersection value of x,-y are applied to characterize the fluctuation. Figure 3-2

illustrates the different parameters used to describe the ramping of fluctuation based on
the German system load.

54
55
56

The ramp rate is also described as power output increments.

In this paper, a time resolution of one hour is used, T = 8760 h.

r1fi0s = 11f,q s true if t is high or the first and the last state of power are the same. For t = 8760-1
r1fy0s = r1f,c; With high accuracy.
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[1Ramp rate positive (Load GER 2008)
B Ramp rate negative (Load GER 2008)
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Figure 3-2: Sorted ramp rate for the German system load in 2008
Source: Load GER: (EEX, 2011) load year 2008, P, = 100 % = 77.950 GW; Note: GER: Germany.

The ramp rate factor serves to compare the fluctuation of different technologies,
installation sites and resulting load curves. The mean and standard deviation of the
positive and negative ramp rates make it possible to characterize the irregularity of the
fluctuation. An intersection with the y-axis higher than 50 % indicates a more frequent
negative ramp rate with less variation (see Figure 3-2) and the reverse is true for an
intersection smaller than 50 %.

3.3.3 Interval availability

Table 3-5: Nomenclature interval availability parameter

Parameter Unit
APy ormalized Delta of normalized power in a time series %
Poin Minimum power MW
Proax Maximum power MW
Ppea Peak power of the load curve MW
Prated Rated power of installed capacity MW
X Total number of events crossing section boundary -

t Time period of time step h
Cor Correlation %
Index

t Time step -

X Number of events -

The energy parameters and the ramp rates do not describe for how long which fraction
of fluctuating RES generation or residual load is available consecutively. To address
this specific property, the average time availability #)-#, of the specific power levels
section 0-4 is investigated. The power levels are defined as a section of the normalized
delta power value AP,ormaized.

P -P . P -P '
A})normalized = (t)ma; (t)mm or (t)mE;) (t)mll'l

peak

(3-5)

rated
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Note that AP,,maizea depends on a specific time series. Hence, sections of photovoltaics
and wind time series are different. The sections in detail are:

e Section 0: 0% < P; <= 10 %
e Section 1: 10% < P; <= 30 %
e Section 2: 30% < P; <= 60 %
e Section 3: 60% < P, <= 90 %
e Section 4: 90% < P, <= 100 %

The average availability of a section s, is defined as the average time of all time
periods # a section is available.

N
tSecA = X (3-6)

The total number of events x in which a time series crosses a section boundary is X.
Figure 3-3 illustrates the values used to quantify the time availability.
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Figure 3-3: Average time availability for different sections of normalized power

Source: Time series (Wind onshore GER 2008): (EEX, 2011); Note: Sec: Scention, t: time.

The average time availability is applied to describe the reliability of a fluctuating energy
source. The standard deviation of t is used for a more detailed assessment of average
time availability. Related values in the literature are the capacity credit
(Ensslin et al., 2008) and correlation (e.g. see Blarke et. al, 2008). Unlike the capacity
credit, the average time availability also describes the mid and peak availability values.
The correlation Cor is used to characterize the relation between the system load and
supply from fluctuating generation.
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3.4 Evaluation of energy fluctuation

In the following, the time series used in the simulation are characterized using the
parameters defined in Chapter 3-3. For Germany, the time series of 2008 are applied as
the basis for the simulation because the generation output of wind in 2008 is roughly
equal to the 10-year generation average. Besides the GER 2008 time series, the time
series for CA 2005 are discussed in detail. All values are normalized to provide a basis
for comparison. The detailed evaluation parameters for the different weather years of
GER 2007 and GER 2009 as well as available wind data from Denmark are provided in
the Appendix A2.

3.4.1 Total system load

The total system load curve and its correlation with fluctuating generation from RES
determine the residual load. Figure 3-4 shows the load duration curve for Germany and
California. The differences occur due to individual consumer and industry demands. Air
conditioning is the most obvious load; this is typical for California and other countries
with a hot summer climate and the reason for the very steep CA system load curve
within 10 % of the highest values. The parameter cfp--¢s (14.3 % compared to 18 %)
indicates that peak generation is needed for fewer hours in CA than in GER, where the
value close to 20 % shows that a high load occurs for numerous hours over the year.
The values for the capacity factor ¢f and the minimum power P,,;, are also characteristic
for the specific conditions in CA.
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Figure 3-4: Sorted duration curves of the total system load for Germany and California

Source: GER: Germany (ENTSO-E, 2011) reference year 2008, Py, = 100 % = 77.950 GW;
CA: California (CAISO, 2011), reference year 2005, P, = 100 % = 63.545 GW.

In terms of the ramp rates, GER 2008 values yield a higher ramp rate factor (r7f 1.19 %
compared to 1.05 %). Especially in the morning hours, a high ramping up is typical for
Germany. In this context, X,=56.40 % indicates that ramping down occurs more often in
GER but is not as rapid as ramping up (ipos > tneg)- In CA, ramping up is also faster than
ramping down, but not as fast as in GER. The discussed parameters are summarized in
Table 3-6.
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Table 3-6:  Selected parameters used to characterize the load curve.

Load GER 2008 Load CA 2005

of 73.53% rtfy0 1.19% | cf 54.58% rrf )0 1.05%
cfooos 17.99% W pos 2.74% | cfousos 14.27% W pos 2.12%
Tefoss 0.32 W e 2.12% | teps 0.35 T, 2.07%
Prin 44.70% i xoo 56.40% | Pyin 36.29% xeo 50.59%

Source: Own calculation; data basis (EEX, 2011) and (CAISO, 2011).
3.4.2 Wind onshore

Onshore wind is the fluctuating energy source with the highest installed capacity in
Germany’’ and worldwide. The available time series are very accurate and smoothing
effects in areas with high installed capacity are well known (compare aggregated data
with data of single turbines in Figure 3-5). Onshore wind time series for CA and GER
indicate a similar peak mean power output P, of around 80 % (see P, in Table 3-7)
of total installed capacity. The CA values of cfp--¢s and r.p s are higher than for GER,
which demonstrates a higher availability of peak as well as off-peak generation hours.
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Figure 3-5: Sorted duration curves for wind onshore

Source: SWK 4161 GER: (SWK, 2010); NREL 3568: (NREL, 2009); wind onshore CA: (CAISO, 2011); wind
onshore GER: (ENTSO-E, 2011); Note: CA: California; NREL: National Renewable Energy Laboratory;
GER: Germany; SWK: Stadtwerke Karlsruhe.

The CA time series also show a higher ramp rate factor r7f'and mean ramp rates x. The
CA intersection with the x axis x,-9 is 47.14 %. Consequently, ramping down is more
rapid (neg > Mpos) In California. Ramping down and up in GER shows similar values
with x,- close to 50 %. The discussed parameters are summarized in Table 3-7.

°7 The installed wind onshore capacity in Germany was about 30 GW at the end of 2011.
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Table 3-7:  Selected parameters to characterize the wind onshore time series.

Wind onshore GER 2008 Wind onshore CA 2005
cf 19.99% I1f0s 0.66% cf 28.88% | rrfis 1.25%
cfos—os 10.00% W pos 1.34% cfos—0s 10.58% 1§ pos 2.21%
Tef.s 1.00 Wneg -1.30% Tef.s 0.58 Wneg -2.63%
Prnin 0.56% Xy=0 49.72% Prnin 2.02% Xy=0 47.14%
Prax 82.51% Prax 80.75%

Source: Own calculation data basis (EEX, 2011) and (CAISO, 2011).

The interval availability of wind is heavily dependent on weather events. The standard
deviation of the average interval availability time is very high, especially in section 1
(Quantile 10 — 30 %). In CA, the interval availability is higher (section 1-3) except for
the peak hours (section 4). Hence, weather events with a long and high output are more
likely for GER. Periods with a long absence of significant capacity are also more often
and longer in GER (section 0). Analyzing the availability for different hours of the day
shows a peak output during the evening (17 — 24 hour clock) in CA, whereas no clear
trend is apparent for GER (see Appendix A2). The parameters for wind availability are
summarized in Table 3.8.

Table 3-8: Selected parameters to characterize the interval availability of wind onshore time
series.

Wind onshore GER 2008 Wind onshore CA 2005
Quantile % of peak Number of t mean ts Quantile % of peak  Number of t mean ts

power events [h] [h] power events [h] [h]
Sec. 0 <8.8 173 16.5 20.5 | Sec. 0 <99 122 6.6 7.2
Sec. 1 8.8—25.1 173 34.1 61.0 | Sec. 1 9.9 —25.6 122 649 1278
Sec. 2 25.1—49.7 100 24.8 29.3 | Sec. 2 25.6—49.2 267 16.7 19.3
Sec. 3 49.7—174.3 47 15.9 14.0 | Sec. 3 492—-1729 168 6.7 6.1
Sec. 4 >74.3 16 6.1 3.8 | Sec. 4 >72.9 2 3.0 0.0

Source: Own calculation; data basis (EEX, 2011) and (CAISO, 2011); Note: o: standard deviation, t: time in hours.
3.4.3 Wind offshore

For GER, offshore data from two different sources are available (wind offshore
IWES 2007 and wind offshore GER 2007-2009), while offshore wind is not considered
in the CA scenario (CAISO, 2011). The 2007 GER data uses different wind speed time
series and methods to calculate the power output. Comparing the two data sets reveals
significant differences (see Figure 3-6). This indicates possible uncertainty about real
offshore time series for Germany and suggests limitations of the available weather data.
German offshore wind generation is expected to produce large amounts of energy and
have a higher nominal power availability than onshore wind. The IWES data set
accounts for a higher energy output with a capacity factor of 48.4 % and a higher
availability of nominal power (cfp--9.s close to 20 %) compared to the wind offshore
GER 2007/08 data set. The difference in Py, results from the different turbine power
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curves used.”® Offshore ramping is higher than onshore. Wind offshore GER 2007-2009
shows significantly higher ramping than the IWES time series. One possible
explanation is the lower number of available measurement points in the GER 2007-
2009 time series.
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Figure 3-6: Sorted duration curves for wind offshore

Source: Wind onshore GER 2007 and 2008: Data set (Meteomedia AG, 2009), method (Schubert, 2010);
wind onshore GER IWES 2007: (IWES, 2011); Note: GER: Germany; IWES: Fraunhofer Institute for Wind Energy
and Energy System Technology.

In this thesis, the wind offshore GER 2008 time series are used since real data for
offshore are not available. To account for the different data sets, a sensitivity analysis is
carried out (see Chapter 7.7.1). The discussed parameters for wind offshore availability
are summarized in Table 3-9.

Table 3-9: Selected parameters to characterize the wind offshore time series.

Wind offshore GER 2008 Wind offshore GER 2007 Wind offshore GER 2007 IWES
cf 40.65% 1rfq 1.61% | cf 41.33% 1rfys  2.04% | cf 48.42% 1rf,s  0.95%
cfosmos  15.00% W pos 321% | cfgeos 14.87% Wpos  4.09% | cfomos 18.20% ppos  2.64%
Tefo 8 0.58 e -3.19% |t 8 0.56 pnee -4.07% |Teps 0.60 pn, -2.70%
Poin 0.13% Xy=0  49.86% | Ppin 0.40% Xy 49.79% | Ppin 0.18% Xxy=o 49.86%
Prax 85.93% Prax 86.71% Priax 96.45%

Source: Own calculation, data basis (EEX, 2011) and (IWES, 2011).
3.4.4 Solar power

CA parameters for photovoltaics and solar thermal show very high energy output and
availability of nominal power during the main hours of generation (indicated by a high
cfo--0.s). The energy output in Germany is less than half that generated in California
(cfca pr=24.7 % compared to cfoer pr= 10 %). The peak of simultaneous generation is
64.5 % of the nominal power in GER, whereas the CA time series show a much higher
Pmax. Absolute ramping is also higher in CA (rrfgerpy = 1.35; rrfcapy = 3.18;
rrfeast= 3.2) as are the CA average ramp rates (Figure 3-7). One possible explanation
for this is the higher share of direct radiation in CA, which leads to simultaneous

¥ The maximal power output is limited to 89 % in the Trade Wind turbine curve used for the wind

offshore GER 2007 data set.
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generation and a greater tendency towards very large installations as well as PV tracing
systems. In terms of the solar thermal generation time series, the higher ramp rates also
indicate the use of thermal storage. The solar thermal power plants are operated to
maximize electricity output during peak hours.
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Figure 3-7: Sorted ramp rates for solar generation in California and Germany

Source: Photovoltaics Germany (GER) 2008: Data set (SoDa, 2011), method (Schubert, 2011); solar thermal and
photovoltaics California (CA): (CAISO, 2011).

Ramping down and ramping up are more evenly balanced for solar thermal generation
than for photovoltaics. Photovoltaics shows a tendency to more rapid and greater
ramping down for CA. The parameters used for solar availability are summarized in
Table 3-10.

Table 3-10: Selected parameters to characterize the solar time series.

Photovoltaic GER 2008 Photovoltaic CA Solar Thermal CA
cf 10.02% rrf,s  1.35% | cf 24.66% 11fi0 3.18% | cf 25.81% 1rfy,s  3.20%
cfgsos 7.57% Wpos  4.36% | cfgomgs  15.45% Wpos 7.60% | cfgs—0s 16.88% ppos  10.79%
Tefog 310 pneg -471% | Teps 1.68 pneg -10.40% | 1erg 1.89 Wnee -937%
Poin 0.00% Xyi=g 72.76% | Ppyin 0.00% Xyi=9  69.76% | Ppyin 0.00% xy1-9 70.36%
Poax 64.62% Xy-g 29.47% | Prax 98.42% Xy-9  30.61% | Prax 95.72% Xyp-o 34.14%

Source: Own calculation data basis (Schubert, 2011), (SoDa, 2011) and (CAISO, 2011).
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3.5 Summary

This chapter described load and RES-E fluctuation as the main input parameters to the
presented simulation model (Chapter 5). In detail the following points were considered:

e The time series of fluctuating generation for German photovoltaics as well as
wind on- and offshore and for Californian solar thermal, photovoltaics and wind
onshore were introduced (Chapter 3.2)

e A novel approach to characterizing the time series was defined in Chapter 3.3.
This allows the comparison of data from similar studies and is the basis to
describe the effect of RES-E and PEVs on the power system in detail.

e In section 3.4, all time series were characterized using the defined parameters.
Additional information on the time series is available in the Appendix A2.

e Characterizing the time series shows that uncertainty can be high, especially for
time series with limited real data such as offshore wind in Germany. This
indicates the importance of clearly characterizing the data used to allow for a
comparisons of different studies.

Describing time series for RES-E and the system load using evaluation parameters can
become very complex if applied to analyze the fluctuation of time series. The
parameters used to describe the fluctuating generation of RES (see Chapter 3.3.3)
represent a first approach to compare different generation profiles and do not claim to
be complete. Nevertheless, it seems insufficient to focus only on energy-related
parameters such as the capacity factor to describe RES-E. Therefore, the applied
method is of high scientific value for the presented work. The method described is
partly published in (Dallinger et al., 2013).
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4 Characteristics of mobile storage

4.1 Introduction

The contribution PEVs can make to balancing the power system is mainly determined
by the technical vehicle configuration, the battery degradation and driver behavior. In
terms of the technical configuration such as battery size and grid connection power,
parameters are determined by the market penetration of specific PEVs. These
parameters are estimated using cost calculations (see Chapter 2.2) and provided by
scenarios (see Chapter 6.3). The major difference between stationary and mobile storage
is mobility behavior and the acceptance of DSM by consumers with PEVs. Consumer
acceptance is not included in this research because of the complexity of accounting for
qualitative aspects in a simulation model. Hence, when characterizing mobile storage,
my focus is on mobility behavior (Chapter 4.2) given by mobility surveys and battery
degradation-related discharging costs as another main aspect to determine the storage
operation (Chapter 4.3).

4.2 Mobility behavior

This section characterizes the mobility behavior of typical PEVs users. Mobility
behavior determines the parking time and location as well as the battery state of charge
of vehicles being plugged back into the grid. These parameters are crucial for analyzing
the contribution PEVs can make to balancing the fluctuating generation of RES and are
therefore investigated in great detail in the following section. First, surveys
investigating mobility behavior in Germany are discussed (see Chapter 4.2.1). Based on
the information provided by such mobility surveys, possible PEVs’ users in terms of
technical requirements and economic criteria are selected (see Chapter 4.2.2). The
driving behavior of these users is then described using probabilities applied to model the
driving behavior in the simulation model (see Chapter 4.2.3). Finally, the definition of
the grid management time is presented in Chapter 4.2.4 as the most important parameter
for DSM of PEVs.

4.2.1 Method and input data

There are two main mobility surveys of private car owners in Germany: “Mobility in
Germany” (MID) and “German Mobility Panel” (MOP). Both surveys focus on
passenger cars. The MID survey was conducted in 2002 and again in 2008 with about
60,000 participants each time. MID is a longitudinal cross-sectional survey with a
survey period of one year and interview periods of one day. The MOP survey has been
realized annually since 1994. MOP data from 2002 until 2008 are used for this research.
The MOP is a multi-day or cross-sectional survey recording a one week travel behavior
diary. Table 4-1 gives the number of persons, households and cars involved as well as
the reported trips for the discussed surveys.
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Table 4-1:  Overview of the main German mobility surveys

MOP 2002-08 MID 2002 MID 2008
Report period One week One day
Persons participating 12,235 61,729 60,713
Households participating 6,958 15,380 21,063
Passenger car trips 298,008 66,114 94,151
Passenger cars participating 8,162 33,768 34,601

Source: Own  calculation using data from German Mobility Panel (MOP, 2002-2008),
Mobility in Germany (MID) 2002 (MID, 2003) and Mobility in Germany 2008 (MID, 2010).

The MOP data has the advantages of a high number of reported trips and weekly chains
of trips. Information on the trip’s destination allows infrastructure aspects to be
included. The number of persons, households and cars involved is lower than in MID.
The MID data provides a wider spectrum of participants representing German mobility
behavior. The MID reporting period of one year means the data are less dependent on
weather conditions or holiday seasons affecting mobility behavior. Further, MID
collects data on the annual driving distance which has been identified as the main
parameter for determining the total costs of ownership and which is not available in the
MOP survey. For these reasons, MID data is used to determine a user group particularly
suited to PEVs.

4.2.2 Data preparation and filter criteria

Analyzing the data sets of the different mobility surveys indicates that driving behavior
is specific to the different user segments. The classification of the MID 2008 data set
into the main driver’s professional activity and municipal size in Figure 4.1 shows for
example that the segment representing the average yearly driving distance of full-time
employees is much larger than homemakers or pensioners. In addition, Figure 4-1
provides the segment’s size as a percent of the total sample, representing all vehicle
owners in Germany. The biggest user segment comprises full-time employees living in
cities with 5,000 to < 20,000 inhabitants. Technical and economic filter criteria are
defined to identify the most suitable users for PEVs.
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Figure 4-1: Classification of the MID 2008 data set

Source: Own calculation using data from Mobility (MID) in Germany 2008 (MID, 2010); Note: The bubble size and
the values in brackets represent the segment’s share of the total data set.

The technical filter criteria consider the parking situation of passenger car users at
home. A grid connection with minimal outlay for the public charging infrastructure
requires a regular parking spot on private property or in close proximity to the user’s
home. For the BEVs’ segments, additional queries on the availability of a second car in
the household and of regular trips shorter than 90 km are implemented .

An analysis of the total costs of ownership forms the basis of the economic filter
criteria. Details of the TCO calculation for 2020 can be found in (Biere, et al. 2009).>
In addition to scenario parameters such as the expected fuel and the battery prices, the
electric driving distance decisively influences the TCO of a PEV compared to a
conventional diesel or gasoline vehicle. Users with a high electric driving share are able

to recoup the higher PEV’s investment because of operating cost savings (see
Chapter 2.2.3).

Another parameter under investigation is the percentage of kilometers driven with an
average speed under 45 km/h. This parameter is used to determine the inner-city driving
share. Because of the low part-load efficiency of internal combustion engines and the
possibility in electric motors to recuperate braking energy, PEV fuel savings are higher
for inner-city driving. Hence, in segments with a high inner-city driving share, a lower
electric driving distance is sufficient to compensate the higher investment.

The results of selecting data to find potential PEV users are presented in Figure 4.2.
Figure 4.2 indicates that, for most segments, the average km driven per year increase.
The filtration results in an increase of the inner-city driving share only in a few
segments such as part-time employees in cities with more than 500,000 inhabitants.
From this, it can be concluded that, in most cases, the impact of the km driven per year
is higher than the impact of the inner-city driving share. Hence, additional fuel savings
from inner-city driving are not high enough to compensate the shorter distances of users
living in cities.

% For the data basis see CONCAWE (2007a) and CONCAWE (2007b).
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Part-time employees living in cities with 20,000 to 50,000 inhabitants comprise a very
specific segment, for which both characterization values decrease. This segment
includes numerous BEV users driving the second car of a household. A shorter driving
distance is needed for BEVs to be able to recoup the investment because all trips are
driven in purely electric mode. For PHEVs, an electric driving share of 65 % is assumed
(Biere, et al. 2009).
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Figure 4-2: Classification of the MID 2008 data set implementing the filter criteria for PEV users

Source: Own calculation using data from Mobility in Germany (MID) 2008 (MID, 2010); Note: The bubble size and
the values in brackets represent the segment’s share of the total data set. Transparent bubbles correspond to unfiltered
MID 2008 classification as showen in Figure 4-1.

As a result of applying the filters, full- and part-time employees gain shares at the
expense of homemakers and pensioners. The same applies to the residents of small
cities.

The selected data set represents drivers who are suited to using a PEV under the
assumptions of rising fuel prices, declining prices for batteries and current driving
behavior. Possible changes in driving behavior due to electric mobility in the future, e.g.
due to increased intermodal transport, are not considered. (Kley, 2011) shows that
behavior changes are negligible between the data sets of MOP 1994 and MOP 2008 and
conventional vehicles and a United Kingdom-based PEV trial (BMW Group, 2011)
indicates that this finding could also be valid for the change in propulsion type. The
used filter criteria mainly account for economic aspects. Recent studies have shown,
however, that the economic performance is only one of many criteria — such as the
limited driving range in BEVs or lifestyle and vehicle image — influencing a consumer’s
decision to buy a vehicle.

Please refer to Appendix A3 for additional information on the values behind Figure 4.1
and 4.2 and information about the data set size for the MOP and MID surveys after
filtration.
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4.2.3 Probabilities describing mobility behavior

A stochastic process described by probability distributions is used to estimate driving
behavior. Compared to a deterministic process using given data sets and dealing
exclusively with one possible reality, a stochastic approach allows for the indeterminacy
of driving behavior. A stochastic simulation approach as described in Chapter 5.4.7 is
preferred because deterministic data result in simultaneousness and repetitive behavior,
especially if data are limited and scaling up to a larger sample size is necessary. The
stochastic process is simplified to six probability parameters which are defined and
discussed in the following. The probabilities are derived from the filtered MID 2008
date set described in the previous section.

Table 4-2: Nomenclature of stochastic simulation parameters

Parameter Unit
Proyayel Probability to travel with the vehicle on a certain day %
Travely,, Boolean value driving / not driving true/false
Progg, Probability starting a trip %
Prosange Probability for a range class %
Proj,c Probability location %
aAViip Average trips -
kn Range of a trip km
tarivesm Duration of a trip or driving time min
M Total number of trips -
X Total number of participants -
Index

day Day of sample collection day € {Sun, Sat, Mon, Fri, WD} -

X Participant of the survey -
m Tripe { 0...M} -

t Time step € { 0...95} -
k Range class € { 0...20} -

1 Location class € { 0...2} -

Distinct patterns of traveling behavior are observed on Fri, Sat, Sun, Mon and on other
weekdays. Other weekdays (WD) are Tues, Wed and Thur and these were merged into
one data set because driving behavior was found to be very similar on these days
(day € {Sun, Sat, Mon, Fri, WD}).

The probability to travel with the vehicle on a certain day Proy...; (day) is defined as:

day (4-1)

1 ,
Pro,,.. (day) = X Xy f“y x Travel

where Travel is a Boolean value (true, false) indicating whether the respondent x is
driving on a certain day. X represents the total number of participants. Table 4-3 shows
the value of Proyqye; for the original and the filtered MID 2008 data. Compared to the
unfiltered data, the probability to travel increases for the selected PEV user group for all
days.

Table 4-3:  Probability to travel derived unfiltered versus filtered data set

Pro..e (day) Sun Sat WD Fri Mon
MID 2008 44.7% 59.7% 70.4% 69.8% 69.5%
MID 2008 with filter 47.7% 62.3% 75.5% 71.6% 73.5%
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The probability for starting a trip Pros,:on a specific day and time slot is given by:

Mda
Xy My, (4-2)

Pro,,  (day,t) =

day

with My, representing all trips on a specific day and my,,, a single trip started on a
specific day and time ¢. ¢ is an index out of 0 — 95, or a 15 minute time resolution during
a day, respectively. Figure 4-3 gives the values of Proy,,, of the MID 2008 survey for
the selected group of PEVs (see Chapter 4.2.2) on weekdays and Saturdays. For Prog,.
an accumulation of full and half-hour time steps is absorbed and equalized with a
gliding average®.
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Figure 4-3: Probability to start a trip on weekdays and Saturdays

Source: Own calculation using data from Mobility in Germany 2008 (MID, 2010) with filter criteria from
Chapter 4.2.2

The probability of starting a trip also depends on the average trips per day av.,(day)
given by Equation 4-3.

day

4-3
5% 4-3)

av,., (day) =

day

The different driving range values are classified in £ element out of 0, 1, ..., 20. The
assignment between the range k,, and the range class £ is given in the Appendix A3. The
probability Pro,..g on a specific day for a range class k is given by Equation 4-4.

Mday
X Zl Moy (4-4)

Prorange (day7 k) =

day

For the MID 2008 surveys the range was found not to be a time-dependent parameter.
Hence, the probability for a trip with the range & is the same for all start time steps and a
time discrimination is not necessary.®’ The class specification and the used probabilities
are given in the Appendix A3.%

% The data set shows a high accumulation of full- and half- hours. The author suggests that this is

determined by the survey methodology and does not represent real behavior.

In the MOP survey, longer trips are more likely in the morning hours. Therefore, Proby,ng. should be a
function of the day, range classification and time.

A function of Progg(t) is not used because, for most hours of the day, the difference between the
average Proyge of all hours of the day and specific hours is marginal. During the night hours 23 to 4,
Prorange(t) (Where trips are rare) deviations from the average values are found. Hence, in some specific
cases, the use of Proyng(t) could make sense.

61
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For all data used (MID and MOP), range and duration exhibit a linear correlation, which
is shown for the MID 2008 survey in Figure 4-4.
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Figure 4-4: Correlation between the average duration of a trip and the range of a trip

Source: Own calculation using data from Mobility in Germany (MID) 2008 (MID, 2010) with filter criteria from
section 4.2.2

Taking this correlation into account, trip duration #;.,.,(k) 1s calculated according to
Equation 4-5.

(k)=0.7211k_+ 5 (4-5)

tdrive,m

Including aspects related to the infrastructure in the simulation model requires
additional probability values concerning the destination of a trip. To reduce possible trip
destinations, data is classified into locations / priva‘[e,63 work® and public.65 Projycation
represents the probability of a trip ending at / out of 0...2 locations.

Pro,, (day,t,/) = x> iwday m(day,t,/) (4-6)

day

Details on the probabilities used and the difference between the mobility surveys are
shown in the Appendix A3. The method described is published in
(Dallinger et al., 2012a) using data of the mobility survey MID 2002. The defined
probabilities are applied as input parameters for the stochastic mobility behavior
simulation approach presented in Chapter 5.4.7. To improve the stochastic simulation,
combinatorial probabilities would be needed but this would greatly increase the
complexity of the model and the effort for data preparation.

4.2.4 Grid management time

The grid management time is used as an input parameter for the charging and
discharging optimization. Chapter 7.2 discusses the resulting average grid management
time of a vehicle fleet. In the following, the calculation of the grid management time is
introduced on single vehicle level.

% The way home; loop trips: from home to home.
% Trip to the work place.
65 Shopping trips; leisure trips and service trips.
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Table 4-4: Nomenclature of grid management time parameters

Parameter Unit
At Grid management time h
totart Start time of a trip h
treturn Return time of a trip h
tarive Driving time h
teharge Charging time until state of charge = 100 % h
tunc Uncertainty of the exact start and end time of a trip h
At pight Management time during the night h
At 4oy Management time during the day h
M Total number of trips -
Indices

m Trip € { 0...M} -

The limited availability of the PEV storage is the main difference compared to
stationary storage units which are available 24 hours seven days a week. Hence, the
mobility behavior defining the time available for load management and V2G is an
important parameter when modeling PEV devices. In the following, the time between
trip m and the following trip m+1 available for DSM is called “grid management time
At”. Figure 4-5 illustrates the grid management time for a typical weekday.

Start first trip Arrival last trip
Grid management time [ ) ) [ ——
Charging time — -
Driving time = o

12%

10%

— IlmithmH”J“”IJJJ I

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00

%
#

Mobility behavior (Germany)
S

‘ W Startfirst trip probability WD M Arrival |ast trip probability WD ‘

Figure 4-5: Grid management time of plug-in electric vehicles

Source: Own calculation using data from Mobility in Germany 2002 (MID, 2003); Note: WD: Weekday.

At 1s defined as the time period between the start time of a trip #y4» and the start time
of the next #yum+; minus the driving time fgzem» and the charging time f.pargem. TO
calculate ‘#chargem, the nominal grid connection power is used. To consider the
uncertainty of the exact start and end time, #,,.,» can be included. At present, vehicle
users do not schedule their driving behavior exactly. Hence, #,,. can be used to describe
the fact that some users prefer to charge immediately after arriving at a destination, do
not like to charge at all because the state of charge (soc) is sufficient for all expected
trips in the next days, or wish to have a soc of 100 % two hours before using the
vehicle. Including this aspect the calculation of A¢ for a specific trip m results in

A(m)=(t —t

startmHl Start m) drive,m  “charge,m _tunc,m 4-7)
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For a more precise analysis, the grid management time is divided into the grid
management at night 4¢ .5, and during the day 4¢ 4,,. For data evaluation ¢, is assumed
to be zero. At g 1s defined as the period between the return from the last trip tenn iasurip
of one day and the start of the first trip £y firsurip (Of the next day).

At (4-8)

night = (treturn,[asttrip - tstart,ﬁrsttrip ) - tch arge,lasttrip

At 4qy 1s defined as the time period between the first and the last trip of a day minus the
sum of the driving and charging times during the day.

M gy M 44y
Atday - (treturn,lasttrip - tstart,ﬁrsttrip) - Zl tdrive,m - Zl T'ch arge,m (4-9)

The grid management time is affected by the availability of charging infrastructure and
the grid connection power. Further, note that A¢ can adopt negative values if the time
period is too short to recharge the battery completely.

4.3 Battery degradation

Information about the wear of vehicle batteries is needed as a decision-making aid for
feeding back electricity into the grid. In this chapter, battery degradation is discussed
with regard to finding a simplified approach to model battery wear and related
discharging costs. In the following section lithium-ion batteries are addressed in general
without distinguishing the broad variety of different lithium-ion battery chemistries and
their specific characteristics. The battery degradation algorithms should be suitable for
use in the multi-agent model PowerACE and for controlling the test vehicles in the
related field (see Appendix B).

4.3.1 Discussion of modeling approaches and stress factors

Battery ageing describes irreversible physical and chemical effects that reduce battery
performance. The end-of-life of automotive batteries is defined as a nominal capacity
fade of 80 % compared to the initial rated capacity (USABC, 1996). The capacity fade
of lithium batteries is mainly influenced by the following stress factors
(Ramadass et al., 2002; Smith et al., 2009; Sauer et al., 2008):

temperature

cycles

state-of-charge swing
c-rate®

waiting periods

soc in waiting periods.

The calendar life of batteries is mostly determined by thermal ageing. An increase in
temperature augments the relative cell resistance over time and reduces the lifetime
(Wright et al., 2002). The relevance of temperature for V2G is reduced if battery pre-
cooling or heating is assumed before a V2G cycle is started. If conditions are too harsh,
cycling could be restricted. During discharging it is assumed that the cooling system is
able to keep the temperature within the defined levels. Hence, temperature-related
calendar life is only an issue if no grid connection is available and does not apply to
cycling under conditions that can be defined to limit battery ageing.

66 C- rate: Charge or discharge rate defined as the battery capacity (kWh) divided by 1h.
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The c-rate or discharging and charging power affects ageing and influences cell
temperature. For example in (Peterson et al., 2009), ageing factors are defined for
specific c-rates. In terms of V2G cycles, the c-rate is very low compared to driving
cycles. The rated power of a PEV motor ranges from 30 to 100 kW with
correspondingly higher peak power, whereas the power used in a V2G cycle is in the
range of 3 to 20 kW at a standard home grid connection. In terms of LiFePO4 cell
chemistry, (Peterson et al., 2009) found that the capacity fading factor for driving
(2.85 C-rate) is 2.2 times higher than for V2G (0.5 C-rate).

The cycle life related to the depth of discharge (DoD) or soc-swing is described in
various publications (e.g. Ning et al., 2004; Sarre et al. 2004) and given by battery
manufacturers for batteries under test conditions. Most experts describe this relation as
one of the main factors for cycle-based battery ageing, even if the influence of this
factor seems to be rather low for LiFePO4 based chemistries (Peterson et al., 2009).

The influence of the stress factors on battery ageing varies for different lithium-based
battery chemistries. Furthermore, cell dimensions and system design play an important
role for the lifetime (Smith et al., 2009). Modeling physical and chemical processes
yields the most accurate information about battery ageing but also has the highest
complexity (e.g. Sauer et al., 2008). Laboratory experiments are necessary to
characterize each specific battery chemistry. This is not feasible for this research and
algorithms are too complex to run in a vehicle-embedded system.

Weighted energy throughput or ampere-hour (Ah) models are less complex and can be
used as an accurate heuristic approach to determine battery ageing (Sauer et al., 2008).
In this case detailed information about the effects of different stress factors is required.
Because lithium-based battery chemistries are undergoing rapid development, the
relevant information is not readily available and it is still unclear which will be the
dominant materials used in the future so the definition of these factors is very complex.
A related approach, which simply takes one stress factor into account, is the event-
oriented ageing model or Wohler curve (Sauer et al. 2008).

This approach is used to determine the number of cycles of a battery as a function of the
depth of discharge until the end of its lifetime. In terms of battery ageing, an exact
detection is not possible because of the many interdependent stress factors.
Furthermore, the factors are assumed to remain constant over the total capacity fade.
For V2G cycles where it is possible to define cycling conditions (temperature, c-rate,
waiting periods etc.), cycle life related to the depth of discharge seems to be adequate
for modeling V2G in the electricity sector. In addition, this approach can be adapted to
model degradation costs for future scenarios considering batteries with a better cycle
life performance. To account for a lower influence of the DoD, a model based on the
energy throughput with parameters published by (Peterson et al., 2009) is also used and
compared to the common DoD functions.
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4.3.2 Model based on the depth of discharge

Table 4-5:  Parameters for battery cycle life calculation

Parameter Unit
DoD Depth of discharge %
Neyele Number of cycles -
soc State-of-charge %
a,b Parameters of N,y function -

According to (Rosenkranz, 2003/2007) and (Kalhammer, et al., 2007), battery
degradation is influenced by the depth of discharge (see Figure 4-6). The cycle life N ycie
dependent on the soc-swing referred as depth of discharge DoD can be described by
Equation 4-10.

N

cycle

=a-DoD" (4-10)

For a currently available Li-ion battery, parameters as,;=1331 and bg,=-1.825 are used.
The parameters result from a trend line drawn from data given by
(Kalhammer et al., 2007) for a high energy cell manufactured by the company Saft. In
general, the performance of a single cell is better than the entire battery system because
of non-uniform degradation. The cell performance is used in a simplified manner here.
The U.S. Advanced Battery Consortium (USABC) goal is the basis for estimating the
degradation of future battery systems (Pesaran et al., 2009). In this case the parameters
result in aysspc=2744 and bysspc=-1.665. For this thesis, a very optimistic 2030
scenario was assumed with the parameters d@scenario2030=4000 and bscenarioz030=-1.632.
Figure 4-6 summarizes the data used and shows the performance of a nickel-metal
hydride (NiMH) battery and manufacturer values as a reference.

100%

= SaftCell N=1331DoD"-1.825

90% - ——USABCGoalN = 2744DoD"-1.6653

Scenario 2030 N= 4000DoD”-1.632
80% -
= NiMH (Rosenkranz 2001)
70% *

JCS (Kalhammer 2007)

60% # Lamilion (Kalhammer 2007)

50% A Kokam (Kalhammer 2007)

+ GAIA (Kalhammer 2007)
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Figure 4-6: Battery cycle life dependent on depth of discharge

Source: U.S. Advanced Battery Consortium (USABC) goal trend line: Own calculation using data from
(Peterson et al., 2009) for (DoD 70 %=5,000 cycles and DoD 3 %=1,000,000 cycles); Scenario2030: Own
assumptions; NiMH: function Cycles=1515 DoD™*® (Rosenkranz, 2003); A123 System: According to (Peterson et.
al, 2009); other data from (Kalhammer et al., 2007); Note: soc: state-of-charge; NiMH: Nickel-metal hydride battery.
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The discussed model indicates the highest lifetime for a fully charged (100 % soc)
battery without cycling. However, when considering calendar life, a soc of 100 % is the
most demanding condition. This contraction indicates a weakness of the model.

4.3.3 Model based on energy throughput

Furthermore, especially for A123 Systems batteries, cycle life and DoD do not seem to
be appropriate approaches. Analyses from (Peterson et al., 2009) show that the most
important factor for capacity fade of A123 Systems is the energy processed and not the
DoD, which is used in the equations above. According to the A123 Systems website, a
cycle life of 7,000 cycles for a capacity fade of 20 % is assumed. This results in a
lifetime reduction of 0.0029 percent points per cycle. (Peterson et al., 2009) conclude
that capacity fade per normalized Wh processed is 0.0062 percent points (maximum
2.85 C-rate) for driving and 0.0027 percent points (0.5 C-rate) for arbitrage. The
disparity of the two values is caused by different C-rates for driving and for arbitrage
cycling.

4.3.4 Discharge costs

Table 4-6:  Parameters to calculate battery discharge costs

Parameter Unit
Cdis Discharge costs ct/kWh
Cdis.cnergy Discharge costs for one processed kWh ct
Cis.unit Discharge costs per discharge unit e.g. 1 % of soc ct/kWh
Chat Costs for the battery ct/kWh
Epat Usable energy of the battery kWh
DoD Depth of discharge %
Neyele Number of cycles -

To decide whether V2G options are profitable, the battery degradation costs per unit
discharge are required. When the battery is discharged, the degradation costs are a
function cgis (DoDgar, DOD,ng), which depends on the DoD at the start of the
discharging (DoDy,), and the DoD at the end (DoD.,;). Additional parameters of the
function are battery-specific parameters, the cost for the battery Cj, and the usable
energy of the battery Ej,. The special case of regular charging and discharging up to a
certain DoD is considered here, assuming that the degradation costs are equally
distributed over all life cycles of the battery. In this case, the costs for one cycle, i.e. one
discharge from DoDy,= 0 to DoD.,q = DoD, represent the total battery costs divided by
the number of cycles.
C

¢, (0,DoD)=——ba____ 4-11)
d”( ) Ncycle (DOD)
The costs for one processed kWh illustrated in Figure 4-7 are given by Equation 4-12.
o (0,DoD) = Cow* DOD-E,, 4-12)
ey N e (DoD)

It follows that the general degradation costs are:

¢, (DoD,, ,DoD, )=c, (0,DoD, )—c, (0,DoD,, ) (4-13)

start 2

for DoD_, > DoD

end start
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Then, the cost per discharge unit cgs .. as a function of the DoD before the discharge
is:

Cdis,unit (DOD) = ca’js (DOD, DoD + 1%) (4-14)

=c,.(0,DoD +1%)—c, (0, DoD)
C C

bat _ bat

N e (DoD +1%) N e (DoD)

Figure 4-7 illustrates these specified discharge costs as a function of the DoD for the
degradation functions described earlier, with specific investment costs of 247 euros per
kWh of usable energy. The investment costs of bidirectional power electronics,
charging equipment, metering and V2G efficiency losses are not included.
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Figure 4-7: Battery degradation costs

Note: Investment 247 €/kWhygpie cnergy fOr the battery system; costs caused by electricity losses due to V2G
efficiencies are not included; soc: state-of-charge; USABC: U.S. Advanced Battery Consortium.

The cost calculation per energy unit discharged illustrates the necessary spread between
base and peak price for feeding electricity back into the grid. With the model based on
the depth of discharge, the cost function rises with increasing DoD rates. For USABC
and scenario 2030 assumptions, the costs per kWh are between 2 and 9 ct. The model
based on the energy processed with the A123 battery performance results in constant
costs of about 4 ct per kWh. The costs for a full cycle with the Saft cell are about 18 ct
per kWh. The presented method is published in (Link et al, 2010 and
Dallinger et al., 2012).
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4.4 Summary

Chapter 4 considered the following issues and information necessary to model PEVs in
the power system:

e The main surveys on mobility behavior were introduced and compared with
regard to their suitability for this thesis. The survey mobility in Germany 2008 is
the most representative study available and is therefore used as the main source
for modeling mobility behavior.

e Because of PEVs’ higher investment costs and their lower operating costs
compared with conventional vehicles, PEVs favor specific vehicle user
segments. The most promising segments are full-time employees living in small
towns with less than 100,000 inhabitants. Considering this issue as well as the
required availability of private parking, filter criteria are defined to select
potential PEV users from the MID survey representing the German average.

e Probabilities were defined as input parameters to model driving behavior. The
method used makes it easy to compare the data of different surveys using only
six probability parameters and can be simply adapted to different driving
behavior.

e The grid management time is one of the main parameters to determine the
contribution of PEVs as DR and V2G devices.

e Battery ageing is analyzed for V2G services. DoD-specific discharge costs can
be calculated using the battery investment and the two ageing parameters
defined for different ageing assumptions.

In a critical appraisal of this section it should be mentioned that driving behavior could
change in the future and may be heavily influenced by the use of electric vehicles.
Furthermore, lithium batteries are a fast-developing research area and how batteries age
is not fully understood so far. The introduced method does not account in detail for
battery ageing and is very simplified. Further, it is assumed that V2G is only done if
positive profits can be made and the investment in bidirectional power electronics is not
taken into account.
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5 Simulation model

5.1 Introduction

The following chapter describes the model used to analyze how a hypothetical PEV
fleet could contribute to balancing fluctuating RES-E. The chapter starts with a
discussion of simulation approaches and develops the approach used (Chapter 5.2).
Next, the PowerACE model is introduced as the framework for this analysis
(Chapter 5.3) and the further development of the model is described (Chapter 5.4).
Finally, the control strategy used is evaluated (Chapter 5.5) and the chapter closes with
a summary (Chapter 5.6).

5.2 Simulation approach

The simulation model used to examine the role mobile storage can play in balancing
residual load fluctuation focuses on the German power system in 2030. The research
questions and model applications sparked by the main objective are:

e How do specific DR control mechanisms and charging strategies affect PEV

grid operation?

What generation portfolio would be used to produce the electricity for PEVs?

What is the possible revenue from smart charging?

How do price sensitivity and consumer behavior affect the results?

To which extent will elastic demand affect the electricity prices and reduce

supply side market power?

e How many kilometers can be driven electrically with specific vehicle
configurations und charging strategies?

e How does a strategy to integrate RES-E on a system level affect the distribution
grid?

e What is the contribution of PEVs to balance RES-E compared to other DR
applications?

e Is it possible to adopt the research results for Germany to other power systems?

Possible applications of the approach developed include generating price signals to test
real-life reactions to prices and modeling possible price schemes to test the effects on
the grid. Not all of these research questions can be addressed in this work, but the model
has to be suitable for a wider scope of research to guarantee its future prospects.

In the following sections, the requirements for answering the research questions are
specified first, then approaches to modeling PEV, power systems and markets as well as
control mechanisms for distributed devices are discussed. Finally, the approach applied
for modeling PEVs in the power system is introduced.

5.2.1 Model requirements

The main goal of this thesis is to analyze the interaction of grid-connected electric
vehicles and fluctuating renewable energy generation in the German power system. For
this task it is essential to simulate the fluctuation characteristics of RES-E (see
Chapter 3) and the specific requirements for using PEVs for DR and V2G (see
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Chapter 4). Additionally, the main players and components of the power system have to
be taken into account. The key research issues are the following:

Technical requirements: Electricity as a product with special storage and
transportation characteristics means it is necessary to account for the technical
restrictions of power plants, storage devices and transportation grids. A detailed analysis
of the power plant dispatch®’ that matches the total system demand must be made to
calculate the DSM revenues and emissions of PEVs. Further, the specific fluctuation of
RES-E has to be represented in the model. This fluctuation, which is dependent on time
and season, has to be simulated over a longer time period (e.g. one year) with an
adequate time resolution. There are a wide variety of grid-connected vehicles being
discussed, which makes it necessary to take different vehicle specifications into
account. Additionally, not only the power system but also the mobility needs of users
are important. Aspects such as changes in the state of charge due to driving, the
availability of different grid connections or user segments with specific behavior should
also be included in the simulation environment.

Economic requirements: The dispatch of the power plants and storage technologies
have to mirror the demand and supply situation and follow the economic rules applied
in today’s liberalized electricity markets. The model should be capable of including
possible incentives for players to shift demand or feed-in electricity in order to calculate
the value of load shifting and V2G. With respect to the diversity of different consumer
groups, it might be useful to implement individual price sensitivities.

Flexibility: Given the currently very low number of PEVs and the growing share of
RES-E, the simulation model should be able to adapt to different RES and PEV
scenarios and changing framework conditions. The charging strategy, vehicle
specifications and battery degradation costs must also be adjustable. With regard to
further research applications, accounting for other smart grid devices (e.g. heat pumps
or combined heat and power) would be an additional useful feature.

Feasibility requirements: The model should consider the electricity market with all its
relevant players and technical restrictions as well as mobility behavior and vehicles
interacting with the power system. It is obvious that simplifications are necessary to
apply the simulation model with the given computing resources and time frame.
Therefore, it is important achieve a good balance between the computational effort
required and reliable modeling output.

5.2.2 Existing model approaches

There is a wide range of different models concerning PEV. An overview of the
available modeling approaches is given below, divided into related model approaches,
power system models, which are the main focus, and indirect control approaches. The
literature overview does not claim to be exhaustive and presents work regarded as the
most relevant for this research.

Related model approaches

Models and model approaches are described in the following which either provide input
parameters or utilize the results of a power system model.

57 For example, to account for marginal CO, emissions or RES used for electric driving.
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Market penetration: The market diffusion of PEV and the possible vehicle
configuration affect the available storage capacity and grid connection power of PEVs
in a power system. The decision to buy any product is influenced by numerous social
factors which are very complex to include in a simulation model. Therefore, many
studies reduce decision-making to a discrete choice among different vehicle
technologies based on the total costs of ownership (e.g. Biere et al., 2009). These
simplified approaches can be extended by assumptions about learning rates for the
different components used in alternative vehicles and penetration constraints in specific
vehicle segments (Mock, 2011). Other approaches include modeling macroeconomic
framework conditions using system dynamics (IWW, 2000; Christidis et al., 2003) or
include conditional likelihood (Bass, 1969) and/or network externalities
(Katz et al., 1985) as presented in (Becker, 2009). This thesis does not focus on
modeling the market penetration of vehicles and the number of vehicles available in the
power system is taken as an exogenous variable.

Vehicle configuration: In terms of vehicle configuration, battery size and energy use
are relevant when simulating PEVs in the power system. Vehicles converting electricity
from an external source to kinetic energy can be configured in a variety of ways. These
vehicles are not available on the mass market so the exact configurations that will be
successful on the market are not yet known. Therefore — as was the case for market
penetration — analyzing the total costs of ownership is used to predict feasible future
vehicle configurations. Optimal battery size considering constraints due to infrastructure
and deterministic driving behavior has been analyzed by (Kley, 2011) and (Pl6tz, 2012).
The optimal PHEV design minimizing total costs, fuel consumption and emissions has
been modeled by (Shiau et al., 2010). An analysis package for advanced vehicle
modeling to investigate fuel economy is provided in (Markel et al., 2002). The level of
detail in these models is very high and difficult to reproduce in a model focusing on the
effects of PEVs in the power system. Therefore, vehicle configurations are taken as an
exogenous variable as described in Chapter 2.2.1, taking into account the results of
current research in this field.

Mobility behavior: To account for mobility behavior deterministic data from surveys
or traffic counts as well as traffic or trip models can be used. Methods to model mobility
behavior mainly focus on specific street systems to reflecting expected traffic loads in
rush hours (e.g. Cascetta et al., 1984). This is not suitable for the research on power
systems, which focuses on standing vehicles. The exact driving routes are not relevant.
The problem of PEVs’ availability can be analyzed with the method of event simulation
(e.g. Banks et al., 2004; Zeigler et al., 2000). Applications accounting for the PEVs as
resource in the power system are presented in (Fluhr et al., 2010). Most publications
investigating PEVs in the power system use deterministic or average data. In this paper
a stochastic simulation model is used (see Chapter 5.4.7).

Long-term models for energy planning: Long-term models used for strategic
planning such as PERSEUS (Gerbracht et al., 2010), PRIMES (PRIMES, 2011),
MASSAGE (Schrattenholzer, 1981), TIMES (Loulou, 2008) or PowerACE-Reslvest
(Held, 2010) supply information on the power plant mix, fuel prices or RES distribution
in a future scenario (Pehnt et al., 2011). These models provide very valuable
information for the research question tackled here but are beyond the scope of this
thesis focusing on short-term effects. Therefore, a simplified approach is used to derive
the new installations of conventional power plants (see chapter 7.4.1). Installed
capacities of renewable energy plants and their respective generation are taken as
exogenous parameters provided by scenarios and model results taken from the
literature.
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Life cycle emission models: The results of the dispatch in the power system form the
basis for characterizing the carbon intensity of the consumed electricity in the life cycle
emission analysis. Examples for life cycle analysis models are GREET (Greenhouse
gases, Regulated Emissions, and Energy use in Transportation, Burnham et al., 2006)
and TREMOD (Transport Emission Model, Knorr et al., 2010). Only the direct CO;
emissions of electricity generation lie within the scope of this thesis (Chapter 7.5).

Power system and market models

Models of the power system and related markets are most relevant to analyze the
research questions raised in this work. Due to the wide range of models dealing with the
energy sector, the discussion here concentrates on models with an hourly or smaller
time resolution and a one year time frame (short-term models) to account for the
fluctuation of RES-E and PEV load.

In general, models including PEVs can be distinguished into those with passive and
those with active operation dispatch. Passive PEV operation accounts for load shifting
through scenarios using a load or a generation profile that is not affected by the
simulation model. In contrast, a model with active PEV operation uses an objective
function to adopt the charging or discharging operation. In terms of driving behavior,
the distinction is between static and dynamic. Static driving behavior in this context
refers to average values taken to characterize a vehicle fleet as a whole, whereas
dynamic driving behavior refers to studies using real driving data and a time-resolved
availability of vehicles.

Most basic models discussing PEVs in power systems can be characterized as
simulation models without objective functions and with static driving behavior. The
given load curve from a specific power system is matched with the expected PEV load
and the resulting situation is analyzed in terms of peak load increase
(Rahman et al., 1993; Hadley et al., 2009). The charging load profile is distinguished by
scenarios, e.g. start charging after 8 pm or perfect valley filling® and does not account
for vehicle-specific driving profiles. Instead, the load profile represents a fleet of
vehicles based on average values in terms of availability, energy used and connection
power. A simulation model for California including PEVs and power plant dispatch is
introduced by (McCarthy et al., 2010). The model is used to account for the marginal
CO, emissions of PEVs. The hourly resolved PEV demand is applied using scenarios
and does not model dynamic demand. More sophisticated models account for detailed
driving behavior using deterministic profiles tracked by the global positioning system or
derived from mobility surveys (Parks et al., 2007). Nonetheless, the charging strategy
remains passive and is based on different scenarios. To account for specific system
impacts, the PEVs’ load simulation is coupled with unit commitment models for power
systems (Wang et al., 2011), the total energy system including heat and transportation
sector (Lund et al., 2008) or distribution grids (Green et al., 2011;
Clement-Nyns et al., 2010; Markel et al., 2009).

Simulation models including active operation dispatch can be classified as market
equilibrium, single-firm optimization and simulation models (Ventosa et al., 2005).
Single-firm optimization seeks an optimal decision (vector) for a market participant in a
given situation, whereas in market equilibrium and simulation models, different players
with different objective functions and/or restrictions are modeled. The main application
for market equilibrium models in the energy sector is the interaction between demand

% Valley filling describes the increase of demand in off-peak periods or load valleys. “Perfect” in this
context refers to a social optimum with respect to minimizing electricity costs for the demand side.
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and supply players facilitating a clear formulation of equations (Green et al., 1992).
POLES® (POLES, 2006) is an example of a partial-equilibrium world model. A
bottom-up equilibrium model including technical details often faces limitations
concerning numerical tractability (Ventosa et al., 2005). The only published market
equilibrium model including PEVs — which was found by the author — discusses
distributed control (Ma et al., 2010) and introduces an algorithm for overnight valley
filling of PEV demand (social optimum). The simulation covers one day and uses a
homogeneous’® population. Similar approaches controlling devices in smart grids or the
control of wireless devices (Huang, et al., 2003) are also discussed on a theoretical
basis. The scope of formal equilibrium models is limited to broader applications that do
not have the technical and behavioral details necessary for this thesis.

Single-firm optimization models optimize an objective function under specific system
constraints. (Sioshansi et al., 2009) introduces a single-firm optimization model for a
power system including PEVs. The model solves a unit commitment problem and is
capable of different objective functions such as the minimization of total system costs
and emissions (Sioshansi et al., 2010; and Sioshansi et al., 2011). Because of the
intractability of a year-long optimization horizon, the problem is solved in two
simulation steps. An example focusing on buildings with distributed generation and
exogenous, variable electricity tariffs is provided by (Momber et al., 2010). This model
uses average vehicle availabilities but active operation dispatch to account for the
minimization of energy costs or emissions. Other single-firm models addressing
electricity markets include, e.g. (Anderson et al., 2002) and (Baillo, 2002). In the
context of liberalized electricity markets, the single-firm objective is not capable of
player-specific optimization goals.

Simulation models are used if the formal equilibrium framework of the analyzed
system is too complex to be addressed with the usual market equilibrium models
(Ventosa et al., 2005) or if the problems do not match a single equilibrium. In terms of
electricity market models, (Otero-Novas et al., 2000) consider firms with different
objective functions and different technical constraints. (Day et al., 2001) shows that
simplified simulation models (considering a symmetric case) with nearly optimal supply
functions obtain similar results to market equilibrium models. Because of the possibility
to integrate asymmetric firms and more detailed technical constraints, simulation
models can establish a more realistic framework.

Agent-based’" modeling is a subarea of simulation models. Agent-based simulation is
used in two fields relevant for this work, market or power system modeling (referred as
Agent-based Computational Economics (ACE)) and in the context of distributed and
indirect control (see Chapter 2.3.3 and the following section). In the context of
electricity market modeling, bidding strategies and market design are investigated. For
example (Bower et al., 2000) investigate market design, (Visudhiphan et al., 2001)
analyze how market actors learn to maximize profits, and (Bunn et al., 2007) determine
the effects of different power plant portfolios. Besides these theoretical research models,
applied models are also used. For example, (Conzelmann et al., 2005) introduce an
agent-based model covering different markets and physical layers representing the grid
infrastructure. A model focusing on the German electricity market was introduced by
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Prospective Outlook on Long-term Energy Systems.
All PEVs have the same battery size, grid connection power and state of charge at the beginning of the

simulation.
"' The idea of agent- based system combines game theory, social sciences and software engineering. An
Agent is defined as: “.... a computer system that is situated in some environment, and that is capable

of autonomous action in this environment in order to meet its design objectives.” (Wooldridge, 2002).
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(Sensfufl, 2007). This particular model was used to calculate electricity prices and
analyze the price effects of RES-E on the power system (Sensfuf et al., 2008). The high
flexibility needed to account for individual behavior requires arguments for the specific
behavior of agents and is the main drawback of agent-based modeling
(Ventosa et al., 2005). To the author’s best knowledge, so far there has been no large-
scale, agent-based power system simulation including PEVs.

In addition to this section focusing on models including PEVs, a broader discussion
including the principles of energy system modeling approaches can be found in
(Sensfull, 2007; Wietschel, 2000; Ventosa et al., 2005). For more details on models
including RES and agent-based electricity market models, see (Connolly et al., 2010)
and (Weidlich et al., 2008), respectively.

Distributed or indirect control

As outlined in Chapter 2.3.3, indirect control seems preferable for involving consumers
in the power markets. In this section, approaches are discussed that consider automated
demand response with indirect control. Most approaches integrate both the management
of automated devices, referred to as mechanism design (Rosenschein et al., 1994), and
the devices themselves that measure parameters of their environment and react to these
measurements. All automated devices (including computer systems and mechanical
systems) are referred to here as “agents”.”* It should be noted that the functionality of a
basic software agent is equal to a simple controller, a concept which was well known
long before (Woolridge, 2002) introduced agent-based programming. There is a huge
selection of publications defining the term “agents” and only a few can be discussed
here. (Schneider et al., 2011) defines an agent for a residential cooling system that
receives a price signal, a 24 h rolling average price and the standard deviation of the
price to generate a minimal cost operation schedule under temperature constraints.
(Nestle, 2007) defines control algorithms for storage, process shifting and demand
reduction appliances. PEVs’ agents are defined in (Link et al., 2010) and (Rotering et
al., 2010). Autonomous PEVs’ frequency and voltage base control is discussed in
(Pecas Lopes et al., 2010). The theory and implementation of multi-agent systems are
discussed in (McArthur et al., 2007a/b) and (Roche et al., 2010). (Kok et al., 2010) and
(Akkermans et al., 2004) present a multi-agent coordination concept that is
implemented by (Roossien, 2009) in a field test using different DR devices. Based on
simulations, (Ramchurn et al., 2011; Fahrioglu et al., 2000) discuss the design of
controls and incentives in smart grids. Design examples of indirect control mechanisms
including PEVs are presented for congestion pricing (Fan, 2011; Wu et al., 2012) and
managing a distributed grid energy hub (Galus et al., 2008). As far as the author is
aware, there are no published studies of coupling automated DR using indirect or
distributed control with a large-scale, agent-based power system simulation.

5.2.3 Modeling grid-connected vehicles
Two principle models are suggested by the model requirements and simulation

methods: a single-firm optimization and a multi-firm optimization model.”® This thesis
applies a multi-firm, agent-based approach for the following reasons:

2 A simple example of a mechanical (e.g. cuckoo clock) or software agent (e.g. cell phone) is a clock
timer that measures time and reacts when a specific time is reached.
3 Equilibrium models are not capable of the necessary level of detail.
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e Due to the (still ongoing) liberalization of the electricity system, decision-
making is affected by different players competing on electricity markets. The
wholesale electricity price as well as prices for regulation reserve are generated
by this competitive context. As a consequence, operating generation units no
longer depends on centralized decisions, but rather on the decentralized
decisions of multiple firms acting in a market (e.g. see
Ventosa et al., 2005; Sensful}, 2007; Weidlich et al., 2008). Hence, a multi-firm
approach is a better fit to the framework conditions.

e The detailed description of the supply side (e.g. unit commitment) requires the
implementation of technical and economic constraints, leading to a complex
optimization problem when solved on an hourly basis for one year. Including
constraints that consider different driving behavior, vehicle specifications and
consumer needs further increases complexity. This can result in intractability
with the currently available computing resources.’*

e In a simplified approach, PEVs can be characterized as an elastic demand.
However, a detailed analysis shows (see Chapter 4 and Chapter 7.2) that the
availability of PEVs in the grid and individual constraints with respect to the
required state of charge, vehicle specification, battery degradation, V2G
capability and consumer behavior result in a very complex problem. A multi-
agent system is one approach that can account for such complex interactions
(Wooldridge, 1995/2002; Roche et al., 2010).

e In practice, it is obviously extremely difficult to control multiple devices with
individual requirements in a smart grid environment. Centralized control
requires high volume real-time data exchange, which can be computationally
intractable (Ma et al., 2010) or at least very difficult to solve. Furthermore,
directly controlled charging by a utility or third party face resistance on the part
of consumers. Therefore, distributed or indirect control is better suited to
controlling large populations of distributed devices which act as independent
agents.

e Mixed Integer Linear Programming — mainly used in single optimization models
to achieve reasonable computing time — cannot solve a non-linear function of
battery degradation described by the depth of discharge (see Chapter 4.3). As a
result, the objective function determining the unit commitment cannot include
the defined input parameters for battery degradation. Hence, solving this
function increases the complexity or creates the need for a linearization of
functions describing battery ageing.

e In terms of programming, an agent-based model allows object-oriented
structures providing a higher flexibility and reduced susceptibility to errors.
With regard to further research, it is then easy to implement additional smart
grid agents such as heat pumps or combined heat and storage devices.

The applied approach combines a large-scale, agent-based power system model with
indirect control of PEVs. The PEVs are programmed as individual agents controlled by
a mechanism design framework that pools PEVs and interacts with the other parts of the
power system model. The implemented agents do not account for learning capabilities.
A stochastic model is used to determine the individual mobility behavior of each PEV
agent. This very detailed approach was only feasible because the simulation model
PowerACE (Sensful}, 2007) was available in the research group the work is conducted
in.

™ This problem occurred in the single-firm optimization presented by (Sioshansi et al, 2011).
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5.3 Basis of the model development

The next section describes the PowerACE simulation model used as the basis for the
simulation of PEVs in the power system. The contribution of the author in this chapter
is limited to describing work mainly conducted by Frank Sensfuf.”

5.3.1 The PowerACE simulation model

In the PowerACE model, agent behavior is implemented in terms of the strategic
bidding of single power plants or power plant pools (see Genoese et al., 2012;
Sensfu, 2007). The model uses stepwise marginal cost functions and bid-based
dispatch to match generation and load on an instantaneous basis. The regular electricity
demand is inelastic and the clearing prices mainly result from the marginal generation
costs of different power plants (perfect competition). In total, PowerACE considers
about 1500 different power plants in Germany. Fluctuating energy generation is
implemented using the time series introduced in Chapter 3. The dispatch is calculated
on an hourly basis for an entire year. Imports and exports can be considered
exogenously or using an extended European version of the model (Pfluger et al., 2012).
Dispatch of pump storage and other storage technologies is optimized based on a price
forecast. Grid restrictions can be considered using areas with limited transition capacity.
PowerACE considers day-ahead electricity as well as regulation reserve markets. In this
thesis, only the day-ahead market module is used. Table 5-1 gives the nomenclature of
the section and Figure 5-1 provides an overview of the PowerACE model. Model details
can be retrieved from (Sensful, 2007).

Supply side Demand side

Databases and input Agents Agents Databases and input
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Figure 5-1: Principle structure of the PowerACE model

Source: PowerACE research group Fraunhofer ISI; Note: PowerACE Germany single market model.

" The PowerACE simulation module was developed in a project sponsored by the "Volkswagen

Stiftung" in cooperation with the University of Karlsruhe, the University of Mannheim and the
Fraunhofer Institute for Systems and Innovation Research. PowerACE is a simulation model in the
object-oriented programming language “Java”.
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Table 5-1: Nomenclature PowerACE market model

Parameter Unit
D Energy demand (total system load) MWh
S Energy supply (total generation) MWh
d Demand in time step t (average power) MW
S Supply in time step t (average power) MW
X Normalized time series %

Number of renewable energy technologies (onshore wind, offshore wind,
photovoltaics, solar thermal, biomass, hydropower, geothermal) -

K; Generation capacity of power plant i MW

N Efficiency of power plant i %

Pbid,i Bid price of power plant i euros/MWh
Z; Start-up costs of power plant i euros/MWh
Vi Number of unscheduled hours of power plant i -

0; Operation and maintenance costs of power plant i euros/MWh
Pfucl,f Fuel price of fuel f euros/MWh
Pco2 CO, price euros/ t CO,
Cr CO, emission factor of fuel f t CO,/MWh
my, Mark-up euros/MWh
Index

i Power plant € of power plant database -

f Fuel € {gas, coal, lignite, oil, waste and nuclear} -

t Time steps € {0...hours of the year} -

r Renewable energy technology € {0...R} -

5.3.2 Supply and demand time series

Normalized time series are used to characterize non-dispatchable demand (inelastic
system load) and supply (see Chapter 3). The normalized, hourly resolved time series x
for a RES technology r out of all renewable energy technologies R or the system load
are multiplied by the assumed yearly energy generation S or demand D in the simulation
scenario to calculate the supply s and demand d in the time step t.

S0 =S, -x,,

5-1
d(t)=D x &b

systemload ,t

Geothermal generation is evenly distributed over all hours of the year as given by
Equation 5-2.

1
S(V)(t) = ShydrupowerANDgeothermal ’ % (5-2)

For hydropower run-of-river, the same function is used with a monthly adaptation. This
approximation does not consider technological improvements or a changing distribution
of renewable generation. The time series represents the characteristics of a specific load
or weather year.

Biomass is a dispatchable renewable energy source. However, due to the current RES-E
legislation in Germany, biomass does not follow the supply and demand situation but
feeds in nominal power 24 hours seven days a week. It is likely that in a power system
with limited controllable generation available, biomass dispatch will have to account for
the market situation. Therefore, in the scenario simulations, biomass generates power in
time periods with high residual load. In this case, the total generation and the installed
capacity is given as an input parameter and power is dispatched in the hours of the year
with the highest residual load.
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5.3.3 Supply bid

The necessary information of a power plant i is taken from a database covering the main
(capacity > 10 MW) power plants available in Germany (Platts, 2010). For scenario
simulations, power plants reaching the expected end of their technical lifetime are
excluded from the data set. Newly installed power plants are introduced as exogenous
input parameters.’® A bid point of a single power plant consists of the bid price ppiq and
the capacity K; of the bid. The supply curve or merit-order represents all power plant
bids for a specific hour. The supply curve changes daily because of the probabilistic
availability of power plants (see Sensfufl, 2007, pp. 75-76). The bid price ppis is
calculated according to marginal generation costs including fuel, expenditures for
emission trading allowances, start-up, operation and maintenance costs.

N Z.
Poia ()= — (Ppers TPeo, “€:)H0; £ 71 tm,, (5-3)

In equation 5-3 7 is the efficiency, pj.; is the price for fuel £, pcos is the price for CO,, e;
the CO, emission factor and o the operation and maintenance costs. Equation 5-3,
including the start-up costs z divided by the number of unscheduled hours v, is added by
the agent if peak load power plants are expected to be dispatched and deducted if base
load power plants try to avoid an expected start-up operation (see
Sensfull, 2007, pp. 74-77). In this thesis, base load power plants (on the left-hand side
of the merit-order) can place bids below their marginal costs including avoided start-up
costs, and peak power plants (on the right-hand side of the merit-order) can place bids
including start-up costs. The price mark-up m,, is used to cover fixed costs, and applied
only in hours of demand scarcity. Mark-up prices (Chapter 7.4.2) are used when
considering V2G (Chapter 7.4 and 7.7) and consumer revenues (Chapter 7.6) and are
assumed to be zero in all other simulation runs. Fluctuating RES-E is prioritized and
their bids are placed with a price of zero.

5.3.4 Market clearing

Market clearing uses a uniform price auction.”” All bid points of a time step # are sorted
according to the bid price. Starting with the lowest py4, capacity is subtracted from
demand until the intersection with zero is reached. The market clearing price is
determined by the last bid necessary to meet demand. The price is valid for the total
quantity sold in the hour ¢ The price elasticity of the total system load is assumed to be
zero. For details on market clearing see (Sensful3, 2007, pp. 78-80).

5.3.5 Merit-order effect

In a perfectly competitive market assuming bids based on variable costs, fluctuating
RES-E affect the resulting clearing prices because of the merit-order effect
(Sensfull et al., 2008; Green et al., 2010; Saenz de Miera et al., 2008). High RES
generation shares lead to a high volatility of the residual load and market clearing
prices. The merit-order effect describes the phenomenon that RES generation using a
bid price of zero replaces bids of thermal power plants with higher variable costs. The
reduction of the clearing price depends on the residual load and the merit-order

7 The model can be used in combination with long-term models of power plant parks such as PERSEUS
(Gerbracht et al., 2010).
7 Electricity is a homogenous commodity.
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sequence affected by the residual load reduction. For the 2008 German electricity
market, Figure 5-2 illustrates the principle of the merit-order effect.

200.0

—Merit-order (Germany 2008)
150.0
—Merit-order RES-E (Germany 2008)
100.0
Merit- order effect
50.0

Marginal costs of electricity
[€/MWh]

=== Wind onshore (23.9 GW)
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Figure 5-2: Principle of the merit-order effect

Note: Merit-order of the power plants in Germany 2008 with and without the total installed capacity of wind
(23,883 MW) and photovoltaics (6,019 MW); RES-E: Electricity from renewable energy sources.

In terms of the German electricity market with an installed capacity of 54 GW’® from
fluctuating RES equaling 67.6 percent the of annual peak load”” by the end of 2011, the
price reducing effect of RES-E can be observed by comparing the residual load and the
EEX spot market prices (see Appendix A2; Nicolosi et al., 2009). Even negative prices
are becoming increasingly common in the context of RES generation, oligopoly markets
and the current subsidy system (Genoese et al., 2010). With regard to the future
development of increased RES capacity in the power system, providing low capacity
credit price bids including total costs (Chapter 7.4.2) and capacity markets are being
debated. In the simulation approach used here, the effect of RES-E on the clearing price
plays an important role in controlling the charging and discharging of PEVs to better
integrate fluctuating generation.

" Wind power: 27.2 GW installed end of 2010 (BMU, 2011) plus about 2 GW installed in 2011;
Photovoltaics: 17.3 GW installed end of 2010 (BMU, 2011) plus about 7.5 GW installed in 2011
" The annual peak load in Germany is 2008 76.8 GW; 2009 73.0; 2010 79.9 GW.
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5.4 Model description

The following section describes the simulation model developed to analyze the
contribution of PEVs to integrating RES-E. A principal overview of the model’s
structure is provided, then the multi-agent control approach is presented and finally the
agent functions are defined. Chapter 5.4 is partly published in (Dallinger et al., 2012d).

5.4.1 Layers of the simulation model
The PowerACE model extension is constructed at three different levels (see Figure 5.3).
At the system level, the demand-side management agents interact with the PowerACE

market. The DSM-agents place supply and demand bids on the PowerACE market and
represent the related demand of the assigned PEVs.
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Figure 5-3: Overview of the PowerACE extension to model grid-connected vehicles

Note: Abbreviations see Table 4-2, Table 4-6 and Table 5-2.

The distribution grid level is represented by the distribution grid (DG) agents used to
control the device agents. The DG-agents also account for regionalization and grid
restrictions. A device agent represents a single PEV with vehicle and storage
specification as well as individual driving behavior. A DSM-agent bundles one or more
DG-agents and the DG-agent bundles one or more device agents. The principal structure
of the model is shown in Figure 5-3. Table 5-2 gives the nomenclature used in this
chapter.



58 SIMULATION MODEL
Table 5-2: Nomenclature PowerACE DSM-Agent

Parameter Unit
D Energy demand (total system load) MWh
S Energy supply (total generation) MWh
d Demand in time step t (average power) MW
S Supply in time step t (average power) MW
Wi Operation (average power) wy=sq+d; MW
wv Normalized transformer utilization %

A Total number of demand-side management agents (DSM-Agent) -

G, Total number of distribution grid agents (DG-Agents) from DSM-Agent a -
N, Total number of devices agents from DG-Agents g -
W, Nominal transformer power DG-Agent g MW
R Number of renewable energy technologies -
RS Residual load

I Dispatchable power plants -

T Time period 1/4h
S0C, State of charge for time step t %

n Efficiency %

o Price signal for time step t ct/kWh
Ap, Delta of price signal for time step t ct/kWh
,,Cq Fixed parameter of grid fee function ct/kWh
Cdis Discharge costs ct/kWh
Chat Cost for the battery euros/kWh
Epat Usable energy of the battery kWh
P Grid connection power kW
At Grid management time h

t Time step 1/4h
Z Vector space (4t,,, Epy,) -
Index

a Demand-side management agent € {0...A} -

g Distribution grid agent € {0...G,} -

n Device agent € {0...N,} -

t Time steps € {0...hours of the year} -

T Renewable energy technology € {0... R} -

i Power plant € of power plant database -

m Trip of agentn € {0... Mn} -

k Range class € { 0...20} -

1 Location class € { 0...2} -
season Season € {winter, spring, summer, autumn} -
day Day € {Sun, Sat, Mon, Fri, WD} -
WD Weekday € {Tue, Wed, Thur} -

5.4.2 Multi-agent control approach

Without central optimization, the question arises how to dispatch the grid-connected
vehicles. In liberalized electricity systems — which are the guideline for agent-based
simulations of the electricity market — the market or clearing prices determine the
dispatch of power plants. In a single-firm optimization, vehicles would be dispatched
according to an objective function with specific constraints from a central point
collecting all the information. In practice, this means the vehicles would be controlled
directly by a utility or service provider (see Chapter 2.3.3).

Instead of direct control, distributed optimization of a multi-agent system is used here
(see Chapter 5.2). The starting point is a single vehicle agent with the objective to
reduce charging costs or make V2G profits. The goal of this single vehicle does not



SIMULATION MODEL 59

account for integrating RES-E or the best strategy to manage a vehicle pool. Therefore,
a framework or mechanism design® is necessary. Mechanism design is discussed in
relation to Game Theory and applied to different, very individual cases. The presented
control mechanism is designed to control the PEVs in the simulation software.

In the model, the DSM-agent and DG-agent are used to control the dispatch of device
agents using two feedback loops (see Figure5-4). The objective of all DSM-agents is to
minimize the overall electricity costs for PEVs. The objective of the DG-agent is to
avoid simultaneous activities of vehicle agents in the distribution grid.

For the DSM-agents, it is assumed that all agents interact and place bids in the
PowerACE market that accounts for DSM-agents’ optimality. Therefore, an iteration
over all DSM-agents is performed (i.e. first feedback loop). The number of iteration
steps is defined by the number of DSM-agents (discretization). In the second iteration, a
DSM-agent a determines the operation w,, of all device agents n assigned to the DSM-
agent a.

As a control signal, the DSM-agent generates a real time price signal p,, (price forecast)
knowing the operation w,, of all the DSM-agent a who have already acted. To
determine the operation of PEVs controlled by the DSM-agent, the DSM-agent a gives
the price signal to the allocated DG-agents g. On the distribution grid level, a second
iteration or feedback loop is conducted over all devices N, (see Figure 5-4: feedback
loop device-agents N). For every device, the operation w,,, is determined and known on
the DG-level. The operation w,, causes a change in the price signal which is considered
by device-agent n+1. The change in the price signal 4pg; accounts for the change in
transformer utilization as variable grid fee.
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Figure 5-4: Multi-agent control mechanism

Note: Abbreviations see Table 5-2.

By adapting the price signal in the iteration process, an approximately optimal dispatch
on system level is reached (e.g. see Weise, 2009) and distribution grid constraints are
considered. The contribution to the grid integration of RES-E is considered using the

% Mechanism design is used to ensure that the individual objective functions of agents result in solving
a given problem, the social optimal dispatch of PEVs. In this paper, mechanism design is realized by
DSM-agents (accounting for demand valley filling) and DG-agents (to limit transformer utilization).
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price reducing effect of RES-E on the control signal, as the price forecast accounts for
the merit-order effect. The control mechanism is a theoretical construct for the
simulation. For feasible market implementations using PEVs’ aggregator agents, see
(Bessa et al., 2011; Gomez et al., 2011). In practice, the developed mechanism is not
applicable due to the different treatments of agents in iterations. The two-stage process
concept can be applied to smart grid applications in general and reduces the
communication effort. The developed demand agent is used in a field test with
20 Volkswagen midsize sedan PHEVs (“TwinDrive”). For details see Appendix B. The
introduced approach allows to combine a software agent embedded in a real vehicle
with a power system model, facilitating the investigation of energy system scenarios.

5.4.3 Demand-side management agent

An agent is defined as a perception and action subsystem (Wooldridge, 2002, p.34).
This is a similar function as a feedback loop in control theory. The perception function
is used to observe the environment. For the DSM-agent a the perception includes the
calculation of the residual load dgs,and an estimation of the operation w,, of the DSM
agents A.

It is assumed that the demand of the DSM-agents 0 to (a-1) is known when pool a
performs the price forecast. To account for the demand of the pool agents (a+1) to A4,
wy, 1s calculated using Equation 5-4.
A a-1
Wy, = w 5-4
At a— 1 Z 0 a,t ( )
The residual load dgs, in GW is calculated as:

R
dRS,t = dsystem,t + WA,t - Zt Sr,t (5'5)

With dyysem, as the total system load and s, as the supply time series of all renewable
technologies R.

The price forecast or control signal p,,is calculated as a function of the residual load. In
the heuristic approach, experiences with the clearing results of the PowerACE market
are used for a polynomial function fitting between residual load and clearing price. The
used function as well as the bit points (price / residual load) and the merit-order are
given in Figure 5-5.

The price p,,, in euros per MWh with dgs, in GWh is calculated using Equation 5-6."

Do (dys,) =0.0008-d g} —0.0922-d s} +5.0624-dyg, +27.415  (5:6)

for dgs, values greater than zero. For dgs, equalling zero or below, a linear correlation is
used.

Po(dps)=dpg, + 27.415 (5-7)
This is necessary to detect the time intervals with the lowest residual load. A price
forecast based on the marginal costs does not allow negative prices. All time steps with
negative residual load would result in a price of zero making it impossible to estimate
the best charging time period.

' For p,, in ct/kWh divide by 10.
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Figure 5-5: Merit-order in the GER 2030 scenario and price forecast function of the pool agent

Simulated using the PowerACE model; fuel CO, prices according to [19] Scenario A “deutlich”; installed convention
generation capacities based on own estimations. Installed capacity: oil 0.7 GW; gas turbines 16.4 GW; combined gas
and steam 10.2 (n = 45-59) and 25.6 GW (1 = 60-65); coal 8.7 GW, lignite 9.2 GW; waste 0.9 GW.

The price forecast is forwarded to the group and device level, where the operation of the
devices is determined for one day as described in Chapter 5.4.5. Perfect foresight of the
device operation is assumed for the bid placed by the DSM-agents.

W= W, (5-8)

The assumptions that the generation of intermittent RES-E and the demand are known is
obviously not realistic for a real electricity market. Deterministic data are used here to
reduce complexity and account for a theoretically optimal dispatch. Nonetheless the
agent-based approach enables to include stochastic values in future work.

5.4.4 Distribution grid agent

The action carried out by the DG-agent is to modify the control signal p,, such that the
transformer utilization is not violated at distribution grid level. The individual price
signal p,, for a device-agent is calculated by Equation 5-9.

Doy =Py, = Pa, T A0, , (1) (5-9)

The variable grid fee 4p,, is specific to each device n and depends on the expected
situation in the local network. To calculate this price component, two concepts have
been developed which both assume that supply and demand in a local network are
perfectly known in advance.

The first concept includes a simulation of a detailed distribution grid. The approach
introduced in (Rudion et al., 2006; Rost et al., 2006; Venkatesh, 2003) with algorithms
to calculate the voltage for each bus of the network is implemented in the PowerACE
model. The voltage variation due to PEVs’ demand and V2G operation is used as an
indicator to generate a variable price component. This allows a very detailed analysis
considering a specific position (indicated by a network bus) of the device in the network
structure. The approach requires data on the distribution grid structure as well as on the
local demand and supply situation. The second concept is a simplification of the first. It
is assumed that a specific transformer capacity is available at the distribution grid level.
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In this case the value of the grid fee is correlated with the utilization. For the standard
simulation, the second concept is used because this requires much lower computing
resources and data. The results at the level of the German power system — which is the
main focus of this research — are not affected by the concept used.

The perception functionality of the DG-agents includes calculation of the transformer
utilization with residential demand and the operation of device agents. The normalized
transformer utilization w” without load and generation from PEVs is calculated

according to Equation 5-10.
W = d, (day)(season)
¢! W

4

(5-10)

dg (season)(day) is an exogenously given load profile of a household (BTU Cottbus,
2002) distinguished for different seasons and days (see Appendix A4). To calculate the
individual price for a device n, 4pg, is added to the pool price p,,. The quadratic relation

Ap,,(m)=a,-(w,,) +c, (5-11)

depending on transformer utilization determines the grid fee (see Figure 5-6).
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Figure 5-6: Function between transformer utilization and variable grid fee

Note: PEVs: Plug-in elevtric vehicles; Abbreviations see Table 5-2.

The constant parameter ¢, is assumed to be 0.5 ct/ kWh and a, is calculated by setting
the sum of the variable grid fee to be equal to a constant grid fee of 1.38 ct/ kWh.®

T T )
Zt Wg,t .pg,constan = Zt ag '(Wg,z) +Cg (5-12)

For the next device, it is assumed that the operation of the devices 0 to (n-1) within the
same group is known. The transformer utilization n >/ is calculated by Equation 5-13.

n—1
W = d, (day)(season) N ZO W,
e W /4

4 4

(5-13)

The price minimum of p,, changes if 4Ap,, is higher than the delta of p,; between p, min
and the second cheapest price in the time series p,,. This mechanism ensures an equal
distribution of the PEVs’ demand in low price periods and accounts for the transformer

utilization in a distribution network dominated by residential electricity demand (see
Chapter 5.5.1).

%2 This equals the share of costs for the RES and combined heat and power feed-in tariff in 2009.
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5.4.5 Device agent

The device agent represents one vehicle with an individual driving behavior which
performs a price-based optimization. Perception functions are detecting trips, real time
prices and battery discharging costs. Actions are creating an optimized planned
schedule wya (see 5.4.6) and perform the charging and discharging operation w, ;. The
devices in a group are called successively to simulate the quarter-hourly operation for
t = 0-95 (see Figure 5-7). The simulation cycles through all the time steps for each
device. The mobility behavior based on deterministic data or stochastic simulation is
available for each device in advance. If a trip occurs (1=t,,), the soc™ is reduced and the
vehicle is not available for the duration fzen,. In terms of DSM and V2G, the
optimization is started after a trip. The resulting charging schedule is the basis for the
charging strategies DSM (w,,,=d,;) and V2G (w,,,=d, +s,). Besides “smart” charging,
“dumb” charging is also permitted after the last trip or instantly after the trip. After the
loop over a one day time period, the operation w,, and, in the case of smart charging
additionally the planned operation wya s, 1S communicated to the DG-level.

Device- agent,

Control Signal Battery aging

C I 8
Mobility behavior i Mg = parn

W 2
e p m SOCnt. at Nt =0~ diot] C
nt nt L
Wilan t=96-191 - Cai (Dol)) = ——
np 50C, 1, SOC, At Narle(DOD)
i soc, - Asoc,, At P,
F————>
Optimization
< —
t+tdm’ve,m Wplan,l
Loop
time steps Y

Operation

(t: 0-95) wplant
—
t++
l—
w, =W

n,t: plan,t
Soc, - Asoc,

7 3

Figure 5-7: Overview of the device agent
Note: Abbreviations see Table 4-6 and Table 5-2.

5.4.6 Graph search optimization

To find the optimal charging d,, and discharging s, , schedule of a PEV within the grid
management time Af,,"* the shortest path algorithm approach of (Dijkstras, 1959) is
used. Compared to a standard solver, this method allows a significant reduction in
simulation time and high flexibility to integrate different battery degradation costs
(Link et al., 2010 and Link, 2011). The implementation of the algorithm is explained
below.

% Here, the state of charge (soc) describes the usable battery capacity. The depth of discharge (DoD) is

used to describe the total battery capacity. Hence, if the total battery capacity equals the usable battery
capacity DoD equals the soc.

¥ At,, as calculated for the optimization does not include the charging time; see Equation 4-7.
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Define graph: For the specific problem, a graph Z is defined. Z (4t,, Ep,) consists of a
set of finite vertices, in this case At, with time steps t, and a set of finite edges given by
the usable energy of the battery. Az, is quarter-hourly resolved. The maximal
optimization time period is two days or 192 time steps t, respectively. The state of
charge is resolved in quarter kWh as an element of Ej,,.

Weight edges: For all points in the graph Z (4¢,, E.), the path to reach these points is
assigned to the cost function:

if Asoc=0:c,=0+c,_, (5-14)  (a)
ifAsoc>0:¢c,=p,,-d, t+c, (b)
ifAsoc<0:c,=—p,, s, t+c, (Asoc)+c, (c)

The path with non-negative minimum costs to reach a point in Z (4t,, Ep,) 1S
memorized.

Find shortest paths: After all the minimized costs for the graph have been calculated,
the path or charging and discharging schedule with the lowest costs to reach a certain
state of charge can be selected from the memorized values.

The optimization algorithm is called after each trip. Starting values are the actual soc,,,
after the trip, the soc, 4 to achieve and the time A4¢, to achieve the soc. For details on
graph theory and shortest-path algorithms, see (Gibbons, 1985).

5.4.7 Stochastic simulation of mobility behavior

Mobility behavior is modeled using the probabilities introduced in Chapter 4.2.3 and
given in the Appendix A3. The flow diagram in Figure 5-8 shows the stochastic process
to generate trips. The driving behavior simulation starts before the energy-related
simulation and the next trip is already known when returning from the current trip (i.e.
perfect foresight).

At the beginning of the simulation process for a single device n a first random value is
used to determine if the vehicle starts a trip on the specific day (Probgayel) (step 2 in
Figure 5-8). If this is not the case, the simulation continues with the next vehicle. If the
vehicle starts a trip m, the probability to start a trip (Progur * aveip) over all time steps is
verified (step 4 in Figure 5-8). The value of rendom; (see Figure 5-8) is renewed after
each time step ¢. For the start of a trip, probabilities for the range (Probyn,.) and location
(Proby,.) are called and assigned to the trip (steps 5 and 6 in Figure 5-8). To distinguish
the distance &, to be driven within the fix range classification &, a random value is
subtracted by k. The duration is calculated according to Equation 4-5 in Chapter 4.2.3
and added to the time steps of the counting variable (step 7 in Figure 5-8) of the loop
over all time steps. If no start time is assigned within 7, the number of the trips is 1 and
the start probability is called until a start time is determined.



SIMULATION MODEL 65

Mobility behavior m(n,day)

1. Start simulation for device n at a specific day

PrO;avel 2. m(day) = true IF (Pro,,,,) >= random,
4. Yo m (day,t) = tIF ((Prog, . X avy; )>= random,,)
Loop range "
Q—b
@ _ class(k=0-19)
Pro ange 5.1, (day) = kIF (Pro,,...>= random,,)
T+ 3. Loop over
time steps >
(t= 0-95) Loop location
class(l=0-2)
@ 6.1, (day,t) = | IF (Pro,,>= random,;)
=t+t, .
< £ tlyive 7. tynelr) =0.721145

Figure 5-8: Stochastic simulation process of mobility behavior for one day

Note: Abbreviations see Table 4-2; Random: Random number generated for time step t.

5.5 Evaluation of multi-agent control mechanism

To explain how the load management mechanism of distribution grid and system level
affect the simulation, two evaluation cases are conducted. In both cases one day of
simulation is observed. It is assumed that vehicles do not drive and that the battery state
of charge for all vehicles is zero at the beginning of the simulation. The German system
load of a winter’s day is taken as the basis. Power and vehicle penetration correspond to
the scenario GER defined in Chapter 6. The control mechanism is observed at the
distribution grid level and then at the system level separately. Finally, the combined
two-level control is discussed.

5.5.1 Distribution grid level

To evaluate the DG-agent, the prices of DSM-agents p,, are set to zero. Only the
variable grid fee p,, is used to control the devices. The transformer utilization with and
without the demand of the device-agents is given in Figure 5-9. For the assumptions in
Chapter 6.4, the increment of the increase in transformer utilization (see Chapter 5.4.4)
per device agent is between 0.24 and 0.48 percent points with 4 kW and 8 kW grid
connection power, respectively. With 401 vehicles assigned to a DG-agent — accounting
for 401 iterations — the utilization is balanced at about 16 %. Hence, without any
external influence, the DG-agent accounts for a distribution close to the optimum (see
Figure 5-9).
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Figure 5-9: Evaluation of the DG-agent

Note: PEVs: Plug-in electric vehicles.
5.5.2 System level

For the evaluation at system level, only the price signals of the DSM-agents account for
the operation of the devices. Three cases are distinguished to show the effect of an
increasing number of iterations and control signals. In the first case, one price is used to
control all devices. In the second case, two different price signals are used, whereas 30
prices are applied in the third case. The results of the simulation are given in
Figure 5-10.
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Figure 5-10: Evaluation of DSM-agent control

Note: DSM: Demand-side management.

As expected, using only one price signal to control all devices results in a strong
simultaneous reaction. Since no mobility behavior is taken into account and the storage
is assumed to be empty at the beginning of the simulation, every device-agent has the
same degree of operation freedom. Only the differences in total storage volume and grid
connection power result in slightly different charging periods. Using two prices reduces
the simultaneous peak but still does not allow the overnight load valley to be filled.
With 30 iterations and control signals, a nearly optimal valley filling is reached. The
mechanism provides similar results to a single-firm optimization or the algorithm
introduced by (Ma et al., 2010) taking a Nash equilibrium into account. For all DSM-
agents, the reaction to different prices is sufficient for load valley filling. The load of a
single DSM-agent can still be simultaneous and therefore result in peaks in the
distribution grid.
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5.5.3 Two-level control

The two control mechanisms on the system level for all DSM-agents and on distribution
grid level for DG-agents accomplish the goals of load valley filling — which equals low
charging costs (social optimum for all PEVs) — and limiting the maximal power in the
distribution grid, respectively. The goals of both agents are equal in a typical load
situation with a load valley during the night and an increased load during the day.
Assuming a strong fluctuation of the residual load can also result in contrary aims, for
instance, if a high solar peak on the system level results in incentives for the DSM-agent
to charge during the day. On DG level (in a case without any solar power installed), this
incentive increases the transformer utilization in a time period when the utilization is
expected to be high. In this case the variable grid fee would work against the price
signal of the DSM-agent and restrict the transformer utilization.

Including RES generation and using the combined load shifting mechanism of DSM-
agent and DG-agent results in the load shifting given in Figure 5-11. The charging load
inversely follows the residual load and therefore contributes to integrate fluctuating
RES-E. The energy available depends on the driving behavior and is restricted by the
grid connection power as well as the availability of vehicles. The mechanism considers
the next trip using only the positive grid management time. If the time period between
one trip and the next does not allow for load shifting (negative grid management time),
charging starts instantly.

100,000
M PEVs last trip Total system load M PEVs DSM Residual load

80,000
[ [ / H\\ [
60,000 J/ / y )/ /
\ 4 o : /A /
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Figure 5-11: Load of plug-in electric vehicles charging applying demand-side management

-20,000

Note: DSM: Demand-side management; PEVs: Plug-in electric vehicles.
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5.6 Summary

Chapter 5 introduced a simulation approach for PEVs in a power system. The approach
allows software agents to be included — in real life applications or smart grid field trials
using price-based control — in a power system model. This is able to consider a much
greater level of detail and more individual restrictions than common single-firm
optimization models. Furthermore, the classical structure of smart grids as a multi-agent
system is taken into account by the model, making a more realistic description of future
power systems possible. The following issues were addressed:

e The context of the research problem was outlined and related research fields
discussed.

e The PowerACE model serves as the simulation environment for this research.
Main PowerACE functionalities and the equation framework were provided.

e The detailed approach was formulated and explained. This represents the main
scientific value of this thesis. This includes the description of the simulation
agents, the optimization algorithm applied and the stochastic simulation of
mobility behavior.

e Two case studies were provided to evaluate and test the functionality of the
developed simulation model.

Critical remarks: In order to consider a dispatch close to the optimum — in this first
version of the model — agent behavior is reduced to clear technical requirements without
strategic behavior or gaming and learning functionalities. Perfect foresight of the trips
and the exclusion of consumer price sensitivity result in idealized dispatch behavior
which best matches fluctuating generation. Power ACE can be applied to model
different regions and transmission limitations between these regions but these are not
considered in this thesis.
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6 Scenario definition

6.1 Introduction

The scenarios include certain assumptions about the future. These are necessary because
the framework conditions with regard to the market penetration of PEVs or the installed
capacity of RES are not sufficient to answer the research question. In order to analyze
the effect of fluctuating renewable energy generation from wind power and
photovoltaics, as well as the contribution of PEVs towards balancing these RES-E, the
author had to construct a scenario for 2030. In the following scenario, assumptions for
Germany are presented which distinguish between the electricity sector and the vehicle
sector. In addition, a sub-scenario for California is constructed to take the different
fluctuation of RES-E there into account. This chapter is divided into sub-chapters which
describe the assumptions about the electricity sector, the vehicle sector, and the
distributed grid.

6.2 Electricity sector

In order to investigate the contribution of PEVs to integrating RES-E into the grid,
scenarios are defined based on surveys available in the literature. These scenarios are
used to create an environment with very high RES penetration (necessary to reach the
CO; reduction goal of the German government). The main scenario used “GER 2030”
refers to the “Lead Scenario 2010”, which was part of a survey investigating high RES
penetration in Germany carried out on behalf of the German Federal Ministry for the
Environment, Nature Conservation and Nuclear Safety (Nitsch et al., 2010). Other
surveys of the German energy sector (dena-Netzstudie II 2010 in DENA, 2010) do not
account for the time period until 2030 or provide a similar penetration scenario of RES
(Energieszenarien 2011 in Schlesinger et al., 2011).* The “Lead Scenario 2010” was
selected because this study is best suited to investigating the effects of fluctuating
generation. However, in order to enable scenario-independent general findings and
conclusions to be drawn, a detailed analysis of the input parameters is made so that the
effects of the scenario estimations are transparent. A sub-scenario for California “CA
20307 is used based on data from a 2020 CAISO study (CAISO, 2011) in order to
consider the different load curve, RES technology composition and fluctuation
characteristics in CA (see Chapter 3). The CA 2030 scenario is scaled to the same
energy generation share of fluctuating RES-E as the GER 2030 scenario to enable
comparability (see Table 6-1).

% To some extent these studies are influenced by stakeholders. The “Lead Scenario 2010” is supported
by policymakers and companies interested in high RES penetration and strong reduction of CO,
emissions.
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Table 6-1:  Intermittent generation and electricity demand for GER 2030 and CA 2030

Wind Wind Photo-  Solar Share of fluctuating  Total electricity

. onshore offshore voltaics thermal RESgéig:glgnl)o ad; loiilr;rl;clr(lie(rz?ﬁl) Unit
. Capacity 37.8 25 63 - 162.0% 77.8 GW

OER Generation 87 95 57 - 47.6% 502.17 TWh
s Capacity 28.2 - 19.9 13.3 96.7% 63.5 GW

A Generation  71.4 - 43.1 30.2 47.6% 303.8 TWh

Source: * Lead Scenario 2010 (Nitsch et al., 2010); ** Energiereport IV (Schulz et al., 2005); *** Proportion of
technologies and fluctuation from (CAISO, 2011); The generation share of intermittent RES is scaled to 47.6 % and
the same value of the Lead Scenario, 2010, respectively.

The hourly characteristics of RES generation and the load curve were already discussed
in Chapter 3. 2008 is used as the reference year for the GER 2030 time series because
the wind availability in this year is close to the 10 year average. Electricity imports and
exports and storage technologies such as hydro pumped storage are not taken into
account.

To indicate the dispatchable supply side, the merit-order of power plants is generated
using primary energy and CO, prices from (Nitsch et al., 2010) as shown in
Table 6-2. Assumptions about the power plant park are given in Chapter 7.4.1.

Table 6-2: Fuel and CO, prices for the GER 2030 scenario

Qil Gas Coal Lignite CO,
Unit euros/MWh,erm euros/t
Price 58.68 49.68 23.4 3.8 52

Source: Lead Scenario 2010 (Nitsch et al., 2010);

6.3 Vehicle sector

The penetration scenario for PEVs follows (METI, 2006), a study investigating a 100 %
penetration of alternative vehicles (HEVs, PHEVs, BEVs and fuel cell vehicles) for
Japan in 2050. The penetration of PHEVs and BEVs was adapted to the German market
by specifying two electric vehicle concepts: PHEVs with 4.5 kWh or 12 kWh and BEVs
with 15 kWh or 30 kWh usable battery storage (see Table 6-3 and Chapter 2). The
assumptions with regard to the energy use of PEVs imply a reduction in weight as well
as in air and rolling resistance compared to today’s vehicles (Moawad et al., 2009;
Gonder et al., 2007; Santini et al., 2002).86 The values in Table 6-3 include the
efficiency. For V2G, an efficiency of 94 % is assumed. The battery charging power is
assumed to be constant over time.*’” Total PHEV penetration in 2030 is 12 million or
24 % of the total passenger vehicle fleet, with a PEV share of over 80 %. This scenario
is classified as optimistic (for further estimations, see Hadley et al., 2009; McCarthy et
al., 2010; Becker, 2009; IEA, 2010). The political goal in Germany is to have at least
1 million PEVs in 2020 and 6 million PEVs in 2030 (BMBF, 2009). For the CA 2030

% Values in the range of: weight 800 - 1400 kg, drag coefficient 0.2 - 0.26 and rolling resistance
0.0045 - 0.006.
87 For real batteries charging power is not linear see (Appendix Al).
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scenario (California Department of Transportation, 2005),* the PEV’s share of the total
fleet equals the GER scenario and results in a total PEV penetration of 6.8 million."”

Table 6-3: Passenger vehicle types
Device Type Usable storage con(l;lzic(:ion Equivalent energy use ( 6C,;A nfgﬁgn (cl;fﬁlzlﬁ?)g
(Km)* (KWh ower (kw]  [KWha/km] ** PEVs) PEVs)
1 PHEV (25) 4.5 4 0.18 31.6% 31.6%
2 PHEV (57) 12 4 0.21 50.4% 50.4%
3 BEV (100) 15 8 0.15 13.9% 13.9%
4 BEV (167) 30 8 0.18 4.0% 4.0%

Comments: * In brackets: hypothetical driving range in km; ** at grid connection including: charging n = 98.5 %,
lithium-based battery: 1 =97 % and electric motor =95 %

The allocation of the different vehicle types is given in Table 6-3. In total, 12 thousand
PEVs are modeled for GER 2030, representing 12 million PEVs. Thus, the operation of
one vehicle is scaled-up by a factor of 1,000.

Table 6-4 summarizes the power and storage capacity of the resulting vehicle fleet for
the two scenarios. A fleet of PEVs provides high power with a relatively low usable
amount of battery storage. The power/energy ratio of the total fleet for CA 2030 and
GER 2030 is 0.44. By comparison, German pumped storage plants provide 7.76 GW
with a rated volume of 224.31 GWh (ratio: 0.035).

Table 6-4: Resulting power and energy values of the vehicle fleet scenarios
CA 2030 GER 2030
Tvpe Vehicles Connection  Storage capacity | Vehicles Connection Storage capacity
yp [thousand] power [GW] [GWh] [thousand] power [GW] [GWh]
PHEV (25) 2,150 8.60 9.68 3,885 15.54 17.48
PHEV (57) 3,430 13.72 41.16 6,585 26.34 79.02
BEV (100) 945 7.56 14.18 1,230 9.84 18.45
BEV (167) 275 2.20 8.25 300 2.40 9.00
Sum 6,800 32.08 73.26 12,000 54.12 123.95

In this thesis, it is assumed that the necessary infrastructure is always available. The
sensitivity of this assumption is analyzed in Chapter 7.7.5. PEVs are plugged-in after
each trip. The battery degradation parameters used are summarized in Table 6-5. For
V2G, the two scenarios, the energy processed and the depth of discharge are
distinguished. Both scenarios have optimistic assumptions on battery ageing and cost
reduction.

% Total passenger vehicles 28,320,000.
%" This assumption is similar to (Hadley et al., 2009) who suppose a penetration of 6.63 million PEVs.
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Table 6-5: Battery degradation parameter

Energy processed (Ah) Depth of discharge (DoD)

Type a b Cpa [euros/kWh] a b Chpa [euros/kWh]
PHEV (25) 7000 -1 281 4000 -1.632 281
PHEV (57) 7000 -1 247 4000 -1.632 247
BEV (100) 7000 -1 247 4000 -1.632 247
BEV (167) 7000 -1 233 4000 -1.632 233

6.4 Distribution grid

A standard load profile of the residential sector is used to account for the distribution
grid (see Appendix A4). The profile represents 100 households and is normalized
assuming a 400 kVA transformer. This results in a relatively low utilized transformer
with a minimum of 4.8 % and a maximum of 27.8 %. The vehicle demand is added
depending on the vehicles assigned to the DG-agent and the transformer capacity per
device-agent. For the standard scenario, with 401 vehicles assigned to a DG-agent and
4.52 kVA transformer capacity per vehicle, the normalized demand per vehicle (4 kW)
is added by

w d w d 4kw

gt g,t+ n,t _ 8t

w, W, W, N, W, 4.52kW-401

g

(6-1)

Hence, the demand of one vehicle with a 4 kW grid connection accounts for a
utilization increase of 0.24 percent points and all vehicles account for an increase of
100 %. The parameters a, and ¢, to calculate the variable grid fee are assumed to be
30.13" and 0.5 ct/ kWh. Transmission limitations are not considered.

% The value results from Equation 5-12.
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7 Results

7.1 Introduction

This chapter describes the results from the PowerACE DSM simulation model. First,
the driving behavior generated using a stochastic simulation approach is discussed
(Chapter 7.2). Next, the resulting residual load is presented for the scenarios CA and
GER as well as the effects of last trip, TOU and DSM charging (Chapter 7.3). The
power plant park and the effects of the V2G charging strategy are then discussed for the
GER scenario (Chapter 7.4) followed by further power plant park utilization
(Chapter 7.5) and smart charging revenues (Chapter 7.6). Finally, the sensitivities are
analyzed for the main assumptions (Chapter 7.7). Each sub-chapter concludes with the
main findings for that section.

7.2 Driving behavior

Compared to stationary storage devices, the availability of PEVs as a grid resource is
affected by the behavior of the vehicle user. This makes it harder to assess storage and
load shifting. To analyze PEVs’ grid availability first, the average yearly driving
behavior and the resulting PEVs’ electricity demand are discussed. Then the time period
during which vehicles are available for smart grid services (DSM and V2G) and the
energy demand of the vehicles when plugged back into the grid are described. Finally,
the stochastic simulation of driving data is evaluated using deterministic data to validate
the stochastic simulation approach.

7.2.1 Average driving data

Average driving data only permit a rough characterization of the vehicle fleet. The
values given in Table 7-1 represent an average of 10 simulations with probabilities from
the MID 2008 mobility survey (see Chapter 4.2). Values can vary by up to percent
points because of the stochastic method used. The yearly driving distance amounted to
15,298 km with 3.9 trips per day and 249 days of driving on average.

Table 7-1:  Average yearly driving data

Days driving  Total trips  Total driving distance Trips per day Average km per trip
MID 2008 249 days 960 trips/a 15,298 km 3.9 trips 15.9 km

Source: Data basis (MID, 2010). Note: Average out of 12,000 vehicles.

The yearly electric driving pattern is affected by the charging strategy and the
assumptions about infrastructure availability. For last trip charging, mainly
infrastructure at home is available. In the case of smart charging, it is possible to charge
when the vehicles are parked. The driving location is determined by the probabilities
defined in Chapter 4.2.3 and available in the Appendix A3. Parking at home and at
work occurs most often and the parking location is relatively easy to predict. Public
parking for shopping or leisure activities is characterized by a high degree of diversity.
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It is therefore more complex and cost-intensive to connect vehicles parking at these
spots to the grid and the average parking time here is shorter, which reduces the grid
management time. Consequently, from a smart grid perspective, home and work
charging seem to be of primary interest. The PEV location results are presented in
Figure 7-1.
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Figure 7-1: Location of vehicles

Source: Data basis (MID, 2010).

The average electric driving share of last trip charging of the PEV fleet is 54 %,
resulting in an average electricity consumption of 1594 kWh per year and PEV. In total,
the PEV fleet’s demand is 19.1 TWh for GER 2030 and 10.8 TWh for CA 2030. For
smart charging (TOU, DSM and V2G), the average electricity consumption here
increases to 2061 kWh per vehicle with an electric driving share of 70 %. This increase
is caused by the assumed greater availability of infrastructure. In total, the PEV fleet
consumes 24.9 TWh for GER 2030 and 14.0 TWh for CA 2030, accounting for
approximately 5 % of the total electricity demand.

7.2.2 Grid management time

The resulting grid management time of the stochastic simulation using the probabilities
of the MID 2008 mobility survey is described here. The grid management time At
depends on the return time of a trip (see Chapter 4.2.4). Figure 7-2 gives the energy
returning to the grid and the A¢ for the quarter-hourly resolved simulation of a weekday.
The average At depending on arrival time decreases until noon and then starts to rise
until midnight. The average At for a weekday is 7.4 hours (see Table 7-2). Evaluating
the grid management time separately for days and nights shows that A¢ day is much
shorter than Af night. The average of Af day on a weekday is 1.8 hours per trip whereas
At night is 23.6 hours. The A¢ night value is strongly influenced by vehicles that do not
drive on the next day(s). A¢ day can be negative if the time for recharging in a parking
period is too low.”’

' Note: To a minor extent, the Az values depend on the grid connection power as defined in Chapter 6.2.
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Figure 7-2: Hourly average grid management time and energy demand of returning vehicles

Source: Data basis (MID, 2010); Note: At: Grid management time for the total average; At day: trips during the day;
At night: the last trip of a day; Results for a weekday.

On Fridays and Saturdays, A¢ night increases because the probability to drive on the
weekend is lower. At day at weekends is in the same order of magnitude as weekdays
(see Table 7-2). See Appendix A5 for the hourly shares for Saturdays and Sundays.

Table 7-2:  Average grid management time for days of the week

Unit [h] Mon WD Fri Sat Sun
At 6.7 7.4 8.9 9.6 7.9
At day 1.8 1.8 1.8 1.7 1.9
At night 21.6 23.6 29.6 31.5 22.1

Source: Data basis (MID, 2010).

The wide diversity of mobility behavior causes a high standard deviation for all average
values. The hourly standard deviation for Az can also be found in the Appendix AS.

7.2.3 Evaluation of the stochastic simulation

In order to validate the concept of modeling mobility behavior, the stochastic simulation
results are evaluated using deterministic data from the MOP survey. The weekly MOP
driving profiles are randomly linked to a 365-day driving profile for 12,000 vehicles.
The stochastic data result from a simulation as explained in Chapter 5.4.7 with
probabilities drawn from the MOP data set rather than the MID survey.

The average values from a simulation of 12,000 vehicles are summarized in Table 7-3
for total trips per year, days with a trip, average trips per day, total driving range and
average range per trip of the fleet.

Table 7-3:  Average yearly driving data for one vehicle of a fleet of 1200 vehicles based on MOP

Total trips per year Days with ~ Average trips per  Driving range per Average range per

and vehicle a trip day driving year [km] trip [km]
Deterministic
data 816.0 268.7 3.0 11,044.9 13.6
Stochastic data 823.6 268.0 3.1 11,113.8 13.5

Source: Data Basis: (MOP, 2002-2008).
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The differences between the stochastic simulation and deterministic data were very low.
This proves the high consistency in terms of yearly parameters. Besides the yearly
driving data, the grid management time and the related energy demand of returning
vehicles are used to compare the stochastic data with the deterministic data (see
Figure 7-3). The data is evaluated over quarter hours of one day. For the energy demand
of returning PEVs, the correlation between the two data sets is 96.69 %.

The correlation is lower in terms of the average grid management time of a time step
(49.41 %). During nighttime hours, values vary strongly because of the low frequency
of trips. In the evening, differences of up to 8 hours occur. Vehicles not being driven the
next day(s) strongly affect the average value. Excluding time steps with a low sample
size (t < 20) results in a correlation of 83.71 % between the stochastic and deterministic
approaches.
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Figure 7-3: Energy demand of returning vehicles and grid management time on weekdays

Sorce: Data Basis: (MOP, 2002-2008); Note: Sample size 800,000 trips; correlation between grid management time
to.05 = 49.41 %, ty9.95= 83.71 %; correlation between energy demand ty.95 = 96.69 %.

Comparing the stochastic and deterministic data reveals that driving behavior is
complex and very diverse. The simple modeling approach does not account for
combinatorial probabilities (e.g. longer standing time after long trips). Especially for
time-resolved values such as the grid management time, the approach does not
necessarily provide realistic results for a single vehicle. But, as shown in Figure 7-3,
results are very accurate for the total fleet. This proves that the probability-based
approach is sufficient to model driving behavior for the research application of this
thesis.

7.2.4 Conclusions

The main findings from modeling driving behavior are:

e Primary parking locations are at work and at home.

e The grid management time is highest after the last trip. But average grid
management time indicates load shifting and V2G potential even during the day.

e Compared to last trip charging, the electric driving share increases if several
charging processes are possible. Under the assumptions made, there was an
increase from 54 % for last trip charging to 70 % for permanent infrastructure
availability — which is assumed for TOU, DSM and V2G charging.

e Comparing the stochastic simulation with the deterministic data set of the MOP
survey shows that the method used is suitable.
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7.3 Effect on the power system

This chapter shows how the PEV load affects the power system in the CA 2030 and
GER 2030 scenarios.” First, the residual load is examined as a benchmark. Next, the
effects on the residual load of different charging strategies are analyzed for the two
scenarios. The main results are then summarized and discussed. Chapter 7.3 is partly
published in (Dallinger et al., 2013).

7.3.1 Residual load
In order to evaluate how PEVs can help to integrate RES-E into the grid, the remaining
residual® load is used as a benchmark. The assessment applies the parameters defined

in Chapter 3.3. The most important parameters for the scenarios CA 2030 and GER
2030 are summarized in Table 7.4.

Table 7-4:  Evaluation parameters, residual load for California versus Germany

RS GER 2030 RS CA 2030
CFhos 38.8% rrfy 2.03 % | cfys 28.9% rrfy 1.99 %
CFee 0.285% | pos 439% | cfuy 0278 % I pos 438 %
cf,g 32% e -3.76 % | cfyg 44% Ioee 3.63 %
Tefoss 0.51 Xy 53.88 % | Tens 0.50 Xy 5470 %
Prin -43.52% Corppsion 34.22 % | Poin -26.46 % Corggs.ioad 46.81 %
Prax 90.36 % Prox 71.69 %

In both scenarios, the very high RES penetration of 47.6 % has a strong effect on the
remaining residual load duration curve (see Figures 7.7 and 7.8). The reduction of both
the area under the curve and the capacity factor cf,,s compared to the load duration
curve indicate RES generation. Zero crossing of the residual duration curve is 3.2 % for
GER and 4.4 % for CA. This means that RES generation exceeds electricity demand in
3.2 % and 4.4 % of the 8760 simulated hours for GER and CA, respectively. In total,
the negative residual load (cf,ee) for GER 2030 is -0.285 % and -0.278 % for CA 2030,
or 1.95 TWh and 1.55 TWh in absolute values, respectively.” During these time periods
it is necessary to either distribute more electricity, or store it, or limit RES power or
introduce DSM to keep the system balanced. The reduction in the maximal power value
Pmax in CA 2030 to 72 % and in GER 2030 to 90 % shows that RES’s contribution to
reducing the peak residual load is much higher in CA 2030 than in GER 2030 (see
Table 7-4). This is due to the closer correlation between photovoltaic and solar thermal
generation and the CA 2030 load curve. The higher negative peak Pmin for GER is
caused by the high level of installed RES capacity, in total 162 % of the peak load (see
Chapter 6.2). For CA 2030 and GER 2030, Py, is in the middle of the day when wind
and solar output occur simultaneously. Compared to GER, the lower installed RES
capacity in CA results in fewer extreme RES power supply situations. There is a greater
influence of solar generation in CA, and wind and solar strongly affect traditional peak
load hours, particularly during the spring months when high cooling loads are not
online.

For high penetration of fluctuating RES, it will no longer be possible to make a clear
distinction between base load during nighttime hours and peak load periods during the

%2 The main findings of the chapter are published in (Dallinger et al., 2012c).
% The residual load is defined as the total system load minus fluctuating RES generation.
% Absolute value = relative value * 8760 * Pinax, absolute
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day. This result is illustrated in Figure 7-4, which cumulates the frequency of different
availability sections (see Chapter 3.3.3) over the hours of one day for the simulation
period of one year. Peak hours (Sec. 3) during the night are likely for both scenarios. A
peak residual load is most likely during the early evening. For CA 2030, a morning peak
is also observed between 6 and 8 am caused by the characteristics of wind generation
here. In CA, high generation from wind during morning hours is unlikely. Peak wind
output occurs early evening (see Appendix A2). Very high peak hours (see Sec. 4 in
Figure 7-4) accumulate between 5 and 9 pm. Noon is characterized by a high frequency
of off-peak periods (see Sec. 1 in Figure 7-4). Obviously, a lack of solar generation still
results in a peak load during the day, but the residual load is likely to be low. From a
RES fluctuation point of view, it is easier to integrate RES-E into the grid in CA 2030
because of the higher load, RES-E correlation as well as lower RES capacity with equal
energy output (installed capacity is 96.7 % of the peak load versus 162 % for GER
2030).
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Figure 7-4: Cumulated frequency of residual load variation for different hours of the day

Note: CA 2030: Ppaxjoad = 63.55 GW, Praxrs = 45.55 GW, Ppinrs = -16.81 GW, APrg= 62.37 GW;
GER 2030: Pmax,load =717.95 GW, Pmax,RS =70.44 GW, Pmin,RS = -3392, APRS: 104.36 GW.

Ramping is in the same range for both scenarios with a r7f'around 2 %. Compared to the
system load, an increase in total ramping is observed for the residual load (compare
Table 7-4 and 3-6; GER 2030: rrf change from 1.19 % to 2.03 %; CA 2030: rrf change
from 1.05 % to 1.99 %). Further, the intensity of the ramp rates indicated by u increases
due to the higher penetration of fluctuating RES generation.

7.3.2 Last trip charging

Charging EVs immediately after returning from the last trip of the day affects the peak
load. The simultaneousness of PEV charging is influenced by driving behavior and the
grid connection power. The peak load increase resulting from uncontrolled charging is
determined by the correlation of the initial load curve and PEV charging. For the CA
2030 scenario, this correlation is smaller than for GER 2030. For CA, the hourly mean
load P, increases by about 7.7 percent points whereas, for GER 2030, the increase is
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10.2 percent points (compare P, in Table 7-4 and Table 7-5). It should be noted that
GER driving data is used here for CA. This could be one reason for the higher
correlation of vehicle electricity demand and load curve in GER. For both scenarios
there are only minor reductions in the time period with negative residual load (cfy=y), the
negative peak (P,i,) and the amount of negative residual load (cf..). The negative
residual load consumed by PEV charging is 11.3 % for GER 2030 and 17.1 % for
CA 2030.
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Figure 7-5: Ramp rates for the CA 2030 scenario
Note: Piax load = 063.55 GW = 100 %; CA: California; PEVs: Plug-in electric vehicles

The effect of last trip charging on the ramp rates for CA 2030 is shown in Figure 7-5.
The ramping increases largely due to the fluctuating generation (see system load versus
residual load in Figure 7-5 and compare Table 7-4 with Table 7-5). The additional
increase caused by charging PEVs is small. In conclusion, fluctuating RES-E have a
much greater effect on the ramp rates than charging PEVs.

Table 7-5: Evaluation parameter, last trip charging, California versus Germany

RS + PEVs last trip charging GER 2030 RS + PEVs last trip charging CA 2030
cthos 41.6% r1rf,0 2.32% | cfpos 30.8% 1105 2.20%
Cliee -0.253%  Hpos 5.06% | cthey  -0.230% L pos 4.87%
cfi—o 3.00% g -4.25% | cfy— 4.00% Wpeg -4.00%
Tefo.8 0.52 Xy 54.34% | e s 0.52 Xy 54.91%
Prnin -42.59% COrRgs.10ad+PEV 27.63% | Pyin ~ -25.57% COrIRES 1oad+PEV 40.20%
Proax 100.59% Piax 79.18%

7.3.1 Time-of-use tariff

To evaluate the load management with time-of-use tariffs, a tariff of the utility
(Pacific Gas and Electric, 2011) is implemented in the simulation as a control signal.
The tariff structure follows the classical expectations about base and peak load in
California and does not account for a high share of RES-E. Other TOU tariffs would
provide similar results in terms of simultaneous PEV demand if analyzed with regard to
automated control.
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Table 7-6:  Electric vehicle time-of-use tariff of Pacific Gas and Electric

Super Off Peak  Off Peak Peak Off Peak
Time period Midnight—5am S5am—-12pm 12pm—-6pm 6 pm — Midnight
Rate 14.4 ct/kWh 16.7 ct/kWh  25.7 ct/kWh  16.7 ct/kWh

Source: (Pacific Gas and Electric, 2011).

The tariff is divided into four time periods and three price levels (see Table 7-6). The
Californian load curve and PEV penetration as defined in Chapter 6 serve as an
example. The result of a one week simulation using the TOU tariff indicates two main
price peaks (see Figure 7-6). After the first trip in the morning, PEVs’ agents manage to
reload the battery in the off-peak period 5 am - 12 pm to avoid the peak rate starting at
12 pm. The recharge after the first trip is necessary to realize a high electric driving
share. The second peak is observed before 5 am. This results from the applied
optimization algorithm that selects the last possible time step to charge if the cost of
several time steps is the same.”
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Figure 7-6: Electric vehicle load with time-of-use tariff control

Source: time-of-use (TOU) tariff (Pacific Gas and Electric, 2011); load curve (CAISO, 2011); Note: Summer week in
scenario CA 2030 (see Chapter 6).

Analyzing the evaluation parameter (see Table 7-7) shows that TOU rates do not
significantly improve the contribution of PEVs as a grid resource compared to last trip
charging. For CA 2030, a peak load reduction is observed (Puax 1s reduced from 79 % to
74 %) and a possible consumption of 39 % of negative residual load versus 17 % in the
case of last trip charging (compare cf,., in Tables 7-4, 7-5 and 7-7). Improvements are
smaller with regard to Py, and ramping.”® For GER 2030, parameter changes compared
to last trip charging are in the same range as for CA values. Only the peak reduction is
lower because the GER peak load occurs in the evening. The TOU rate used is designed
to reduce peak load during the day.

% In terms of battery ageing, using the last possible time step for recharging is not groundless because a
high state of charge can reduce the calendar life.

% Note: In CA, P, occurs during the day when the TOU rate is high and PEVs therefore avoid
charging.
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Table 7-7:  Evaluation parameters, time-of-use, charging California versus Germany

RS + PEVs TOU charging GER 2030 RS + PEVs TOU charging CA 2030
Cfhos 42.4 % 11y 2.35 % | cfyos 31.3% rrfye 220%
Clheg  -0.191% W pos 449 % | cfhey  -0.170 %  ppos 437 %
cfi—o 220% Hyeg -4.88 % | cfy— 320% Wnee -4.42 %
Tefo8 0.49 X, 47.87 % | Teos 0.47 Xy 49.72 %
Poin  -42.15 % Corggs-ioad+PEV 3536 % | Pmin ~ -24.57 % COrRgs-ioad+PEV 49.65 %
Proax 98.50 % Proax 74.40 %

The simultaneous reaction of automated agents and the changing requirements in terms
of peak and off-peak hours due to RES-E (see Figure 7-4) indicate that smart grid
control must provide more sophisticated solutions to reduce demand peaks and integrate
fluctuating generation.

7.3.2 Demand-side management

Simulating dynamic pricing with a distributed vehicle-based optimization (Chapter 5.4)
illustrates the contribution of PEVs to balancing fluctuating RES-E using demand-side
management. The evaluation parameters quantifying the effect of DSM smart charging
are summarized in Table 7-8.

Table 7-8:  Evaluation parameters, demand-side management, charging California versus
Germany

RS + PEVs DSM charging GER 2030 RS + PEVs DSM charging CA 2030
cfhos 42.3% 11y 1.52% | cfyos 31.2% rrfyes 1.70%
Cfheg  -0.102% Wy 2.88% | cfhey  -0.076% W pos 3.43%
cfi—o 1.40% peg -3.20% | cfy— 1.60% [ yeq -3.33%
Tef.g 0.48 Xy 47.35% | 18 0.46 xy— 50.71%
Puin  -34.02% Corrgs.ioad+PEV 44.50% | Ppin~ -18.52% COrRgs joad+PEY 56.56%
Prax 91.93% Prax 72.09%

The effect of controlled PEV charging on the residual load duration curve is shown for
Germany and California in Figures 7-7 and 7-8, respectively.”” In both cases, it is
possible to limit peak load and to increase consumption of the negative residual load.
For GER 2030 about 64.0 % and for CA 2030 about 72.6 % of the negative residual
load can be consumed (see Table 7-9, relative values cf,,). The time period with
negative residual load is reduced by 158 hours (GER 2030) and 245 hours (CA 2030).
The negative residual peak reduction is 7.4 GW for GER and 5.1 GW for CA (see
Table 7-9 absolute change).

7" Additionally in the Appendix, Figure A-11 to A-15 show the probability of the residual load for the
scenarios CA and GER.
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Figure 7-7: Change in the residual load duration curve due to DSM for Germany

Note: DSM: Demand-side management; RES: Renewable energy sources; PEVs: Plug-in electric vehicles.

In terms of ramping, a significant ramp rate factor reduction of 34.3 % is achieved for
GER and 22.5 % for CA. In addition, the ramping mean and the standard deviation
values are significantly lower.
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Figure 7-8: Change in the residual load duration curve due to DSM for California

Note: DSM: Demand-side management; RES: Renewable energy sources; PEVs: Plug-in electric vehicles.

PEVs make a greater contribution in CA 2030 than in GER to integrating RES-E in
terms of negative residual load consumption and reducing peak load. This indicates that
these two parameters are influenced by the RES generation characteristics and the
resulting residual load, respectively. For GER 2030, RES generation and some hours
with negative residual load are dominated by wind. The GER wind generation output is
characterized by longer high production periods whereas generation tends to follow a
rhythmic daily pattern for CA, especially during the spring and summer (see
Appendix A2). A daily rhythm is preferable for RES-E grid integration using PEVs,
because driving behavior also follows a daily pattern and does not permit long load
shifting periods. Recharging the PEV’s battery is only possible if electricity has been
consumed for driving. This effect is enhanced by the higher RES capacity required in
GER 2030 to produce the same RES electricity output.
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Figure 7-9: Cumulated hourly reduction of negative residual energy for California and Germany

Note: The values for photovoltaic, wind onshore and offshore describe the remaining negative residual load;
DSM: Demans side management.

Figure 7-9 shows that negative residual energy occurs only during the day for CA 2030.
The scenario is dominated by solar generation”™ and RES-E output follows a daily
pattern. Comparing the relative and the absolute change between the residual load
without PEVs and the residual load with PEVs for GER 2030 and CA 2030 shows that
there is a greater reduction of cf,., and cf,-y for CA 2030 (see Table 7-9). This indicates
that it is easier to integrate solar power. The correlation increase is higher for GER 2030
(see Cor values in Table 7-9). This also reflects a better integration of solar because the
correlation of load and solar generation is lower for GER 2030 than for CA 2030.

Table 7-9:  Change of evaluation parameters for California and Germany

Relative values Absolute values

Factor GER 2030 CA 2030 GER 2030 CA 2030 Unit
cfhos 8.96% 8.04% 23.75 12.92 TWh
e -64.02% -72.58% 1.24 1.12 TWh
cfimg -56.25% -63.64% -158 -245 hour
Poin -21.83% -30.02% 7.41 5.05 GW
Ponax 1.73% 0.56% 1.22 0.26 GW
1160 -24.98% -14.37% -3.47 -1.59 TWh
K pos -34.38% -21.83% -1.18 -0.61 GW
W neg -14.83% -8.31% 0.43 0.19 GW
Cor 30.03% 20.81% 10.28% 9.74% %

Note: Comparison of the electricity system including PEVs with demand-side management charging versus no
electric vehicles.

% Solar sources provide about 24 % and 11 % of the total electricity demand for CA 2030 and

GER 2030, respectively.
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7.3.3 Conclusions

Country-specific time series and installed capacities for solar and wind power were
considered for the two case studies of Germany and California. Comparing these two
shows that the resulting residual load is strongly affected by the assumptions concerning
the installed capacity of renewable energy sources and by the time series used. The
findings for Germany and California under the scenario assumptions made for 2030
with high shares of RES-E and PEVs are:

The capacity factors of wind and photovoltaics are lower in GER than in CA.
Hence, a higher installed capacity is needed to generate the same amount of
energy in Germany. For both countries, the energy produced from fluctuating
RES represents 47 % of the total system load. The installed RES capacity as a
percentage of the system peak load is 162 % for GER and 97 % for CA. The
higher installed capacity results in more RES surplus generation or in more
negative residual load situations in the GER scenario.

The ramping of the residual load is strongly influenced by RES generation.
Compared to the load curve without considering RES generation, ramping
nearly doubles if fluctuating generation is included. This is true for both CA and
GER. In terms of single time series, especially PV in CA has very high ramp
rates. Possible reasons are the higher direct radiation in CA and the resulting
system specifications (trekking systems, solar thermal power using storage, and
concentration of installations to a specific region). In addition, the method of
calculating the time series can influence the results. For GER, offshore wind
shows higher ramp rates compared to onshore wind (see Chapter 3).

Besides the energy actually produced by a renewable energy technology, its
fluctuation plays an important role when evaluating the contribution of storage
technologies to integrating RES-E into the grid. In terms of photovoltaics, the
characteristics on sunny days are obviously very similar in both GER and CA.
Taking the entire year into account, however, reveals an on/off characteristic for
GER. In other words, days with almost no generation occur more often in GER,
particularly during the winter, but also during the summer, albeit with reduced
probability. Solar generation is much more reliable in CA and even for wind,
generation here is characterized by a regular daily pattern for large periods of the
year. In GER, there is a greater dependence on specific weather fronts for wind
generation. To sum up, periods with very high wind velocities lasting several
days and periods with almost no wind are more likely in GER than in CA.

In this context, besides the characteristics of the individual generation
technology, it is also very important to account for the overall outcome of the
technology mix and the resulting residual load. The correlation between load
and the expected output of total RES generation strongly affects the situation in
a power system. A higher correlation is found between the expected RES
generation and the load for CA than for GER. This is due to the daily pattern of
generation in CA being a better match for the load curve, which also follows a
daily pattern. In addition, the air conditioning load and solar generation, which
dominate Californian summers, evidently have a high correlation.
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e The residual load in both simulation scenarios indicates a drastic change taking
place in the power system if renewable energies became a dominant generation
source. In this case, peak hours at noon and during the early afternoon are
unlikely. This time of the day is dominated by a low residual load. A high peak
probability is observed during early evening and nighttime hours. For CA, the
morning hours are also expected to have high residual loads. This does not mean
that typical peak load events which follow the load curve are no longer possible.
However, they are less likely and it will no longer be possible to describe the
residual load for the entire year based on a few characteristic days.

To investigate the effect of grid-connected vehicles on the power system, three charging
strategies were distinguished: charging after the last trip, TOU tariff based charging and
demand-side management. In terms of last trip charging, the results presented here are
similar to other published studies. Main findings are:

e Last trip charging results in an increased peak demand of 9 percent points for
Germany and 7 percent points for California.

e Last trip charging increases the ramp rates in the power system. With the used
time increment of one hour, however, the increase is low compared to the effect
of fluctuating generation. The ramp rate factor increases by 10 to 15 %.

e Overall, PEVs only make a small contribution to balancing RES-E and only a
small proportion of surplus energy from RES or negative residual load can be
consumed in the case of last trip charging.

TOU charging can be a first approach to reducing peak loads and promoting off-peak
charging. If there is a regular residual load pattern, TOU rates can also help to integrate
fluctuating RES-E. For non-recurring RES generation, TOU rates are not flexible
enough and cannot effectively integrate fluctuating RES-E.
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Previous studies have also analyzed DSM using grid-connected vehicle loads (e.g.
Sioshansiet al., 2011; Wang et al., 2011). The PowerACE DSM model includes a
detailed simulation of individual driving behavior and a control mechanism based on
real-time pricing and distributed optimization from the perspective of vehicles acting as
independent agents. In addition, a power systems with a high share of fluctuating
RES-E is analysed. The results in detail are:

DSM is restricted by mobility behavior. If consumers maximize the electric
range of their vehicles to recoup their initial investment, the peak load increases
even with load management.

DSM reduces ramp rates by 25 % for GER and 14 % for CA. The surplus
electricity consumption from RES is 64 % of the total negative residual load for
GER and 73 % for CA. The negative residual load peak is reduced by 22 % for
GER and 30 % for CA.

Comparing CA and GER reveals that more effective use can be made of plug-in
electric vehicles as a grid resource in CA due to the characteristics of RES-E and
the resulting residual load here. This is because grid-connected vehicle load
shifting is only possible within a time period of several hours to one or two days.
The daily pattern characterizing RES power generation in CA means it is easier
to integrate.

The same argument applies when comparing photovoltaics and wind power with
each other. The daily pattern of photovoltaic generation favors the storage
capabilities of plug-in electric vehicles if charging infrastructure is available
where the vehicles are parked during the day.

This chapter highlights the importance of carefully considering load and renewable
energy generation output when analyzing future power systems. A detailed description
of RES-E time series, system load and residual load is recommended for a better
understanding of research results.
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7.4 Vehicle-to-grid

The analysis of battery ageing in Chapter 4.3 indicated the price spreads necessary for
V2G. Based on these findings, V2G contribution as a grid resource is discussed in the
following. The chapter starts with the definition of the power plant park for GER 2030.
Next, a price mark-up is introduced to account for the costs of underutilized power
plants. Finally, the effects on the residual load are discussed. Chapter 7.4 is partly
published in (Dallinger et al., 2012d).

7.4.1 Optimal power plant park

Analyzing the charging strategies of last trip and DSM charging does not necessarily
require information on the exact power plant park, if the price sensitivity of consumers
is not considered. For V2G charging, the power plant park is essential regarding the
decision to provide V2G. The arbitrage of energy is only economically valuable if the
price spread within a defined time period is high enough.

An approach focusing on Germany was used to account for the power plant park.
Perfect foresight in the GER 2030 scenario is assumed and the time frame between
2010 and 2030 is not considered. Parameters which heavily influence the power plant
park are fuel prices, the RES capacity and the total electricity demand and are defined
by the scenario GER 2030 (see Chapter 6.2). The analysis focuses on three power plant
options: gas turbines (GT), combined cycle gas turbines (CCGT) and coal power plants.
Nuclear and carbon capture and storage are not considered.” Figure 7-10 gives the total
electricity generation costs of the power plant options depending on the utilization and
the residual load for different charging scenarios.
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Figure 7-10: Total costs of different power plant options 2030 and residual load

Assumptions: Gas turbine (GT): specific investment: 333 euros/kW, efficiency: 39 %; combined cycle gas turbine
(CCGT): specific investment: 733 euros/kW efficiency: 60 %; gas price 49.68 euros/MWhy,em; coal power plant:
specific investment: 1650 euros/kW efficiency: 50 %; coal price 23.4 euros/MWhyem; CO, price 52 euros/t;
interest rate 10 %; Note: LT: Last trip; DSM: Demand-side management; V2G: Vehicle-to-grid.

Coal has the lowest total electricity generation costs for a utilization greater than 3363
hours. Between 1012 and 3363 hours, CCGT has the lowest costs. For utilization lower
than 1012, GT is the optimal option to produce electricity in terms of costs. Switching
between generation technologies producing at lowest costs yields the optimal generation

% Neither technology is cost competitive with coal under the assumptions about investments as well as
CO; and fuel prices.
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capacity. The lowest total cost switch between coal power plants and CCGT at 3363
hours of operation gives the base load or coal capacity needed of 24.3 GW. Changing
from CCGT to GT takes place at 1012 hours of operation. The optimal CCGT capacity
is 13.9 GW. The remaining GT capacity required to reach peak residual load
(64.3 GW)'" is 26 GW. To account for system security, 10 % of overcapacity provided
by GT are included.'”’ Power plants still available in 2030 and currently under
construction are considered (BDEW, 2011). New installations and the total installed
capacity in 2030 are given in Table 7-10.

Table 7-10: Capacity for the 2030 GER scenario

Min. Optimal Old capacity Under New Installed
Power plant utilization capacity availablein  construction installations capacity 2030
type [h] [MW] 2030 [MW] 2010 [MW] [MW] [MW]
Oil 749 749
GT 0 26,03 4,023 28,438 32,461
CCGT 1010 13,942 9,54 1,038 3,364 13,942
Coal 3,368 24,314 3,081 6,933 4,361 14,375
Lignite 6,244 2,875 9,119
Waste 820 820
Total 64,2861' Total 71,4662

Note: ' Equals peak load by PEVs last trip charging including dispatchable biomass generation; * Includes 10 %
reserve provided by gas turbines; Available capacity from lignite and waste is assumed to reduce the necessary
capacity of coal because of the lower marginal generation costs.

The different PEV charging strategies affect the residual load curve and therefore the
resulting optimal power plant capacity. The sensitivity of the charging strategy
(difference in the residual load between last trip and V2G charging) to optimal capacity
is relatively low for the switching point between coal and CCGT (434 MW capacity
delta).'"” The switching point between GT and CCGT is affected more strongly by the
charging strategy (2034 MW capacity delta). For both cases, the means of 217 and
1017 MW are used to calculate the optimal capacity. Furthermore, the efficiency of the
power plant options affects the optimum. In this case, switching between CCGT and
coal shows a higher sensitivity.'"

The presented approach applies simplifications but provides a possible scenario for the
power plant mix in 2030. In general, investment planning is associated with uncertainty
and has high sensitivity to residual load and price development. The decision making is
reduced to the total generation costs and does not account for strategic decisions in
terms of the capacity planning of countries and utility firms.

7.4.2 Price mark-up
The utilization of fossil power plants is reduced with a higher share of RES-E, which

feed-in electricity with priority over fossil generation (see Chapter 7.3.1 and
Figure 7-4). In this case, profit contributions are not high enough if bids are placed

1% This includes capacity from biomass (9.88 GW), geothermal (0.75 GW) and hydro (2.68 GW).

%" The availability of the different power plant options is 0.97 for lignite, 0.93 for coal and 0.99 for gas.

192 Note, that the base load capacity from lignite and coal exceeds this point.

19 The gradient is 4.31 MW/h at h = 3361 and 8.00 MW/h at h = 1012. A 1 % efficiency increase of
CCGT compared to coal and GT changes the switching points h = 3361 to 3697 and h = 1012 to 983;
the effect on the optimal capacity is +1400 MW and + 232 MW, respectively.
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based solely on marginal generation costs. Therefore, a price mark-up is used that
accounts for the lower utilization and includes depreciation on power plant investments.
The mark-up calculation used has been developed by Fabio Genoese'™ and proceeds as
follows:

e Forecast the expected utilization of a power plant and calculate the expected
income in one year of operation.

e [f the power plant is not fully depreciated, a yearly annuity is calculated. The
annuity includes fixed costs, the specific investment and capital costs.

e Subtract the income from the annuity and allocate the result to the operating
hours of the power plant.

The method accounts for the total electricity generation costs. The depreciation time
period is 15 years for GT and 20 years for all other plants. An interest rate of 10 % and
specific investments of 333 euros/kW for GT, 733 euros/kW CCGT and 1650 euros/kW
for coal power plants are used.

The supply clearing price for last trip charging including and excluding the mark-up for
one year of operation is shown in Figure 7-11 in comparison to the merit-order and the
bid points without mark-up.
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Figure 7-11: Power ACE market clearing price depending on the residual load

To account for the mark-up of supply bids in the price forecast, the heuristic functions
of DSM-agents are adapted to

P (s, ) =0.00001-d g * —0.001- d g *+0.0024 - d > +4.6204- d o, +6.7877
(7-1)

for dgs, values greater than zero. For a dgs, equal to zero or negative, a linear correlation
is used.

pZarkUP (dRS,t) = dRS,t + 6.7877 -2)

For the calculation of V2G operation, both price forecast functions including and
excluding the mark-up are considered using different scenarios.

1% Fabio Genoese is a member of the PowerACE work group at Fraunhofer ISI.
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7.4.3 Effect on the power system

Besides the price function and availability of vehicles, the method used to calculate the
V2G costs also affects V2G operation. In Chapter 4.3, two methods were introduced to
consider battery degradation: the energy processed (Ah) and the depth of discharge
(DoD). Each method results in different V2G charging strategies. To illustrate the
differences, Figure 7-12 shows the V2G operation of a stationary battery device
(Storage: 30 kWh; grid connection 8 kW).
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Figure 7-12: V2G operation: depth of discharge versus energy throughput
Assumptions: Storage size: 30 kWh; grid connection 8 kW; Note: V2G: Vehicle-to-grid.

The DoD-based method results in shallow cycles using smaller price spreads for energy
arbitrage. Deep cycles are only conducted for very high price spreads (see upper panel
of Figure 7-12). Full cycles are more likely for the method based on the energy
processed (see lower panel of Figure 7-12). Compared to the DoD-based V2G, the total
amount of energy shifted is larger, but the number of V2G operations is lower.
Compared to the stationary storage operation shown in Figure 7-12, driving further
increases the complexity of V2G operation. The optimization time frame in this case is
only the grid management time between two trips. For V2G feeding back electricity, it
is necessary to have high and low prices within the grid management time. For example,
a vehicle arriving with an empty battery in the evening can be cheaply recharged
overnight if prices are low. But the next period with high prices — based on today’s
typical conditions — is most likely to occur around noon the next day. There is no high
price period within the grid management time at night and vehicles will not use V2G.
This effect is enhanced even more for the DoD-method because the soc is low when
vehicles return from a trip. In this case, V2G comes at higher costs compared to a soc of
100 % and even higher price spreads are required.
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The effect of V2G on the total power system is analyzed using the same parameters as
for DSM and last trip charging but focuses on the GER 2030 scenario.'”” Besides the
charging strategies Ah and DoD, the simulation results with and without the price mark-
up (Mup) are distinguished. The feed-back energy is higher with Ah V2G charging.
Compared to the total electricity demand of 502 TWh, the feed-back energy varies
between 0.8 % and 1.5 %. The V2G energy demand increases proportionately to the
energy feedback to the grid (see Table 7-11). The higher price spread due to the mark-
up nearly doubles the energy fed-back within the simulation time frame of one year.

Table 7-11: Energy and demand in case of vehicle-to-grid for Germany

Feed-back Demand
V2G [GWh] V2Grelative Ev,g/Eger | V2G [GWh]  V2G relative  Evyo/Eger
V2G Ah -5,384 -0.788% -1.072% 29,730 4.354% 5.921%
V2G DoD -4,152 -0.608% -0.827% 28,758 4.211% 5.728%
V2G Mup Ah -9,927 -1.454% -1.977% 33,728 4.939% 6.717%
V2G Mup DoD -7,649 -1.120% -1.523% 31,879 4.669% 6.349%

Note: Mup: Clearing prices include price mark-up; Ey,g: Energy vehicle-to-grid; Eggr: Energy demand Germany.

The peak system load P, is reduced by 1.2 percent points for DoD battery ageing
compared to DSM charging. For V2G-based on Ah ageing, the reduction is about 0.6
percent points. With mark-up, the reduction is 1 to 2 percent points compared to DSM
(compare Table 7-11 value P.y). The increase of the minimal residual load is much
greater (see Table 7-11 value Pp,). Compared to DSM charging (-33.96 %), V2G
results in a Py, value of -26.1 % and -28.2 % for Ah and DoD, respectively. The battery
degradation for Ah and DoD is given by the specific battery chemistry so it is not
possible to compare them exactly, but Ah shows the tendency to process more energy
which results in a greater increase in the negative residual load to be consumed. For
DoD-based ageing, a higher peak load reduction without mark-up is observed.
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Figure 7-13: Change in the residual load duration curve due to V2G for Germany

Note: RES: Renewable energy sources; PEVs: Plug-in electric vehicles; V2G Ah: Vehicle-to-grid energy with
weighted energy throughput based battery aging.

Figure 7-13 shows the effect of V2G with DoD battery ageing on the cumulated
negative residual load for one year of simulation. Compared to DSM (64.3 %), between
12.7 (V2G DoD) and 17.4 (V2G mark-up Ah) percent points negative residual energy

1% The CA 2030 scenario is not considered because of a lack of information on the power plant park.
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can be used additionally (compare Table 7-12 value cfieqrs)y/cliegx)). There 1s a large
reduction in the hours during which the residual load is negative (see value cfy— in
Table 7-12). During nighttime hours the negative residual load is consumed almost
completely. The remaining negative residual load occurs during the day between 10 am
and 3 pm (see Figure 7-14).
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Figure 7-14: Cumulated hourly reduction of negative residual energy due to V2G for Germany

Note: Simulation including mark-up prices and DoD based battery aging. The values for photovoltaic, wind onshore
and offshore describe the remaining negative residual load; DSM: Demand-side management; V2G: Vehicle-to-grid.

V2G also enables a further reduction of the total ramping and mean ramp rates. In terms

of ramping, Ah and DoD-based battery ageing are similar. All the values discussed are
summarized in Table 7-12.

Table 7-12: V2G evaluation parameter GER 2008

Time series g 1'(?21}?&(:;\/5) cfyy Poin Puax  Tfpos  Hpos  Mueg Xy=0 i:‘;‘;;s/
RS GER -0.285% 320% -43.52% 90.36% 2.03% 439% -3.76% 53.88% 34.22%
LT -0.253% 11.60% 3.00% -42.59% 100.59% 2.32% 5.06% -4.25% 54.34% 27.63%
TOU -0.191% 23.95% 220% -42.15% 98.50% 2.35% 4.49% -4.88% 47.87% 35.36%
DSM -0.102% 64.32% 1.40% -34.02% 91.93% 1.52% 2.88% -3.20% 47.35% 44.50%
V2G Ah -0.052% 81.75% 0.60% -26.11% 91.34% 1.34% 2.63% -2.70% 49.34% 52.37%
V2G DoD -0.065% 77.03% 0.80% -28.23% 90.75% 1.36% 2.63% -2.77% 48.64% 49.89%

V2G Ah Mup -0.051% 81.98% 0.60% -26.18% 89.93% 1.15% 2.28% -2.32% 49.49% 52.37%
V2G DoD Mup  -0.060% 78.75% 0.60% -27.48% 90.18% 1.20% 2.35% -2.41% 49.29% 49.89%

7.4.4 Conclusions

Compared to DSM, additional assumptions were necessary for V2G about the power
plant park, clearing prices and battery ageing. These increase the uncertainty of the
results. For the German power plant park, the strong reduction of the residual load for
the 2030 scenario favors the installation of GT for peak capacity as the most cost-
efficient option in an underutilized power plant park. The higher share of underutilized
standing capacity can result in clearing prices that are not sufficient to recoup power
plant investment if marginal bid prices are assumed. Including a price mark-up to
account for the total generation costs of power plants results in an increase of clearing
prices of approximately 40 euros/MWh in peak hours. The mark-up increases price
spreads. Hence, V2G energy arbitrage increases and leads to a better integration of
RES-E. Compared to DSM, V2G provides a better integration of RES-E for all
discussed evaluation parameters.
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The two battery ageing models, energy processed Ah and depth of discharge, result in
different V2G operation characteristics. For the DoD-based strategy, more shallow
cycles are observed. More deep cycles result with Ah ageing and higher total feed-back
energy over one year. For peak power reduction with low price spreads, V2G with Ah
ageing performs better, whereas DoD-ageing gives better results with regard to negative
peak load reduction. Compared to DSM, between 12.7 and 17.4 percent points of the
negative residual load can be additionally consumed. Peak load reduction compared to
DSM is between 0.6 and 2 percent points, or, in absolute values, between 0.5 GW and
1.6 GW.

7.5 Power plant utilization

This chapter addresses the question of using power plants to produce the electricity for
plug-in electric vehicles and the resulting CO, emissions (Dallinger et al., 2012b).'"
The method used accounts for the marginal electricity generation. CO, emissions are
calculated using the emission factors for fossil generation introduced in Chapter 2.2.4.
The chapter is structured in two parts. The first part presents the results for the GER
2030 scenario and power plant park defined in Chapter 6 and 7.4.1. The second part
defines an additional scenario where the energy from fluctuating RES is increased to
equal the amount of energy consumed by the PEV fleet. This scenario is constructed to
account for the argument that the electricity required to meet PEVs’ demand should be
generated by additionally installed RES capacity in order to keep marginal emissions as
low as possible.

7.5.1 GER 2030 scenario

The following results are based on previously presented findings with the difference
that they also include dispatchable generation from biomass as well as run-of-the-river
and geothermal generation. The PEV’s marginal energy source is given by the
differences in power plant generation between the simulations excluding und including
PEVs. Table 7-13 shows the energy balance for the simulation excluding PEVs as well
as last trip, DSM and V2G charging. In terms of generation, fossil and RES are
distinguished as is the negative residual load. The reduction of the negative residual
load between the scenarios including and excluding PEVs is due to the marginal
electricity consumed by PEVs from RES. For last trip charging, this fraction is
0.36 TWh of 19.14 TWh total demand, and 2.03 TWh of 25.06 TWh total demand for
demand-side management. In V2G, the negative residual load decreases still further due
to PEVs’ consumption of 2.63 TWh. Compared to DSM, the total load increases
because of energy losses due to V2G.'"” PEVs’ marginal generation is dominated by
fossil fuels with 18.79 TWh, 23.04 TWh and 22.76 TWh in the three charging cases.

1% The main findings of the chapter are published in (Dallinger et al., 2012b).
197 Note: An efficiency of 94 % is assumed for V2G, charging n = 98.5 %,
Lithium-based battery: 1 = 97 % and discharging n = 98.5 %
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Table 7-13: Energy balance for last trip and smart charging

Generation Load PEVSs’ energy source
Unit [TWh] Fossil RES-E  Neg. residual load' Total PEVs Fossil RES-E
Excluding PEVs | 179.33  325.15 -3.20 502.10
Last trip 198.24 325.15 -2.84 521.24 19.14 18.79 0.36
DSM 202.45 325.15 -1.17 527.16 25.06 23.04 2.03
V2G (DoD Mup) | 202.17 325.15 -0.56 527.50 25.40 22.76 2.63

Note: ' In addition to the wind and photovoltaic generation used in Chapter 7.3 and 7.4 to calculate the negative
residual load, run-of-river power plants and geothermal are also included as non-dispatchable RES.

Fossil generation for last trip charging is dominated by gas as the primary energy source
(see Figure 7-15). Smart charging (DSM and V2G) shifts demand to hours with lower
marginal costs. In Germany, these hours typically feature marginal power plants with
higher CO, emissions such as coal or lignite. The fossil generation mix of PEVs using
DSM and V2G is therefore dominated by coal (see Figure 7-15). DSM and V2G
increase the share of RES-E (8.06 % and 10.35 % versus 1.85 % for last trip charging),
reduce the peak load and balance the intermittency in the grid (see Chapter 7.3 and 7.4).
Despite this, with the given power plant park, DSM and V2G also increase total CO,
emissions.

The specific CO, emissions for last trip charging are 495.32 g/kWh, 562.31 g/kWh for
DSM and 575.50 g/kWh for V2G. The fraction of marginal RES generation is not large
enough to compensate for the increase in the share of COs-intensive base load power
plants. Assuming an energy use of 0.2 kWh/km, the emissions per kilometer amount to
99.84 g/km for last trip, 113.49 g/km for DSM and 116.25 g/km for V2G charging.
These values are only slightly better than today’s most efficient passenger cars with
combustion engines.
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Last trip 25.56% 3.17% 36.27% 3.21% 21.16% 3.07% 0.72% 4.91% 0.08% 1.84%
DSM 9.10% 1.68% 26.09% 1.71% 24.88% 7.98% 2.48% 17.57% 0.45% 8.06%
V2G (DoD, mark-up) 3.06% 1.01% 23.74% 239% 27.12% 10.69% 2.85% 18.21% 0.58% 10.35%

Figure 7-15: Source of electricity for plug-in electric vehicles in percent

Note: DSM: Demand-side management; V2G: Vehicle-to-grid; DoD: Depth of Dischage based battery aging.

Taking the average instead of the marginal emissions results in CO, emissions between
53.13 g/km for last trip and 54.44 g/km for V2G charging.'®

"% The average CO, emissions of the total power plant park are 265.56 g/lkWh, 271.76 g/kWh and
271.55 g/kWh for last trip, DSM and V2G charging, respectively.
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7.5.2 Additional renewable energy

In order to reduce PEV emissions, the electricity needed could be provided by
additionally installed RES.'” To account for this scenario, 19.12 TWh, 25.01 TWh and
25.34 of additional energy from fluctuating RES are assumed in the simulation for last
trip charging and smart charging (DSM and V2G), respectively.''® However, even with
additional RES-E, it is not possible to provide 100 percent of the power needed to drive
renewably because the intermittent RES-E supply does not always match the residual
load including PEVs’ demand.'"" For last trip charging, 2.23 TWh or about 12 % of the
electricity still have to be provided by conventional power plants. For DSM, only 0.35
TWh or less than 1 % of controllable power is needed. For V2G, the energy from
fluctuating generation can be more than the amount needed for PEVs (see Table 7-14).
For the scenario with additional RES-E it is not possible to unequivocally analyze the
mix of electricity needed from controllable power plants because of two overlapping
effects. First, the additional RES-E replaces controllable generation, and second, a small
fraction of electricity from controllable power plants is still consumed by PEVs. The
approach used does not allow these two effects to be analyzed separately. The change in
electricity produced compared to the simulation without PEVs (see Figure 7-16)
indicates that the additional RES-E mainly replaces coal () 40-49) and lignite (1 40-49)
with generation from gas-fired power plants. For DSM and V2G, a smaller amount of
coal generation is replaced and additional electricity from lignite is consumed in the
case of V2G.

Last trip W DSM W V2G (DoD, mark-up)

0 — -

Change in generation
source [TWh]
5 h

gas gas gas coal coal coal lignite lignite Other RES PEVs

{n30-39) (n40-49)  (n50-65) (n30-39) {n40-49) (n50-65) (n30-39) {n40-49) (n30-40)
Last trip 3.74 0.37 2.99 031 -1.85 -1.02 -0.29 -1.95 -0.08 16.90 19.14
DSM 0.92 0.10 1.27 0.23 -1.11 -0.02 -0.05 -1.02 0.04 24.65 25.17
V2G (DaD, mark-up) ~ -0.67 -0.13 0.08 0.12 -1.05 0.25 0.12 043 0.08 26.12 25.41

Figure 7-16: Change in electricity production while installing additional renewable energy sources

Note: DSM: Demand-side management; V2G: Vehicle-to-grid; DoD: Depth of Dischage based battery aging.

The average emissions of the thermal power plants are 703.37 g/kWh for last trip
charging, 714.46 g/kWh for DSM and 720.88 g/kWh for V2G. Emissions are lower for
last trip and DSM charging compared to the simulation without PEVs (718.87 g/kWh).
Assuming average emissions for fossil generation and zero emissions for RES-E results
in CO; emissions of 81.93 g/kWh for last trip charging and 10.10 g/kWh for DSM. For
V2G, emissions for this specific case are negative (-22.14 g/kWh). Note that upstream
emissions are not included, e.g. due to production and transport of wind turbines,

1% The German government has announced that the electricity for electric vehicles should come from
additional RES (German Government, 2010).

"% Note, that RES-E values vary because of rounding errors (< 0.1TWh) and PEVs’ electricity demand
varies because of the stochastic driving behavior simulation.

"' Note: The system is limited to Germany and exchange flows over the system’s borders are not taken
into account.
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photovoltaic modules or fossil fuels and power plants.''? The resulting CO, emissions
per kilometer driving distance for last trip charging and DSM are 16.39 and 2.02 g
COy/km, respectively.

Table 7-14: Energy and emission values for the scenario with additional renewable energy

Generation [TWh] PEVs (}l}erwgﬁf] source CO[Zg Zr(nvi;lsli]ons
Fossil ~ RES-E Neg. residual load Fossil RES-E Thermal Total average
Excluding
PEVs 179.33  325.15 -3.20 718.87 256.76
Last trip 181.56  344.27 -5.23 223 16.91 703.37 245.00
DSM 179.69  350.15 -3.28 0.35 24.71 714.46 243.48
V2G 178.57  350.48 -2.08 -0.77 26.17 720.88 244.02

7.5.3 Conclusions

This study investigates the utilization of thermal power plants and renewable energy
sources including and excluding the electricity demand of plug-in electric vehicles in
Germany. Compared to approaches which use the average CO, emissions of the power
plant park, the methods used here allow the electricity consumption of plug-in electric
vehicles to be directly assigned to individual power plants and therefore provide much
more accurate results. The European CO, emission trading system is not considered by
the simulation approach and, theoretically, would result in additional CO, emissions of
zero (see Chapter 2.2.4). The conclusions in detail are:

e For the case study made, but also for other electricity systems, the CO,
emissions from the marginal power plants are higher than the average of the
total power plant mix (McCarthy et al., 2010). More RES-E magnifies this effect
because RES only very rarely function as marginal power plants.

e On the one hand, smart charging or demand-side management can increase the
share of RES acting as marginal power plants compared to “dumb or last trip
charging. In the case study, it was possible to increase the share of RES-E from
1.85 % to 8.06 % for DSM and to 10.35 % for V2G. On the other hand, smart
charging also results in a higher utilization of power plants with low marginal
costs. In the case study this resulted in a higher utilization of coal and lignite
which generate electricity with high CO, emissions.

e A higher utilization of base load power plants can be positive in terms of CO;
emissions if combined cycle gas turbines or combined heat and power are used
(Sioshansi et al., 2011). However, the expected price spread between coal and
gas as well as the installation of new power plants in the past (IEA, 2011)
indicate that coal is more likely to be dispatched as the marginal power plant for
smart charging PEVs in many power systems of the world.

e For the case study, the positive effect in terms of higher RES utilization is not
high enough to compensate for the higher utilization of CO,-intensive power
plants and leads to an increase in emissions. In detail, electric driving results in
100 g CO; equivalent per kilometer for last trip charging and 113 and 116 g CO,
equivalent per kilometer for DSM and V2G, respectively. This is only a minor
emission reduction compared to conventional vehicles.

"2 Including the RES mix of wind and photovoltaic generation results in CO, emissions of 115.25 g/kWh
for last trip charging and 53.80 g/kWh for DSM. Assumptions: wind 21 g CO,/kWh and 76.2 % share
of fluctuating RES; PV 106 g CO,/kWh and 23.8 % share of fluctuating RES.
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e To improve the life cycle emissions of electric vehicles, governments,
automotive companies and drivers are considering the installation of additional
RES-E. This strategy would result in a significant reduction of CO, emissions.
In the case study, smart charging achieved a higher reduction than last trip
charging (2 g for DSM versus 16 g CO, equivalent per kilometer) if additional
RES-E are installed because less controllable power is required for DSM
charging. For V2G, emissions from energy production are negative because a
small fraction of additional RES-E are included.

This chapter confirmed the importance of the electricity source for the life cycle
emissions from plug-in electric vehicles and showed that, even in an environment with a
very high share of RES-E, the marginal CO, emissions for electric driving can still be
very high. Significant emission reductions are possible if RES-E are used to power the
electric vehicles.

7.6 Revenues

The possible profits due to smart charging are mainly affected by the costs for
infrastructure, the operation of a smart charging control system and battery ageing as
well as revenues from system services, energy arbitrage or load shifting. As
summarized in Chapter 2.3.5, at today’s costs and revenues, profits are only small or
even negative. Future perspectives are characterized by high uncertainty about revenues
and costs. Nevertheless, the following chapter reveals potential revenues on day-ahead
energy markets which could act as consumer incentives. The chapter is structured as
follows. First the PowerACE clearing prices and daily price spreads are discussed. Next,
electricity costs are analyzed with respect to the electric driving share, yearly driving
distance and charging strategy. Finally, a summary of the results is provided.

7.6.1 Electricity price

The PowerACE clearing price is used to calculate the fleet average electricity price for a
specific charging strategy. The clearing prices are multiplied by the fleet operation and
average fleet prices are calculated.

The marginal cost base peak spread between GT (152 euros/MWh) and a coal power
plant (81.2 euros/MWh) is 71.6 euros/MWh for the GER 2030 scenario. Including RES
with marginal costs of zero theoretically increases the spread to 152 euros/MWh.'" In
contrast, the differences between the average prices of the charging strategies resulting
from the simulation conducted here are much lower. Without mark-up, DSM and V2G
are only 2.3 ct/kWh and 3.3 - 3.5 ct/kWh better, respectively, than last trip charging.
Using the mark-up for power plant bid calculation increases the average spread to 4.5
and 7.0 - 7.5 ct/kWh (see Figure 7-17).

'3 For the assumptions, see Figure 7-10.
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Figure 7-17: Average electricity price for different charging strategies

Note: The PowerACE clearing price does not include taxes and other costs or profits that are not reflected in the day-
ahead market as introduced in the PowerACE model. DSM: Demand-side management; V2G: vehicle-to-grid; Depth
of discharge (DoD) and energy throughput (Ah) are used to account for battery ageing.

Comparing the theoretical spread with the price spread realized reveals that actually
reachable spreads are much lower. There are two main reasons: First, last trip charging
is not necessarily conducted in the time period with the highest price. Considering the
frequency of the residual load quantile sections shown in Figure 7-4 indicates that early
evening is the period with the highest residual load and therefore the highest prices.
Despite this, residual load is low about 20 % of the evening period. Hence, the
probability of high prices in the early evening is high but low prices are also possible.
Second, the residual load fluctuation on most days does not result in a situation with a
high and low residual load, which is necessary for a short-time storage to realize profits.
The base and peak residual load depend on the RES-E fluctuation. For Germany —
dominated by wind with event-based characteristics — longer periods with high or low
residual load are typical. Photovoltaic generation correlates with the load, which buffers
the base peak residual load spread.

The frequency of the maximum obtainable price spreads over one day calculated by the
PowerACE simulation is given in Figure 7-18. The average spread is 57 euros/MWh
and 81 euros/MWh with and without mark-up price, respectively. Spreads over
100 euros/MWh are infrequent in the simulation without mark-up. Most daily spreads
are within the range of 40 — 60 euros/MWh. The spread between DSM and last trip
charging (see Figure 7-17) therefore seems reasonable considering that last trip charging
is not exclusively realized in the hour with the highest prices and DSM with the lowest
prices of one day. In the simulation including the mark-up price, maximal daily price
spreads over 100 euros/MWh become more frequent. In particular, price spreads vary
more compared to the simulation without mark-up and compared to values observed in
the 2008 and 2009 EEX market (see Appendix A.5, Figure A 18).
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Figure 7-18: Frequency of maximum daily electricity price spread

Note: PowerACE simulation results with charging strategy: Demand-side management (DSM); GER: Germany.
7.6.2 Electricity costs

Beside the price spread, driving behavior, battery size and electric driving share all
influence the savings due to smart charging. A higher yearly electricity demand
increases the possible revenues of smart charging.

For last trip charging, the electric driving share is lower compared to smart charging
(include DSM and V2G). This is due to different infrastructure assumptions (see
Chapter 7.2). Furthermore, battery size and yearly driving distance affect the yearly
electricity consumption. Figure 7-19 shows the electric driving share over the yearly
driving distance for the two assumptions made about charging opportunities. The
variation at constant driving distance and charging strategy indicates the different
electric driving share due to the different battery size in the various PEVs. The gain in
driving share is clearly visible for a battery size of 4.5 kWh and 12 kWh, whereas this
starts to decline again for larger batteries. Naturally, more frequent charging also
increases the electric driving share. Because of more frequent longer trips, a higher
yearly driving distance reduces the electric driving share. Hence, using average driving
shares for the cost calculation results in overestimating the savings in operation
expenditures for higher driving distances. '**

"4 Note: A higher driving distance still reduces the total costs of ownership compared to gasoline
vehicles. Therefore, the effects on the results (section 4.1.2) with criteria defined in
(Biere et al., 2009) using average assumptions are small.
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Figure 7-19: Electric driving share for last trip and smart charging

Note: Sample size 1203 vehicles; stochastic driving simulation and vehicles with different battery size (see section 6)
cause variations even at constant yearly driving distances; Charging opportunities: Smart charging permanent
available; Last trip charging (LT) only after the last trip.

Electricity costs are a linear function of the electricity demand for DSM and last trip
charging (for DSM see Figure 7-20). This is intuitive for last trip charging because no
dispatch decision is possible. For DSM, a larger battery could facilitate a longer grid
management time and therefore the opportunity for additional savings. However,
additional DSM savings with a larger battery are not obtained with the batteries
implemented and savings remain a function of the demand (see Appendix AS,
Figure A-17). For V2G, savings are affected by battery size and electricity demand. A
larger battery allows higher energy arbitrage which results in a higher income and
reduces the average price paid per kWh. Figure 7-20 shows the savings for smart
charging compared to the costs for last trip charging with the same electricity demand.
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Figure 7-20: Savings for smart charging compared to instant charging after each trip.

Note: Electricity prices and driving behavior result from a PowerACE simulation with price mark-up and battery
ageing based on depth of discharge; DSM: Demand-side management; V2G: Vehicle-to-grid; Numbers depict battery
size in kWh.
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For DSM, yearly savings are between 50 and 100 euros for PHEVs (25) with a 4.5 kWh
battery. The PHEVs with a 12 kWh battery achieve savings between 100 and 120 euros.
For the BEV, a higher efficiency is assumed. Therefore, the demand and savings of the
BEV with a 15 kWh battery are lower than PHEVs’ (12 kWh) savings and demand. For
V2@, savings are between 100 and 250 euros depending on battery size and yearly
electricity demand. The costs for battery degradation are considered in this estimation,
but additional costs - e.g. for smart charging equipment and the operation of PEVs pools
— are not included and are expected to be disproportionately higher for V2G.

7.6.3 Conclusions

This chapter indicated that PEVs can realize savings due to smart charging. Price
spreads and savings due to demand response increase compared to today’s wholesale
markets. However, revenues are still relatively low and do not encourage the high
investments needed for the smart charging technology. Therefore — as pointed out in
Chapter 2.3 — components available in the vehicles should be used to implement smart
charging. The extra savings made by switching from DSM to V2G charging are lower
than 50 euros/a for small batteries. Taking additional V2G investment for power
electronics and uncertainty about the battery ageing into account indicates that DSM
could be more attractive.

Comparing the savings in operating costs due to electric driving with a gasoline vehicle
and considering different battery sizes (influences the electric driving share) and
charging strategies reveals that major savings can be achieved with electric driving (see
Figure 7-21).
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Figure 7-21: Operational expenditures for different charging strategies.

Assumptions: Electricity prices include PowerACE clearing prices plus a fixed price component of 15 ct/kWh.
Gasoline vehicle: efficiency 5.8 1/100 km; gasoline price 1.8 euros/l; DSM: Demand-side management;
V2G: vehicle-to-grid.

The significance of the charging strategy used is small compared to the switch from
gasoline to electricity. Hence, to maximize savings, consumers should first increase
their electric driving share. In terms of revenues, smart charging only seems to be
attractive if it does not restrict driving and additional investments are low.
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The price calculation used implies a specific scenario. A different development of fuel
or CO; prices could affect the results and increase price spreads. The used mark-up
takes costs from underutilized power plants into account, but strategic bidding behavior,
which could also increase price spreads, is not included in the simulation. Further,
wholesale prices only account for a fraction of about 25 % of today’s retail electricity
prices in Germany. Hence, to enhance consumer incentives, fixed price components
such as grid fees and taxes could also be changed to variable price components. Note:
This also results in a price risk for consumers and could reduce the acceptance for RTP-
based electricity rates.

7.7 Sensitivity analysis

The results are associated with a high degree of uncertainty because the generation time
series of fluctuating RES has such a large impact as do the assumptions on the
development of the vehicle fleet and the electricity system. Therefore, a sensitivity
analysis is key to ensure a broader basis of the results. First, RES generation time series
are analyzed for additional weather years. Then, the grid connection power as well as
battery size and costs are investigated. After this, mobility behavior and infrastructure
aspects are examined to account for possible uncertainties. Finally, the share of each
fluctuating generation technology in total fluctuating generation is varied to investigate
the storage capability for specific RES technologies.

7.7.1 Time series

The generation time series of fluctuating RES-E are affected by the specific weather
conditions in a simulation reference year in terms of fluctuation and yearly generation.
In the following, the analysis focuses on the fluctuation of RES-E. Therefore, the yearly
energy generation and load are kept constant as defined in the GER 2030 scenario. This
enables an exclusive analysis of the effect of the fluctuation characteristic. Data from
two different sources is available for the offshore time series. The scenarios GER 2007
and GER 2007 (IWES) are distinguished to account for the two methods
(Schubert, 2011 and IWES, 2011) used to generate the data (see Chapter 3.2).

The ratio of 1-(cfneg(pgv)/cfneg(Rs))l15 or the negative residual load consumed due to PEVs
charging and the ramp rate factor are used as the main indicators to describe the
sensitivity of the different time series. The results vary between 8 % and 12 % for the
negative residual load consumed (see Figure 7-22). In the case of smart charging, there
is greater variation in the results for different reference years. The highest consumption
of the negative residual load of about 64 % is possible with 2008 data whereas only
50 % of the negative residual load can be consumed by PEVs for the 2009 time series.
For V2G, surplus RES-E consumption is between 63 % in 2009 and 82 % in 2008. For
all smart charging cases the year 2008 results in the highest and 2009 in the lowest
consumption of negative residual load. Comparing the GER 2007 and GER 2007
(IWES) results reveals that the method used to generate the offshore time series affects
the negative residual load that can be consumed. The values range from 0.8 percent
points for DSM to 2.7 and 3.7 percent points for V2G.

"' Here, PEV describes one of the charging strategies: last trip, DSM or V2G.
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Figure 7-22: Consumption of negative residual load and ramp rate factor for different time series

Note: V2G includes the price mark-up; DSM: Demand-side management; V2G: Vehicle-to-grid; Depth of discharge
(DoD) and energy throughput (Ah) are used to account for battery ageing; IWES: Fraunhofer Institute for Wind
Energy and Energy System Technology; GER:Germany; RES-E: Electricity from renewable energy
sources.

For the ramp rate factor the 2007 and 2009 values are 2 % to 10 % higher than the
reference values of 2008. Comparing GER 2007 and GER 2007 (IWES) shows that for
smart charging, GER 2007 (IWES) values are about 5 % lower than for GER 2007.
Details on all the evaluation parameters introduced in Chapter 3.3 are available in the
Appendix A6.

7.7.2  Grid connection power

The grid connection power determines the time needed to discharge and recharge PEVs’
batteries. Comparing the time necessary for completely recharging a typical PEV
battery and for filling a gasoline fuel tank shows that this takes longer for PEVs at
standard residential grid connections. Even though the majority of trips are short and
higher power would therefore only slightly reduce the charging time (Wietschel, 2009),
high power grid connections are still being discussed as an important aspect for PEVs.
Apart from reducing the required charging time, this is also being considered to extend
the range of BEVs. BEVs using high power charging compete with PHEVs and BEVs
using battery swapping. The first cost estimations comparing PHEVs with smaller
batteries and BEVs with extended high power or battery swapping infrastructure
indicated cost advantages for the PHEVs (Kley, 2011). From the perspective of the
distribution grid operator, high power charging results in a greater workload on the grid
and higher grid infrastructure costs. Further, high load peaks at system level require
additional peak capacity. The effects of different grid connection power values are
therefore very relevant when analyzing PEVs as part of the electricity system.

The simulation model used is hourly resolved. This implies restrictions when analyzing
high power values because only hourly mean values can be used. To take this aspect
into account, the hourly and quarter-hourly time resolution results are compared with
each other for last trip charging (Appendix A6. In the GER 2030 reference scenario —
where the grid connection power is 4 kW for PHEVs and 8 kW for BEVs — the increase
of the PEV peak load is about 1 %. For a grid connection of 44 kW, differences are in
the range of 20 %. For high power values therefore the quality of the results is restricted
and real values are expected to be higher.

To analyze the effect of different grid connections, power values of 2 kW, 12 kW,
22 kW and 44 kW are applied for all PEVs in the GER 2030 scenario simulation. The
reference scenario is the one defined in Chapter 6. Evaluating the result parameters (see
Figure 7-23 and Appendix A6 shows that the consumption of the negative residual load
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is only slightly affected by different power values. For DSM charging with 2 kW grid
connection, the ratio of cfheg (PEV)''° to cfreg (RS)'" is reduced by 2 percent points
compared to the reference case. For V2G, the reduction of the negative load
consumption is 3.7 percent points for V2G with DoD battery ageing and 3 percent
points for V2G Ah. If the grid connection power is changed stepwise from the reference
case to 44 kW, the consumption of negative residual load remains the same or is only
slightly increased. Considering that smart charging with a lower grid connection power
of 2 kW reduces the electric driving share by about 1 percent points compared to the
reference case''® means grid connection power can be rated as a parameter which only
has a small influence on negative residual load consumption.
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Figure 7-23: Comparing results for varying grid connection power

Note: V2G includes the price mark-up; DSM: Demand-side management; V2G: Vehicle-to-grid; Depth of discharge
(DoD) and energy throughput (Ah) are used to account for battery ageing; The reference scenario uses a grid
connection power of 4 kW for plug-in hybrid electric vehicles (PHEVs) and 8 kW for battery electric vehilces
(BEVs) in average the grid connection power is 4.5 kW.

As a consequence of the method used, smart charging shows very low variations in peak
load due to the changed grid connection power. For last trip charging, increasing power
values also increases the peak load up to a charging power of 22 kW. For the 44 kW
simulation, the maximum peak load declines compared to 22 kW. Note, the model is
hourly resolved and uses hourly mean values. One reason for this reduction in peak load
between 22 kW and 44 kW is that, besides the amplitude, power also affects the time
course of the PEVs’ last trip charging curve. For last trip charging, a higher connection
power directs the demand to shift to the return time of the trip as indicated in
Figure 7-24. A low grid connection power widens the PEVs’ load curve. Hence, adding
the PEVs’ load curve to the residual load can result in a lower peak load, even if
charging power is increased.

116 Negative capacity factor including PEV demand.
"7 Negative capacity factor for the residual load (RS) excluding PEV demand.
""" Detailed driving shares for the simulation are given in the Appendix AS5.
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Figure 7-24: Effect of grid connection power on the PEVs’ load curve for last trip charging

Note: The reference scenario uses a average grid connection power of 4.5 kW.

To sum up, a higher grid connection power (> 12 kW) does not increase the
contribution PEVs can make to integrating RES-E in the GER 2030 scenario. This can
be explained by the power to energy ratio of storage in the analyzed scenario and for
PEVs in general. The high power does not allow the load management time or load
shifting period to be significantly increased. The load shifting potential is not restricted
by the power but by the energy available for load shifting and the battery size as shown
in the following sections.

7.7.3 Battery costs and size

The costs for mass-produced automotive lithium batteries are one of the most sensitive
parameters for the total costs of ownership calculation (e.g. see Kley, 2011). Because of
the relatively low production volume today and uncertainty about the precise
technology in the future, there is a large bandwidth of cost development assumptions.
Therefore, the assumed specific investments in batteries is adopted by plus and minus
20 % and 40 % in the GER 2030 reference case. The cost variation only affects the V2G
charging case. Results on the electric driving share, the grid management time as well
as last trip and DSM charging remain unchanged despite varying battery costs.

Reducing the battery costs increases the share of negative residual load that can be
consumed and reduces the ramp rate factor (see Figure 7-25). In terms of the negative
residual load consumed, DoD ageing is more sensitive to both cost increases and
decreases. The sensitivity to a cost increase is higher for DoD ageing than for Ah ageing
with regard to ramping. On the contrary Ah battery ageing is more sensitive than DoD
ageing to a cost decrease.
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Figure 7-25: Comparing results for varying battery costs

Note: V2G includes the price mark-up (Mup); V2G: Vehicle-to-grid; Depth of discharge (DoD) and energy
throughput (Ah) are used to account for battery ageing. The reference scenario uses a average battery price of
258 euros/kWh.
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For DoD-based battery ageing, the energy fed back into the grid increases from
4.4 TWh in the reference case to 5.6 TWh and 7.1 TWh with a 20 % and 40 % cost
reduction, respectively. For Ah with 6 TWh in the reference case, the same cost
reduction results in 7.3 TWh and 8.7 TWh of electricity fed back to the grid. The
sensitivity regarding the integration of RES-E is not very high but detectable and differs
depending on the ageing method used to model PEVs’ batteries.

The assumptions about battery size in the GER 2030 scenario are restrictive and small
batteries in combination with PHEVs are favored. Nevertheless, vehicle concepts with
bigger batteries are also part of the research discussion on PEVs. Consumer surveys
indicate that the electric driving range and therefore the battery size are of great interest
(Peters al., 2011). Varying the battery size therefore provides valuable results for this
analysis compared to other research. To analyze the battery size variation, the total fleet
is modeled with 15 kWh and additionally with 30 kWh of usable battery storage for all
vehicles. In the reference case GER 2030, mainly 4.5 kWh (PHEV 25) and 12.5 kWh
(PHEV 57) of usable storages are assumed.

Battery size affects the electric driving share of PEVs. Especially for last trip charging,
an increase in battery size increases the electric driving share. Compared to the
reference case, the electric driving share of 53.7 % increases to 69.6 % with 15 kWh
batteries and to 85.6 % with 30 kWh batteries. For smart charging or a full availability
of infrastructure, the share increases from 70.3 % to 79.8 % and to 89.3 %, respectively.
This affects the electricity demand of the PEV fleet and, in the case of smart charging,
the electricity available for load shifting."'"

As explained, bigger batteries can increase the negative residual load consumption for
all charging strategies. Compared to DSM, V2G DoD charging results in a
disproportionately large and V2G Ah in a disproportionately low increase (see
Figure 7-26). In terms of DoD ageing, not only the battery size but also the battery cost
function is affected by a change in battery size. The negative residual load consumption
increases even more for V2G DoD due to the energy available at lower costs.

The same tendency is observed for the smart charging ramp rate factor. The highest
reduction with 17 % is observed for V2G DoD with 30 kWh batteries. For last trip
charging, the ramp rate factor rises for both simulated cases. The reduction of the ramp
rate factor for a 30 kWh battery compared to a 15 kWh battery could be caused by a
higher diversity in the state of charge after the last trip. For a battery of 15 kWh, most
batteries are empty after the last trip. Hence, the charging time is the same for many
PEV agents. This causes high simultaneity in stopping the charging process. Overall,
differences in the ramp rate factor for last trip charging are only in the range of 2 %
compared to the reference values.

"' The PEVs’ demand for last trip charging is 19.2 TWh (reference), 24.8 TWh (15 kWh) and 30.5 TWh
(30 kWh) and 25.0 TWh (reference), 28.8 TWh (15 kWh) and 32.3 TWh (30kWh) for smart charging.
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Figure 7-26: Comparing results for different battery sizes

Note: V2G includes the price mark-up; DSM: Demand-side management; V2G: Vehicle-to-grid; Depth of discharge
(DoD) and energy throughput (Ah) are used to account for battery ageing. Numbers depict battery size in kWh. The
reference scenario uses a average battery sitze of 10.3 kWh.

The sensitivity of the battery size to the integration of RES-E is very high. Nevertheless,
from an economic point of view, PEV types with smaller batteries are more likely
(Plotz et al., 2012). Therefore, varying the battery size is considered to be less relevant
compared to parameters such as RES-E time series.

7.7.4 Mobility behavior

Drivers’ mobility behavior influences the availability of PEVs in the electricity grid.
The typical mobility behavior of current vehicles was discussed in Chapter 4.2 and
possible PEV users selected. This selection is based on economic and infrastructure
aspects but only represents one possible scenario for the future. Therefore, the
sensitivity of mobility behavior is also investigated using the following variations.

As well as the reference scenario using filtered data of the MID survey, driving data is
used from the MOP survey. For MOP data, deterministic and stochastic driving are
distinguished. The stochastic data is implemented using probabilities as presented for
the MID survey in Chapter 4.2.3 and Chapter 5.4.7. The MOP data used is unfiltered
and therefore the electricity demand and yearly driving distance are smaller than for the
MID data used. Additionally, a commuter and a stationary storage scenario are
analyzed. For the commuter scenario on weekdays, a first trip starting in the morning at
7:30 am and a second trip in the late afternoon at 5:00 pm are assumed for all PEVs
defined in the GER 2030 scenario. The driving distance is uniformly 30 km for each of
the two trips. No PEV trips are assumed at weekends. No driving is assumed to occur in
the stationary storage scenario. Here, only V2G charging is conducted. The number of
PEVs equals the number of stationary storage devices with the battery size and grid
connection power defined in the GER 2030 reference scenario.
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Figure 7-27: Comparing results for different mobility behavior

Note: V2G and stationary storage includes the price mark-up; V2G: Vehicle-to-grid; Depth of discharge (DoD) and
energy throughput (Ah) are used to account for battery ageing; MOP: German Mobility Panel;The reference
scenario uses mobility behavior according to Mobility in Germany 2008 (MID, 2010).

Analyzing the results reveals that the deterministic and stochastic MOP data are roughly
the same for smart charging (see Figure 7-27). For last trip charging, the deviation is
higher in electricity demand — 15.78 TWh for the deterministic and 16.43 TWh for the
stochastic data — and the negative residual load consumed — 17.0 % for the deterministic
and 15.4 % for the stochastic data. This indicates that the last trip for the stochastic data
does not perfectly equal the last trip for the deterministic data. This is because the
stochastic method used does not account for combinatorial probabilities in order to
simplify the mobility simulation. Results for smart charging are not significantly
affected.

For the commuter scenario, last trip charging deviates significantly from the reference
case. The electric driving share increases to 78.2 %. With a yearly driving distance of
15,180 km per vehicle, the total PEV fleet’s electricity demand amounts to 27.6 TWh.
The negative residual load consumed is only 0.5 % and the ramp rate factor increases
noticeably from 2.3 % to 3.7 %. Further, the simultaneous arrival time after the last trip
results in a peak load of 151.65 % compared to the GER 2030 total system load. For
smart charging, the electric driving share is 92.2 % and the electricity demand is about
32.6 TWh. For all smart charging strategies analyzed, the consumption of the negative
residual load is slightly lower than in the reference case. The ramp rate factor remains in
the same range as for the reference scenario. This shows the smart charging mechanism
applied is efficient to avoid simultaneous actions of the vehicle fleet.

The results for the stationary storage simulation are unexpected. One would expect that
driving restricts the capability of PEVs to provide storage capacity for the electricity
system. In contrast, the results indicate a lower consumption of negative residual load
and higher ramp rates for stationary storage. For both V2G ageing assumptions, the
restrictions due to mobility behavior are lower than the gains due to the demand
available for load shifting. The energy fed back to the grid is 7.4 TWh and 7.3 TWh for
V2G DoD and Ah, respectively. In the reference case, the energy fed back is 4.4 TWh
for V2G DoD and 6.0 TWh for V2G Ah. This indicates that restrictions due to mobility
behavior are higher for DoD-based battery ageing.

The mobility behavior affects the contribution of PEVs to balancing fluctuating RES-E.
Variations are not very high for smart charging and are mainly caused by the changing
energy demand due to different mobility behavior. The commuter scenario is found to
be highly sensitive for last trip charging because of the strong simultaneousness.
Comparing stationary storage with PEV storage indicates that the value of the demand
available for load shifting due to driving is higher than the V2G restrictions caused by
mobility behavior.
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7.7.5 Infrastructure

Infrastructure is a very important aspect, especially in the case of BEVs. Public
infrastructure is necessary for acceptance reasons, to convince consumers that running
out of fuel is very unlikely (Peters et al., 2010) even though (Kley, 2011) shows that
public infrastructure usually does not recoup its investment and that charging at home is
favorable from an economic point of view. Constantly available infrastructure is
assumed in the reference scenario GER 2030. Additional simulations with a charging
opportunity at home and at work as well as only at home are conducted to account for
the sensitivity of available infrastructure.

Infrastructure is assumed to be available for last trip charging and plays no other role in
this case. For smart charging, infrastructure availability affects the electric driving
share.'?” Because of the assumption that DSM and V2G are only possible if the parking
time is greater than the charging time, the electric driving share is the same for DSM
and V2G (see right side of Figure 7-28). The driving share varies slightly in general and
for smart charging because of the simulation method. The electric driving share is about
70 % in the case of overall infrastructure availability and 66 % if only home charging is
possible. One would expect that the reduced availability of infrastructure reduces
electricity demand and that therefore the consumption of negative residual load is lower
as well. But the opposite is true for DSM in the conducted simulation (see DSM values
on the left side of Figure 7-28). The reason for the increase in the negative residual load
consumed is the energy available in a load management period. Refilling the vehicle
after each trip during the day reduces the energy demand after the last trip of the day.
Because of the much higher grid management time after the last trip (see Chapter 7.2.2),
a lower state of charge after the last trip can be of value for the grid integration of RES.
Obviously, this would also result in higher gasoline use and higher operation
expenditures.

The reference case allows a better integration of the negative residual load for V2G. The
higher availability of infrastructure increases the flexibility in managing PEV storage
capabilities. If high price spreads are available, energy can be fed back to the grid and
the electricity demand available to consume the negative residual load is higher.
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Figure 7-28: Sensitivity of infrastructure to negative load consumption and electric driving share

Note: V2G includes the price mark-up; V2G: Vehicle-to-grid; Depth of discharge (DoD) and energy throughput (Ah)
are used to account for battery ageing; The reference scenario uses permanent available charching infrastructure.

129 Note: It is assumed that vehicles plug-in after each trip to maximize the electric driving share and to
therefore minimize operating expenditure.
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In conclusion, infrastructure availability has a small effect on the negative residual load.
The negative residual load that can be consumed varies between 64.2 % and 64.7 % for
DSM and between 78.6 % and 76.8 % for V2G.

7.7.6 Share of fluctuating generation technology

The fluctuation of RES-E is crucial for analyzing the contribution of storage devices in
electricity systems with high shares of RES. The previously conducted analyses on the
CA 2030 scenario and the GER 2030 scenario with different generation and load time
series underline the importance of the resulting residual load for the dispatch of storage
and PEVs. Besides the time series, the energy produced from different fluctuating
generation technologies or the capacity installed also strongly affect the residual load
curve. To account for this issue and to further investigate the effects of photovoltaic
versus wind generation, the share of photovoltaic power in total fluctuating energy
generation is varied. The energy produced from wind and photovoltaic is 239 TWh in
the GER 2030 scenario. Keeping the total energy generation of fluctuating RES-E
constant, the share of photovoltaics is varied between 0 % and 45 %.

The results shown in Figure 7-29 indicate that the negative residual load is strongly
affected by the composition of fluctuating generation technologies. Starting with a zero
percent share of photovoltaic generation — here 239 TWh total fluctuating generation
are provided by wind onshore and offshore — the negative residual load declines from
4.8 TWh to 1.9 TWh in the reference scenario GER 2030. For the reference scenario the
share of PV is 24 % of the fluctuating electricity generation. Increasing this share to
45 % makes the negative residual load increase to 10.2 TWh. This indicates the limited
capacity credit of photovoltaic generation.
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Figure 7-29: Negative residual load for different photovoltaic shares

Note: RES-E PV 0.0 %: wind onshore 47.8 % offshore 52.2 %; RES-E PV 15.0 % : wind onshore 40.6 % offshore
44.4 %; Reference: PV 23.8 % wind onshore 36.4 % offshore 39.7 %; RES-E PV 30.0 %: wind onshore 33.5 %
offshore 36.5 %; RES-E PV 45.0 %: wind onshore 26.3 % offshore 28.7 %. V2G includes the price mark-up;
PV: Photovoltaic; RES: Renewable energy sources; V2G: Vehicle-to-grid; Depth of discharge (DoD) is used to
account for battery ageing: PEVs: Plug-in electric vehilces.

The remaining negative residual load and the percentages of negative residual load that
can be consumed are presented in Figure 7-30. The highest percentage of negative
residual load can be used for DSM in the reference scenario GER 2008. For V2G, the
scenario with 30 % fluctuating PV generation enables the biggest integration of
negative residual load with 82 %. In absolute values, the RES-E PV 45 % scenario with
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the highest negative residual load allows the largest amount of fluctuating energy to be
integrated. In this case more than 20 % of the PEV demand can be covered by RES-E.
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Figure 7-30: Comparing results varying the share of fluctuating generation technologies

Note: RES-E PV 0.0 %: wind onshore 47.8 % offshore 52.2 %; RES-E PV 15.0 % : wind onshore 40.6 % offshore
44.4 %; Reference: PV 23.8 % wind onshore 36.4 % offshore 39.7 %; RES-E PV 30.0 %: wind onshore 33.5 %
offshore 36.5 %; RES-E PV 45.0 %: wind onshore 26.3 % offshore 28.7 %. V2G includes the price mark-up;
PV: Photovoltaic; RES: Renewable energy sources; V2G: Vehicle-to-grid; Depth of discharge (DoD) is used to
account for battery ageing: PEVs: Plug-in electric vehilces.

Scenarios with a higher share of photovoltaic generation result in a higher ramp rate
factor of the residual load. For smart charging, ramp rate reduction increases with
higher photovoltaic generation shares. This indicates a good capability of PEVs to
reduce ramping caused by photovoltaic generation.

From the perspective of the total electricity system, it is preferable to have a RES
generation share which results in a low negative residual load. The reference scenario
results in the lowest residual load under the time series and the total amount of RES-E
assumed here.
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7.7.7 Conclusions

The analysis reveals that especially the RES generation time series and technology
shares are highly sensitive. Battery size also has a strong influence on the contribution
of PEVs to balancing fluctuating generation. The conclusions in detail are:

The consumption of the negative residual load varies strongly between different
weather years, by 14 % between 2008 and 2009.

The grid connection power has a stronger effect on system load in the case of
last trip charging. Besides the increase in peak power, a shift of the load profile
to the arrival time of the last trip can be observed. The sensitivity to grid
connection power is of low relevance for smart charging.

Battery costs and size are most sensitive in DoD-based battery ageing. A 40 %
cost increase reduces the negative residual load consumed by about 5 %,
whereas a 40 % cost reduction increases the negative residual load consumption
by 4 %. For the same cost variation, the ramp rate factor varies between minus
15 % and plus 10 %.

Increasing the battery size to 30 kWh for all PEVs in the vehicle fleet results in
an increase in the negative residual load consumed, especially for V2G. V2G
DoD allows for the maximum 12 % increase of negative residual load
consumption. However, bigger batteries seem relatively unlikely from a cost
perspective.

The sensitivity of mobility behavior is lower for smart charging. For last trip
charging, uniform driving behavior as is expected for work commutes strongly
increases ramp rates and the peak load of the PEV fleet.

Comparing stationary and mobile storage reveals that mobility behavior
restricts V2G performance. But the gain in load shifting capability due to the
electricity demand of electric driving is higher than these restrictions.
Comparing pervasive charging infrastructure with home charging only reduces
the electric driving share by 4 percent points, from 70 % to 66 %. The
infrastructure sensitivity to the negative residual load is low.

The negative residual load consumed varies between 40 % and 64 % for DSM
and between 50 % and 82 % for V2G DoD depending on the generation
technology mix. Together with the RES generation time series, the technology
mix of fluctuating generation therefore has the highest influence on the negative
residual load consumed.

The sensitivity analysis underlines the high importance of the RES technology mix and
the weather years for the contribution PEVs’ batteries can make to balancing fluctuating
generation.
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7.8 Model limitations

The PowerACE simulation model can only approximate the electricity market and
power system. Assumptions have to be made to answer the research question, especially
regarding the specifications and market penetration of plug-in electric vehicles as well
as the installed capacity of fluctuating generation from solar and wind. Besides the
scenario assumptions (Chapter 6), the simulation model faces the following main
method-related limitations:

e Perfect transmission is assumed within the investigated system. A detailed
simulation of the German electricity grid is beyond the scope of this thesis due
to the high complexity and large amounts of data needed. In many cases, grid
extensions or generation curtailments seem economically favorable compared
to the installation of storage devices (DENA, 2010). The distribution grid is
modeled by applying a simplified approach (Chapter 5.4) which is not able to
account for the complexity and diversity of the German grid, but which can
serve as a basis for further research.

e The management mechanism for distributed devices applied in the simulation
model does not account for the complexity and communication structure of
smart grids. The approach further would involve retail electricity consumers
being treated individually and receiving individual price signals.

e The time resolution of the main model is hourly. Therefore, all presented results
indicate hourly mean values. Especially in the case of peak power, this
methodological restriction can lead to power values being underestimated.

e The research focus here is on operation scheduling. Perfect foresight is assumed
for mobility behavior, fluctuating generation and system load. In practice, this
is obviously not the case and system balancing mechanisms are needed to
continuously balance supply and demand. System balancing and forecast
deviations are not considered.

e For plug-in electric vehicles, it is assumed that vehicles are connected to the
grid while parked. Furthermore the time between trips is known and used for
demand-side management. Consumer acceptance of making the vehicle
available and reacting to price incentives is not considered. Therefore, the
results represent an idealized case.
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8 Conclusions and outlook

The analysis conducted describes how fluctuating generation from renewable energy
sources affects the load curve and how plug-in electric vehicles can be used to balance
the resulting residual load. Further, marginal CO, emissions and monetary benefit due
to smart charging are discussed.

An agent-based method was developed on the basis of the electricity market model
PowerACE (Sensfuf3, 2007) and applied to investigate a 2030 scenario for Germany and
California. The PowerACE model provides a price signal as a basis to control the
operation of plug-in electric vehicles. Automated demand response using one price as a
control signal result in a high simultaneousness of operation because the objective
function of all players is to minimize costs. This interrelation is observed in the
simulation model while using time-of-use rates and in California where time-of-use
prices are applied to control plug-in electric vehicles at present (Schey et al., 2012).
Therefore, individual price perspectives and variable grid fees were used to overcome
the problem of simultaneous reaction in the simulation. In current practice different
treatment of retail customers is not possible. However, the applied control mechanism
considers the overall electricity market and distribution grid aspects and allows to
achieve an operation of flexible demand close to the social optimum. '*!

Vehicles are simulated as agents considering individual driving behavior and battery
discharging costs. Driving behavior defines the main smart charging optimization
parameters, the time period between trips and the energy taken from the storage. To
model driving behavior, trips are generated using probabilities drawn from a mobility
survey (MID 2010) and adjusted to account for particularities of electric vehicle users
(Biere et al., 2009). This allows to assign an individual driving behavior data set to each
vehicle agent participating in the simulation. Small deterministic data sets or average
driving behavior applied for a large fleet of vehicles can result in simultaneous charging
operation and is therefore not suited to model the operation of electric vehicle fleets.
Considering battery degradation is of high relevance to model vehicle-to-grid but faces
uncertainties caused by the high complexity of battery aging processes. To calculate the
discharging costs, two different simplified approaches, considering energy throughput-
based aging (Peterson et al., 2009) and depth of discharge-based aging (Rosenkranz,
2003) are applied. Depth of discharge-based aging results in swallow cycling and a
lower amount of energy fed back to the grid compared to the energy throughput method.
Further depth of discharge-based aging increases the complexity of the optimization
algorithms because the state of charge affects discharging costs. To account for depth of
discharge-based battery aging therefore a graph search optimization algorithm
scheduling the charging and discharging behavior is applied.

Within the framework of a research project the algorithm to schedule the charging
operation of vehicle agents within the simulation is also implemented in a Volkswagen
Golf Variant “TwinDrive” plug-in hybrid electric vehicle. This enables to test smart
grid software applications in a simulation environment and to investigate how smart
grid applications affect the power system and the electricity market. Vice versa, the
value of a specific smart grid application and the interrelation with other applications
can be analyzed with the introduced simulation model. This proves a main advantage of
agent-based simulation, which permits a customized approach and allows to solve a
complex problem while including control algorithms implemented in real smart grid
applications.

2! The multi-agent simulation do not allow for a mathematical provable optimum.
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Investigating the contribution of plug-in vehicles integrating fluctuating generation
requires measures to describe the initial and the resulting situation of the power system.
The high diversity of time-resolved generation requires parameters which go beyond the
energy production per year or the base and peak power. A novel set of parameters—
defined in this thesis — enables a more precise description of the load duration curve,
ramp rates and fluctuation. Analyzing scenarios for both the German and Californian
power system indicated that it is still difficult to capture fluctuation with a few
significant parameters. Nevertheless, the introduced method does allow a more detailed
characterization and comparison of electricity system scenarios and provides a good
basis for energy analyses of high levels of fluctuating generation.

Three main evaluation parameters were observed to quantify plug-in electric vehicles’
contribution to balancing fluctuating generation: the change in the minimum residual
load, the percentage of negative residual load that can be consumed, and the reduction
of residual load ramp rates. For all three aspects, plug-in electric vehicles make a
positive contribution to improving the grid integration of electricity from fluctuating
renewable energy sources. For demand-side management in the 2030 scenario for
Germany, the minimum residual load is reduced by 22 % or 7.4 GW; 64 % or 1.2 TWh
of the negative residual load can be consumed and the ramp rate factor is reduced by
25 %. Including vehicle-to-grid services allows better grid integration than demand
response only. Here, for the same scenario with depth of discharge-based battery aging,
the minimum negative residual load is reduced by 37 % or 12.6 GW; 79 % or 1.5 TWh
of the negative residual load can be consumed and the ramp rate factor is reduced by
41 %. However, because of disproportionately higher costs for vehicle-to-grid and high
uncertainty regarding battery ageing, demand shifting is still expected to be the more
promising mid-term charging strategy.

The life cycle CO, emissions from plug-in electric vehicles are mainly determined by
the electricity source. Applying average CO, emissions of the total power plant mix
results in a significant CO; reduction compared to vehicles using fossil fuels. This is
caused by the high level of renewable generation assumed in the simulation scenario.
Analyzing the precise emission increase due to the additional demand indicates that for
Germany marginal CO, emissions are higher than the total average. Fluctuating
generation only acts as a marginal power plant, if supply exceeds regular demand and
the residual load therefore is negative. This was the case in 3.2 % of the yearly
simulation period for wind and solar generation in the analyzed scenario. Even if plug-
in electric vehicles consume more electricity during these hours, it is not enough to
compensate for the marginal generation by fossil power plants during the rest of the
year. Hence, due to methodology, marginal emissions are likely to be higher than
average emissions. A higher level of renewable generation enhances this effect. The
installation of additional renewable energy sources therefore is necessary to guarantee a
significant reduction of CO, emissions while using plug-in electric vehicles.

A high level of non-dispatchable generation with very low marginal operation costs
affects the functionality of electricity markets. The price-reducing effects caused by
fluctuating generation and underutilized capacity of conventional power plants leads to
a financing gap of controllable peak capacity. Therefore, market bids including price
mark-ups to account for the total costs to operate a power plant are likely. This can
increase the price spreads on future electricity markets and therefore provide incentives
for demand response and storage. For the 2030 scenario, revenues from demand
response and vehicle-to-grid for a single consumer are found to be between 50 and
250 euros per year. It remains to be investigated, however, if these still relatively low
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incentives will suffice to entice consumers into smart charging. To overcome this
problem, making invariable electricity price components'** more flexible could be one
way to boost smart grid revenues in the future.

The presented results are highly sensitive to the fluctuation of solar and wind generation
time series. For California, the solar capacity credit is much higher than for Germany
because of the strong correlation with air conditioning loads. This effect reduces the
necessary peak power capacity and also the need for demand response in California. In
contrast, for Germany the need for peak power capacity is increasing in the applied
scenario. Also, the contribution that plug-in electric vehicles can make as a grid
resource is affected by the fluctuation of renewable electricity generation. The share of
the negative residual load consumed varies between 40 % in Germany with 2009
weather data and 73 % in California. The reliable daily pattern of solar and to a lesser
extend of wind generation in California favors the grid integration with plug-in electric
vehicles acting as a short-term storage. In contrast, high wind generation in Germany is
likely to occur for several days in a row. Due to the daily driving pattern, the limited
load shifting capacity of plug-in electric vehicle is less suited to balance longer periods
of high wind generation output. Hence, for Germany, plug-in electric vehicles are better
suited to balance the fluctuation of photovoltaic generation.

Parameters such as the grid connection power or infrastructure availability are less
relevant for the storage capabilities of plug-in electric vehicles. A higher grid
connection power only marginally increases the ability to integrate fluctuating
generation. In most cases, the standing time after a trip is sufficient to recharge the
battery even with a standard power connection. The availability of infrastructure affects
the electric driving share and consequently the electricity demand. Nevertheless, due to
the low grid management and shorter parking times in public places, a better availability
of infrastructure does not necessarily result in better load management capabilities.
Comparing stationary and mobile storage reveals that mobility behavior restricts
vehicle-to-grid performance. However, the gain in load shifting capability due to the
electricity demand of electric driving is higher than these restrictions. This reveals that
the dual use of the storage option is the key feature of smart grid devices.

Plug-in electric vehicles are not suitable for long-term storage or to store high amounts
of energy. To be able to manage very high levels of renewable electricity generation
therefore will require a portfolio of flexible conventional generation, new transmission
lines, long-term storage applications and additional demand-side options.

Suggestions for further research mainly arise from limitations of the simulation model
(see Chapter 7.8). Including more details in terms of transmission and distribution grids
as well as expanding the observed system to the level of the European network would
be valuable developments. Further research is needed in terms of distributed load
management mechanisms for price-based automated demand response applicable to the
mass market and including consumer acceptance. Distribution grid monitoring and the
allocation of reactive power are possible services plug-in electric vehicles can provide
to improve grid management. Besides plug-in electric vehicles, additional smart grid
devices, transmission networks, flexible generation units and other short- and long-term
storage options are required to guarantee a functional electricity system with a high
share of fluctuating generation. It is therefore vital that future research considers the
interaction, peculiarity and economic competitiveness of different instruments for
integrating fluctuating renewable energy sources.

122 Invariable electricity price components of retail electricity prices are grid fees or cost subsidy shares
caused by renewable energy sources.
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Figure A-1: Charging curve of Opel MERIVA battery electric test vehicle
Source: Opel, 2010; Note: Battery size 16 kWh; soc: state-of-charge
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A2. Characteristics of fluctuating generation

Table A-1: Duration curve parameters system load

Time series flh of cfo<os cfo-—08 reog  Phmin Ph.max

Load GER 2007 (ENTSO-E) 6336 72.33% 54.58% 17.81% 0.33  42.93% 100.00%
Load GER 2008 (ENTSO-E) 6441 73.53% 55.54% 17.99% 0.32  44.70% 100.00%
Load GER 2009 (ENTSO-E) 6300 71.92% 53.83% 18.08% 0.34  39.72% 100.00%
Load CA 2005 (CAISO) 4781 54.58% 40.31% 14.27% 0.35 36.29% 100.00%

Source: Own calculation data basis (ENTSO-E, 2011) and (CAISO, 2011)

Table A-2: Duration curve parameters wind

Time series flh cf cfgos  Cfg—08  Tes Poin Prax

Onshore GER 2007 (EEX) 1845 21.06% 95.58% 10.77% 0.10 0.59% 85.43%
Onshore GER 2008 (EEX) 1751  19.99% 100.00% 10.00% 0.10 0.56% 82.51%
Onshore GER 2009 (EEX) 1521  17.36% 91.93% 9.04% 0.08 0.32% 83.64%
Onshore CA 2005 (CAISO) 2530 28.88% 18.30% 10.58% 0.58 2.02%  80.75%

Onshore DK-West 2010 (energinet.dk) 2145  24.48% 12.82% 11.66% 0.91 0.01%  90.82%
Onshore DK-East 2010 (energinet.dk) 2186 24.95% 11.83% 13.13% 1.11 0.00% 97.77%

Oftshore GER 2007 (ISI) 3620 41.33%  26.46% 14.87% 0.56 0.40%  86.71%
Offshore GER 2008 (ISI) 3561 40.65%  25.65% 15.00% 0.58 0.13%  85.93%
Offshore GER 2009 (IST) 3484  39.77%  24.71%  15.06% 0.61 1.08%  88.04%
Offshore GER 2007 (IWES) 4241  48.42% 30.22%  18.20% 0.60 0.18%  96.45%

Onshore turbine 3568 CA 2006 (NREL) 3484  39.77%  20.16% 19.61% 97.26% 0.00% 100.00%
Offshore turbine 1295 CA 2006 (NREL) 3472  39.64%  20.85% 12.29% 57.82% 0.00% 100.00%
Onshore turbine 4161 GER 2008 (SWK) 1703  19.44%  7.14%  12.29% 172.06% 0.00% 100.00%

Source: Own calculation data basis (EEX, 2011), (CAISO, 2011), (energinet.dk. 2011), (NREL, 2009), (SWK, 2010)
and (IWES, 2011)

Table A-3: Duration curve parameters solar

Time series flh of  cfps  cfom0s  Tems Phmax

Photovoltaics GER 2007 (ISI) 913 10.42% 2.31% 8.10% 3.50 67.08%
Photovoltaics GER 2008 (ISI) 878 10.02% 2.44% 7.57% 3.10 64.62%
Photovoltaics GER 2009 (ISI) 865 9.88% 2.08% 7.80% 3.75 70.87%
Photovoltaics CA 2005 (CAISO) 2160 24.66% 9.21% 15.45% 1.68 98.42%
Solar thermal CA 2005 (CAISO) 2261 25.81% 8.93% 16.88% 1.89 95.72%

Photovoltaic single installation GER 2008 (SWK) 1097 12.52% 2.50% 10.01%  4.00 82.30%

Source: Own calculation data basis (Schubert, 2011), (SWK, 2010) and (CAISO, 2011)

Table A-4: Ramp rate parameters system load

Time series rriye I pos Gpos W neg Opeg Xy=0

Load GER 2007 (ENTSO-E) 1.271% 2.96% 2.65% -2.23%  1.69% 57.00%
Load GER 2008 (ENTSO-E) 1.19% 2.74% 251%  -2.12%  1.59% 56.40%
Load GER 2009 (ENTSO-E) 1.32% 3.04% 2.87% -2.32% 1.79% 56.72%
Load CA 2005 (CAISO) 1.05% 2.12% 1.60% -2.07% 1.83% 50.59%

Source: Own calculation data basis (ENTSO-E, 2011) and (CAISO, 2011)
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Table A-5: Ramp rate parameters wind

Time series i  pos Opos M neg Oneg Xy=0

Onshore GER 2007 (EEX) 0.69% 1.39% 142% -1.36% 1.43% 50.67%
Onshore GER 2008 (EEX) 0.66%  1.34%  138% -130% 1.37% 50.76%
Onshore GER 2009 (EEX) 0.64%  1.30%  132% -125% 1.27% 50.84%
Onshore CA 2005 (CAISO) 1.25%  235% 221%  -2.63% 2.77% 47.14%
Onshore DK-West 2010 (energinet.dk) 0.98% 1.98% 1.98% -1.92% 1.94% 50.43%
Onshore DK-East 2010 (energinet.dk) 1.30% 2.69% 3.16% -251% 293% 51.17%
Offshore GER 2007 (ISI) 2.04%  4.09% 3.87% -4.07% 3.60% 50.15%
Offshore GER 2008 (ISI) 1.61% 321% 3.01% -3.19% 291% 50.75%
Offshore GER 2009 (ISI) 1.59% 322% 3.01% -3.11% 2.89% 50.75%
Offshore GER 2007 (IWES) 1.52%  3.17%  3.60%  -2.95% 3.26% 49.80%
Onshore turbine 3568 CA 2006 (NREL) 3.81%  8.70% 11.94%  -8.22% 11.40%  46.2%
Offshore turbine 1295 CA 2006 (NREL)  2.64%  5.74%  7.84% -5.67% 7.12%  46.7%
Onshore turbine 4161 GER 2008 (SWK) 2.72%  6.74%  7.79% @ -6.36% 6.73%  40.8%

Source: Own calculation data basis (EEX, 2011), (CAISO, 2011), (energinet.dk. 2011), (NREL, 2009), (SWK, 2010)

and (IWES, 2011)

Table A-6: Ramp rate parameters solar

Time series rrfyo  pos Gpos W neg Oneg  Xy1=0 Xy2-0

Photovoltaics GER 2007 (ISI) 1.42% 5.22% 4.77% -5.01% 437% 72.63% 29.24%
Photovoltaics GER 2008 (ISI) 1.35% 4.98% 436% -4.72% 3.94% 72.76% 29.47%
Photovoltaics GER 2009 (ISI) 1.37% 5.10% 4.54% -4.83% 4.07% 73.14% 28.39%
Photovoltaics CA 2005 (CAISO) 3.18% 10.52% 7.60% -10.40% 7.72% 69.76% 30.61%
Solar thermal CA 2005 (CAISO) 3.20% 10.79% 12.98% -9.37% 12.92% 70.36% 34.14%
Photovoltaic single installation GER 2008 (SWK)  2.75% 9.35% 9.44% -9.10% 8.68% 70.7% 28.7%

Source: Own calculation data basis (ENTSO-E, 2011), (SWK, 2010) and (CAISO, 2011)
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Table A-7: Interval availability parameters for GER 2008 and CA

Sec 0 Sec 1

Time series Yo-0.1 Yo03 _ Counts  tyean ts tmax Yo-03 Yo0.6 _Counts  tyean ts tmax
Wind onshore GER | 0.6%  8.8% 173 205 165 134 | 88% 25.1% 173 341 61.0 620
Wind offshore GER | 0.1%  8.7% 103 7.7 8.4 35 8.7%  25.9% 103 77.2 138.8 982
Photovoltaic GER 0.0% 6.3% 347 163 10.1 166 | 63% 18.9% 342 8.6 32 13

RES GER 0.5% 11.3% 167 7.5 5.6 38 | 11.3% 32.9% 167 449 832 622

Load GER 44.7% 50.2% 30 3.9 2.0 8 50.2% 61.3% 30 286.0 653.9 2900
- 20 10 ) i

RS GER 43.5% 30.1% 2 4.0 2.8 6 30.1% -3.4% 50 4.0 2.3 10

Wind onshore CA | 2.0%  9.9% 122 6.6 72 42 9.9% 25.6% 122 649 127.8 794
Solar thermal CA 0.0%  9.6% 229 152 52 44 9.6% 28.7% 266 9.8 2.4 12
Photovoltaic CA 0.0%  9.8% 365 133 15 17 9.8% 29.5% 325 10.7 1.6 13

RES CA 12%  8.4% 170 64 50 17 | 84% 227% 170 450 1062 886
Load CA 36.3% 42.7% 240 45 20 11 | 427% 554% 240 319 118.1 1822
- e o )
RS CA 26.5% 16.6% 5 26 19 6 16.6% 3.0% 5 36 15 6
Sec 2 Sec 3
Time series Yoo03  Yous Counts tuen  te tma | Yoos  Yooo Counts  tpen  te tua

Wind onshore GER | 25.1% 49.7% 100 248 293 131 | 49.7% 74.3% 47 159 140 58
Wind offshore GER | 25.9% 51.6% 214 27.1  50.6 511 | 51.6% 77.3% 195 16.0 195 88
Photovoltaic GER | 18.9% 37.9% 266 7.3 2.7 11 | 37.9% 56.8% 149 5.0 2.0 8

RES GER 32.9% 65.4% 271 16.0 214 144 | 654% 97.8% 134 6.0 4.8 33
Load GER 613% 77.9% 283 246 350 162 | 77.9% 945% 280 13.1 47 19
RS GER -3.4% 36.8% 50 166.7 1854 718 | 36.8% 77.0% 338 14.1 222 140

Wind onshore CA | 25.6% 49.3% 267 16.7 193 132 | 493% 72.9% 168 6.7 6.1 41
Solar thermal CA 28.7% 57.4% 131 7.1 2.8 11 | 57.4% 86.1% 194 6.3 22 9
Photovoltaic CA 29.5% 59.1% 360 8.7 1.9 11 | 59.1% 88.6% 304 6.0 1.5 8

RES CA 22.7% 44.2% 370 109 95 117 | 442% 72.9% 271 6.5 2.3 11

Load CA 55.4% 74.5% 412 9.2 5.7 20 | 74.5% 93.6% 66 8.2 3.7 13

RS CA 3.0% 32.4% 105 76.8 2032 1651 | 32.4% 61.9% 480 8.1 9.8 117
Sec 4

Time series Yq-0.9 Yo Counts tmean ts tmax

Wind onshore GER | 74.3%  86% 16 6.1 3.8 17
Wind offshore GER | 77.3%  83% 131 45 4.7 26
Photovoltaic GER | 56.8%  63% 24 2.8 0.9 4

RES GER 2008 97.8% 109% 7 3.0 1.2 4
Load GER 2008 94.5% 100% 60 2.0 1.1 5
RS GER 2008 77.0%  90% 62 3.1 2.6 14
Wind onshore CA | 72.9% 81% 2 3.0 0.0 3
Solar thermal CA 86.1%  96% 175 4.6 2.6 8
Photovoltaic CA 88.6%  98% 80 2.2 1.0 4
RES CA 72.9%  73% 21 32 1.8 6
Load CA 93.6% 100% 13 2.8 1.2 5
RS CA 61.9% 71.7% 19 2.5 1.0 4

Note: CA: California base year of time series 2005; GER: Germany reference year of time series 2008; Source: Own
calculation data basis (EEX, 2011), (CAISO, 2011), (Schubert, 2011)
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Table A-8: Interval availability parameters for GER 2007
Sec 0 Sec 1
Time series Yo-0 Yo-0.1 Counts  tyean  ts tmax | Yo-0.1 Y0-03 Counts  typean  ts tmax
Wind onshore 0.6% 9.1% 151 180 251 189 9.1%  26.0% 152 398 639 528
Wind offshore 0.4% 9.0% 158 4.8 4.4 23 9.0%  26.3% 160 499 854 519
Wind offshore IWES 0.2% 9.8% 135 9.1 105 86 9.8%  29.1% 136 553 80.5 527
Photovoltaic 0.0% 6.7% 340 164 8.6 117 6.7%  20.1% 343 8.5 35 13
RES 0.8%  12.2% 193 7.6 7.3 70 122%  35.0% 194 376 67.0 528
Load 42.9%  48.6% 32 43 2.1 8| 48.6%  60.1% 32 2652 601.2 2738
RS -43.3%  -30.0% 7 3.0 1.8 6| -30.0% -3.3% 60 5.5 44 20
Sec 2 Sec3
Time series Yo-03 Yo-0.6 Counts  tmean ts tmax | Yo-0.6 Y0-0.9 Counts  tmean ts tmax
Wind onshore 26.0%  51.5% 109 237 331 197| 51.5%  76.9% 54 144 176 109
Wind offshore 263%  52.2% 246 233 347 198| 522%  78.1% 248 134 155 119
Wind offshore IWES | 29.1%  57.9% 161 345 48.1 315| 579%  86.8% 166 223 259 140
Photovoltaic 20.1%  20.1% 239 7.7 2.6 11| 20.1%  60.4% 157 5.4 1.9 8
RES 35.0%  69.2% 275 139 189 189 | 69.2% 103.4% 100 7.6 109 101
Load 60.1%  77.2% 293 23.6 348 166| 772%  94.3% 289 125 5.0 19
RS 33%  36.6% 59 141.1 263.5 1743 | 36.6%  76.6% 295 166 29.8 366
Sec 4
Time series Y0-0.9 Yo-1 Counts  tmean t5 tmax
Wind onshore 76.9%  85.4% 14 4.9 3.8 12
Wind offshore 78.1%  86.7% 151 2.4 2.0 11
Wind offshore IWES | 86.8%  96.5% 126 125 140 79
Photovoltaic 60.4%  67.1% 42 2.5 0.9 4
RES 103.4% 114.8% 5 22 1.8
Load 94.3% 100.0% 45 22 1.8 12
RS 76.6%  89.9% 51 43 3.6 15
Source: Own calculation data basis (EEX, 2011) and (Schubert, 2011)
Table A-9: Interval availability parameters for GER 2009
Sec 0 Sec 1
Time series Yo-0 Yo-o0.1 Counts  tpen o tmax | Yo-0.1 Yo-03 Counts tpen o tmax
Wind onshore 0.3% 8.7% 166 18.1 22.0 162 87%  253% 165 345 409 207
Wind offshore 1.1% 9.8% 123 7.0 84 46 9.8%  27.2% 123 63.7 80.5 344
Photovoltaic 0.0% 7.1% 329 177 143 165 71%  21.3% 335 84 33 13
RES 2.1% 13.2% 175 8.6 72 55| 132%  35.5% 174 413 48.6 335
Load 39.7%  45.7% 30 3.8 2.1 8| 45.7%  57.8% 30 183.6 428 2400
RS -38.4%  -24.8% 12 3.7 1.5 6| -24.8% 2.3% 78 45 35 25
Sec 2 Sec 3
Time series Yo-0.3 Yo-0.6 Counts  tmean s tmax | Y0-06 Yo-09 Counts  twean to Emax
Wind onshore 253%  50.3% 108 183 237 185| 50.3%  75.3% 33 125 11.0 43
Wind offshore 272%  53.3% 206 258 313 182 533%  79.3% 182 155 19.0 124
Photovoltaic 21.3%  21.3% 233 7.4 25 11| 213%  63.8% 122 50 1.8 7
RES 355%  68.9% 259 151 20.1 193 | 68.9% 102.4% 114 56 45 38
Load 57.8%  75.9% 267 266 409 314 759%  94.0% 307 122 5.6 20
RS 23%  43.1% 78 1047 176.8 933 | 43.1%  83.8% 296 12.8 18.0 131
Sec 4
Time series Yo-0.9 Yo-1 Counts  tyen fo tmax
Wind onshore 75.3% 83.6% 4 6.8 1.3 8
Wind offshore 793%  88.0% 120 33 26 12
Photovoltaic 63.8%  70.9% 32 22 0.8 4
RES 102.4% 113.5% 3 3.7 2.3 5
Load 94.0%  100.0% 110 2.8 20 12
RS 83.8%  97.3% 31 4.6 4.1 14

Source: Own calculation data basis (EEX, 2011) and (Schubert, 2011)
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A3. Mobility behavior

Table A-10: Sample size after determining PEV user

MOP 2002-08 !

MID 2002

MID 2008

parking available

parking available and

Filter criteria - parking available and economically - economically
attractive attractive

Report period One week One day

Persons 12,235 3,550 61,729 6,451 60,713 8,289

participating

Houscholds 6,958 2,104 15,380 5,244 21,063 5,346

participating

Passenger car trips 298,008 87,939 66,114 20,132 94,151 22,138

Passenger cars 8,162 2,913 33,768 8,994 34,601 9,436

participating

Source: Own calculation using data from German Mobility Panel (MOP, 2002-2008), Mobility in Germany (MID)
2002 (MID, 2003) and Mobility in Germany 2008 (MID, 2010). Note: 'Assignment of persons to vehicles is not
possible in a one-to-one way with MOP data sets. Therefore, only data sets are used where number of vehicles equals
the number of persons and where the number of vehicles equals 1.This assumption allows an indirect assignment.
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Table A-13: Probability for start time MID 2008

Time t Mon WD Fri Sat Sun
0 0.00116 0.00088 0.00237 0.00233 0.00258
1 0.00116 0.00063 0.00164 0.00157 0.00248
2 0.00104 0.00052 0.00138 0.00151 0.00258
3 0.00073 0.00033 0.00099 0.00144 0.00220
4 0.00055 0.00031 0.00092 0.00144 0.00220
5 0.00043 0.00027 0.00059 0.00103 0.00248
6 0.00037 0.00029 0.00066 0.00116 0.00258
7 0.00043 0.00021 0.00079 0.00089 0.00239
8 0.00049 0.00031 0.00079 0.00096 0.00229
9 0.00055 0.00029 0.00059 0.00082 0.00229
10 0.00073 0.00033 0.00072 0.00096 0.00201
11 0.00067 0.00031 0.00066 0.00096 0.00191
12 0.00067 0.00033 0.00053 0.00096 0.00201
13 0.00073 0.00023 0.00059 0.00075 0.00210
14 0.00073 0.00025 0.00059 0.00110 0.00220
15 0.00073 0.00036 0.00059 0.00096 0.00220
16 0.00073 0.00057 0.00072 0.00096 0.00220
17 0.00104 0.00071 0.00092 0.00096 0.00229
18 0.00184 0.00149 0.00138 0.00130 0.00239
19 0.00263 0.00222 0.00204 0.00116 0.00277
20 0.00386 0.00358 0.00289 0.00157 0.00325
21 0.00484 0.00408 0.00361 0.00164 0.00325
22 0.00643 0.00574 0.00473 0.00233 0.00344
23 0.00692 0.00641 0.00565 0.00233 0.00344
24 0.00870 0.00869 0.00776 0.00301 0.00325
25 0.00980 0.00965 0.00887 0.00308 0.00287
26 0.01298 0.01298 0.01222 0.00377 0.00344
27 0.01464 0.01396 0.01314 0.00377 0.00334
28 0.01862 0.01769 0.01623 0.00472 0.00411
29 0.01904 0.01804 0.01630 0.00493 0.00430
30 0.02015 0.01976 0.01768 0.00787 0.00535
31 0.01800 0.01806 0.01525 0.00931 0.00516
32 0.01721 0.01865 0.01591 0.01198 0.00707
33 0.01359 0.01624 0.01354 0.01226 0.00745
34 0.01415 0.01622 0.01413 0.01684 0.01079
35 0.01225 0.01381 0.01275 0.01616 0.01203
36 0.01347 0.01451 0.01413 0.01883 0.01500
37 0.01304 0.01327 0.01288 0.01869 0.01576
38 0.01415 0.01480 0.01564 0.02499 0.01910
39 0.01243 0.01342 0.01466 0.02280 0.01719
40 0.01341 0.01490 0.01610 0.02547 0.01891
41 0.01182 0.01379 0.01525 0.02355 0.01843
42 0.01286 0.01545 0.01709 0.02766 0.01977
43 0.01219 0.01289 0.01393 0.02328 0.01748
44 0.01396 0.01402 0.01551 0.02595 0.01987
45 0.01353 0.01300 0.01413 0.02396 0.01824
46 0.01647 0.01526 0.01597 0.02759 0.02044
47 0.01543 0.01373 0.01545 0.02260 0.01815
48 0.01739 0.01591 0.01735 0.02424 0.01891
49 0.01666 0.01495 0.01617 0.02109 0.01643
50 0.01898 0.01706 0.01952 0.02301 0.01939
51 0.01653 0.01467 0.01748 0.01924 0.01566
52 0.01690 0.01499 0.01781 0.02054 0.01834
53 0.01574 0.01304 0.01591 0.01773 0.01710
54 0.01727 0.01570 0.01788 0.02102 0.02168
55 0.01433 0.01323 0.01485 0.01849 0.01834
56 0.01611 0.01482 0.01794 0.01992 0.02178
57 0.01519 0.01442 0.01663 0.01808 0.01920
58 0.01715 0.01783 0.02116 0.02034 0.02340
59 0.01464 0.01587 0.01873 0.01602 0.01891
60 0.01647 0.01792 0.02070 0.01684 0.02101
61 0.01574 0.01700 0.01840 0.01390 0.01786
62 0.01966 0.02137 0.02241 0.01678 0.02073
63 0.01733 0.01875 0.01853 0.01417 0.01624
64 0.02051 0.02135 0.02057 0.01678 0.01777
65 0.01972 0.02026 0.01821 0.01486 0.01576
66 0.02358 0.02453 0.02116 0.01883 0.01929
67 0.02119 0.02116 0.01781 0.01671 0.01662
68 0.02321 0.02277 0.01906 0.01897 0.01824
69 0.02070 0.02028 0.01669 0.01588 0.01652
70 0.02333 0.02271 0.01899 0.01794 0.02025
71 0.01868 0.01863 0.01538 0.01390 0.01662
72 0.01972 0.01938 0.01623 0.01472 0.01834
73 0.01739 0.01718 0.01453 0.01143 0.01614
74 0.01813 0.01846 0.01689 0.01280 0.01786
75 0.01476 0.01501 0.01387 0.01020 0.01328
76 0.01445 0.01482 0.01374 0.01116 0.01442
77 0.01157 0.01245 0.01124 0.00856 0.01165
78 0.01115 0.01245 0.01209 0.00972 0.01337
79 0.00857 0.00936 0.00854 0.00719 0.01079
80 0.00784 0.00879 0.00868 0.00739 0.01117
81 0.00643 0.00707 0.00730 0.00541 0.00917
82 0.00637 0.00693 0.00703 0.00589 0.00917
83 0.00545 0.00536 0.00480 0.00411 0.00697
84 0.00545 0.00525 0.00453 0.00479 0.00697
85 0.00508 0.00460 0.00342 0.00363 0.00573
86 0.00533 0.00511 0.00414 0.00431 0.00630
87 0.00441 0.00419 0.00375 0.00356 0.00525
88 0.00398 0.00444 0.00434 0.00397 0.00535
89 0.00343 0.00377 0.00414 0.00329 0.00468
90 0.00325 0.00370 0.00473 0.00404 0.00468
91 0.00245 0.00257 0.00355 0.00315 0.00353
92 0.00202 0.00232 0.00388 0.00336 0.00344
93 0.00159 0.00165 0.00302 0.00301 0.00287
94 0.00165 0.00147 0.00302 0.00288 0.00315
95 0.00116 0.00096 0.00230 0.00199 0.00267
Sample size 3043 9555 3266 2921 2094

Source: Data basis: (MID, 2010).
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Table A-14: Probability for average trips per day MID 2008

Day Sun Sat WD Fri Mon

aVirp 341 383 395 401 411

Source: Data basis: (MID, 2010).

Table A-15: Probability for the range MID 2008

Range classification range ki, k Mon WD Fri Sat Sun
<2km 2km 0 0.2101 0.2099 0.2257 0.2386  0.1544
2to<4km 4 km 1 0.3839 0.3747 03929 04035  0.3234
410 < 6km 6 km 2 0.4915 0.4981 0.5063 0.5278  0.4404
6 to < 8 km 8 km 3 0.5735 0.5736 05772 0.6212 05316
8 to < 10 km 10 km 4 0.6394 0.6375 0.6390 0.6857  0.5895
10 to < 12.5 km 12.5 km 5 0.7054 0.7000 0.6848  0.7239  0.6573
12.5 to < 15 km 15 km 6 0.7388 0.7444 0.7401 0.7667  0.7053
15t0<17.5 km 17.5 km 7 0.7675 0.7815 0.7771 0.7982  0.7368
17.5 to <20 km 20 km 8 0.8019 0.8203 0.8181 0.8227  0.7725
20 to < 25 km 25 km 9 0.8502 0.8692 0.8565 0.8581  0.8193
25 to < 30 km 30 km 10 0.8940 0.8934 0.8890 0.8881  0.8591
30 to < 35 km 35 km 11 0.9180 0.9183 09114 09094  0.8749
25 to < 40 km 40 km 12 0.9344 0.9391 0.9291 0.9253  0.8871
40 to < 45 km 45 km 13 0.9479 0.9483 0.9403 0.9370  0.8988
45 to < 50 km 50 km 14 0.9574 0.9572 0.9515 0.9480  0.9129
50 to < 60 km 60 km 15 0.9662 0.9667 0.9613 0.9547  0.9246
60 to < 70 km 70 km 16 0.9751 0.9753 0.9681 0.9628  0.9357
70 to < 100 km 100 km 17 0.9845 0.9868 0.9803 0.9773  0.9550
10 to <150 km 150 km 18 0.9890 0.9907 0.9885 0.9837  0.9702
15 to <300 km 300km 19 0.9962 0.9958 0.9939 09933  0.9848
<1300 km 1000 km 20 1 1 1 1 1
Sample size 3266 9555 3043 2921 2094

Source: Data basis: (MID, 2010); Note: Cumulative data.
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Table A-16: Probability for the location MID 2008

Weekday Weekend
Time t Home 1=0 Work 1=1 Public 1=2 Home 1=0 Work 1=1 Public 1=2

0 1 1 1 0.793103 0.793103 1
1 1 1 1 038 0.8444444 1
2 1 1 1 0.916667 0.916667 1
3 1 1 1 0.869565 09130433 1
4 0.999162 0.999999521 1 0794118 0.8529415 1
5 0.999162 0.999999521 1 1 1 1
6 0.999162 0.999999521 1 0.888889 0.888889 1
7 0.999162 0.999999521 1 0916667 0.916667 1
8 0.999162 0.999999521 1 0.846154 0.846154 1
9 0.999162 0.999999521 1 0.85 0.85 1
10 0.999162 0.999999521 1 0.625 0.6666667 1
11 0.999162 1.000000223 1 0.833333 0.833333 1
12 0.998325 1.00000004 1 0.727273 0.727273 1
13 0.998325 1.00000004 1 038 0.8 1
14 0.998325 1.00000004 1 0.545455 0.545455 1
15 0.998325 1.00000004 1 0.714286 0714286 1
16 0.998325 1.00000004 1 0.666667 0.666667 1
17 0.997483 0.99999978 1 0.543435 0.818182 1
18 0.996644 09999997 1 075 075 1
19 0.994971 1.00000034 1 0214286 0714286 1
20 0.994966 0.99999956 1 0.4 0.9 1
21 0992418 1.00000014 1 0.0909091 1.0000001 1
2 0.983939 0.9991546 1 0368421 1 1
23 0.977966 09974575 1 0.102564 0.846154 1
24 0.966102 0.9966105 1 0258065 0.83871 1
25 0.941831 09940124 1 0425 0.825 1
26 092381 09930741 1 0277778 0.638889 1
27 0.899827 09930913 1 0272727 0.659091 1
28 0.875755 0.987921 1 0290323 0.419355 1
29 0.835366 0.981707 1 0225 0475 1
30 0.788879 0.97046 1 0305263 0442105 1
31 0.748686 0965849 1 0.191304 0.408695 1
32 0.703345 0958627 1 0.22449 03129254 1
33 0.654545 0.942857 1 0244681 03031916 1
34 0.626298 0934256 1 0256522 03434785 1
35 0597403 0917749 1 0.288066 03868314 1
36 0570312 0.901041 1 0222222 02516338 1
37 0549479 0.887153 1 0.24058 0.266667 1
38 0529922 0.86817 1 0261456 02884102 1
39 0515935 0.855298 1 0221918 02684933 1
40 0507785 0851211 1 0228758 02418299 1
41 0.488851 0.830189 1 0251244 02636818 1
42 0486231 0.832186 1 0298387 03252687 1
43 0.480587 0.828301 1 0344304 03670888 1
44 0473322 0.818417 1 0389362 04042556 1
45 0475745 0.817022 1 0.388747 04015347 1
46 0482553 0.822979 1 0413395 04318708 1
47 0497861 0.839178 1 0.453083 04638069 1
48 0511548 0.850299 1 0.454965 04688218 1
49 0517477 0.845695 1 0.489855 04927536 1
50 053271 0.853016 1 0.478495 04973122 1
51 0549743 0.858491 1 0.487365 05126358 1
52 0560684 0.853846 1 0.436261 0.4730882 1
53 0564516 0.854839 1 0375427 04232086 1
54 0568627 0.859335 1 0.463625 0.49375 1
55 0575342 0.861301 1 0392727 04218179 1
56 0575214 0.862393 1 0378082 03863012 1
57 0567869 0.85567 1 0388732 03915489 1
58 0555363 0.841695 1 0371968 03854451 1
59 0556314 0.826792 1 0343558 03650304 1
60 0.548552 0.810903 1 0351706 03569553 1
61 0545611 0797762 1 0369427 03726117 1
62 0561102 0.801205 1 0.455658 04617742 1
63 0.566494 0791019 1 0465217 04695648 1
64 0572294 0.793939 1 0472973 04763514 1
65 0578856 0.784229 1 0.474265 04963238 1
66 0581315 0.774222 1 0.578571 05821424 1
67 0610333 0.78021 1 0532203 0.552542 1
68 062511 0769974 1 0.563686 05826562 1
69 0.638112 0.772727 1 0619217 0.6298932 1
70 0.651264 077245 1 0.617363 0.6688099 1
71 0.679965 0.788378 1 0.516605 05535054 1
7 0.698344 0.7890153 1 0.602941 0.6088234 1
73 0.699656 0.7839933 1 0.577465 0.5950706 1
74 0.718346 0.7932814 1 0.650735 0.6654409 1
75 0.74525 0.8074262 1 0.561644 0.5662102 1
76 0.766234 0.8216453 1 0.619048 0.626374 1
77 0.774385 0.8201865 1 0.60804 0.6130651 1
78 0.782423 08242319 1 0.60262 0.6157204 1
79 0.788136 0.8313563 1 0532895 0.5394739 1
80 0.787361 0.8257897 1 0577381 0.5892858 1
81 0.786678 0.8237775 1 0.651852 0.6666668 1
82 0.809483 0.8425059 1 0.723214 07321426 1
83 0.824873 0.8510997 1 0.835821 0.8805971 1
84 0.841216 0.8665538 1 0.734177 07594935 1
85 0.85151 0.8733221 1 0.65 07333333 1
86 0.867003 0.8863633 1 0.765625 0.796875 1
87 0.888889 0.9074075 1 0.701492 07611935 1
88 0.904882 091835 1 0.779221 0.779221 1
89 0922045 09321037 1 0.83871 0.854839 1
90 0.940536 0.9505863 1 0.744444 07555551 1
91 0962312 0.96733713 1 0.849057 0.8679249 1
92 0973109 0.97563001 1 0.811594 0.811594 1
93 0975 0.97666667 1 0.818182 0.8363638 1
94 0982485 0982485 1 0.887097 0.887097 1
95 1 1 1 0923077 0.923077 1

Source: Data basis: (MID, 2010).
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Figure A-4: Range probability MID 2008
Source: Data basis: (MID, 2010);
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Figure A-5: Probability for location (MID 2008)
Source: Data basis: (MID, 2010).
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A4. Scenario definition
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Figure A-6: Transformer utilization winter season

Source: Load profile (BTC Cottbus, 2007)
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Figure A-7: Transformer utilization spring and autumn

Source: Load profile (BTC Cottbus, 2007)
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Figure A-8: Transformer utilization summer season

Source: Load profile (BTC Cottbus, 2007)
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Table A-17: Agent scenario

DSM-  Distribution Device-agent Sum Grid power Capacity

agent  grid-agent  PHEV (25) PHEV (57) BEV (100) BEV (167) devices [MW] [MWh]
1 1 129 220 41 11 401 1.812 4.1655
2 1 130 219 41 11 401 1.812 4.158
3 1 129 220 41 11 401 1.812 4.1655
4 1 130 219 41 11 401 1.812 4.158
5 1 129 220 41 11 401 1.812 4.1655
6 1 130 219 41 11 401 1.812 4.158
7 1 129 220 41 11 401 1.812 4.1655
8 1 130 219 41 11 401 1.812 4.158
9 1 129 220 41 11 401 1.812 4.1655
10 1 130 219 41 11 401 1.812 4.158
11 1 129 220 41 11 401 1.812 4.1655
12 1 130 219 41 11 401 1.812 4.158
13 1 129 220 41 11 401 1.812 4.1655
14 1 130 219 41 11 401 1.812 4.158
15 1 129 220 41 11 401 1.812 4.1655
16 1 130 219 41 11 401 1.812 4.158
17 1 129 220 41 11 401 1.812 4.1655
18 1 130 219 41 11 401 1.812 4.158
19 1 129 220 41 11 401 1.812 4.1655
20 1 130 219 41 11 401 1.812 4.158
21 1 129 220 41 11 401 1.812 4.1655
22 1 130 219 41 11 401 1.812 4.158
23 1 129 220 41 11 401 1.812 4.1655
24 1 130 219 41 11 401 1.812 4.158
25 1 129 220 41 11 401 1.812 4.1655
26 1 130 219 41 11 401 1.812 4.158
27 1 129 220 41 11 401 1.812 4.1655
28 1 130 219 41 11 401 1.812 4.158
29 1 129 220 41 11 401 1.812 4.1655
30 1 130 219 41 11 401 1.812 4.158
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AS. Results
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Figure A-9: Hourly average grid management time At on a Saturday

Note: Grid management time for trips during the day (At day) and the last trip of a day (At night)
Source: Data basis of mobility survey (MID, 2010).
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Figure A-10: Hourly average grid management time At on a Sunday

Note: Grid management time for trips during the day (At day) and the last trip of a day (At night)
Source: Data basis of mobility survey (MID, 2010).

Table A-18: Standard deviation of grid management time for days of the week

Unit [h] Mon WD Fri Sat Sun

o At 12.2 17.3 17.3 17.1 13.8
o At day 2.8 21.8 21.8 2.9 3.6
o At night 16.8 20.5 24.0 20.6 18.0

Source: Data basis of mobility survey (MID, 2010).
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Figure A-11: Probability system load versus residual load Germany 2030
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Figure A-12: Probability last trip versus DSM charging Germany 2030

PEVs: Plug-in electric vehicle; DSM: Demand-side management.

3.50%

3.00%
M Residual load PEVs (Last trip)

2.50%
M Residual load PEVs (V2G, Mup DOD)
2.00%
1.50%
0.50%
. ..,..Ill.hhhhi“ | ||||I“mlmllhhml... M .

0.00%
110% 100%  90%  B80%  70%  60%  S0%  40%  30%  20%  10% %  -10% -20%  -30% -40%  -50%
Normalized power [100% = 76,763 MW]

Probability

Figure A-13: Probability last trip versus V2G charging Germany 2030

PEVs: Plug-in electric vehicle; DSM: Demand-side management. V2G: Vehicel-to-grid; V2G includes the price
mark-up; Depth of discharge (DoD) is used to account for battery ageing.
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Figure A-14: Probability system load versus residual load California 2030
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Figure A-15: Probability last trip versus DSM charging California 2030

Note: PEVs: Plug-in electric vehicle; DSM: Demand-side management.
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Figure A-16: Sorted ramp rates for scenario GER 2030

Note: RS: residual load; DSM: demand-side management, V2G: vehicle-to-grid; V2G includes the price mark-up;

Eenergy throughput (Ah) is used to account for battery ageing.
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Figure A-17: Average electricity prices for different charging strategies

Note: DSM: Demand-side management: V2G: Vehicle-to-grid; Depth of discharge (DoD) is used to account for

battery ageing.
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Source: (EEX, 2011) Note: EEX: European Energy Exchange market.
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A6. Sensitivity analysis

Time series

Table A-19: Duration curve parameters GER 2007

Time series cfpos cfieg 1-(cfhegprve)Chheg cfg<0s cfo-s Fefo.8 Ph.min P, max [
Load 72.3% 54.6% 17.8%  32.7%  42.9% 100.0%

RES 34.4% 21.6% 12.9% 0.60 1.12%  102.72%

RS 382%  -0.324% 25.0% 13.2% 0.53  -43.50% 89.61%  3.20%
LT 40.9%  -0.283% 12.53% 26.9% 14.1% 052  -42.55% 97.61% 2.80%
DSM 41.6%  -0.133% 58.88% 28.0% 13.7% 049  -33.04% 92.37% 1.20%
V2G Ah Mup 41.6%  -0.082% 74.64% 28.3% 13.3% 0.47  -2898% 91.38%  0.80%
V2GDoDMup  41.6%  -0.093% 71.25% 28.2% 13.4% 047  -30.98%  90.94%  1.00%
Table A-20: Ramp rate parameters GER 2007

Time series rrfye M pos Gpos M neg Gheg Xy=0 T max I'T min

Load GER 1.271%  2.96%  2.65% -2.23% 1.69%  57.00% 13.33% -8.91%

RES GER 1.69%  3.42%  3.34% -3.34% 3.37%  50.68% 18.95% -20.49%

RS GER 2.09%  449%  3.68% -3.91% 2.81% 53.43% 22.77% -18.92%

LT GER 236%  5.12%  4.10% -4.37% 2.95% 53.88% 25.35% -18.83%

DSM GER 1.55%  2.90%  3.58% -3.30% 2.81% 46.65% 21.69% -17.84%

V2G Ah Mup 1.21%  2.40%  2.99% -2.38% 227% 50.10% 22.23% -14.63%

V2G DoD Mup 1.24%  244%  3.12% -2.50% 2.37% 49.29% 26.62% -20.09%
Table A-21: Duration curve parameters GER 2007 IWES

Time series Cfpos cfncg 1'(Cfncg(PEVs)/Cfncg CfQ<0.8 cfQ>={L8 Fefo.8 Ph,min Ph,max ny:(]
Load 72.3% 54.6% 17.8%  32.7%  42.9% 100.0%

RES 34.4% 21.4% 13.0% 0.61 0.76% 104.61%

RS 383%  -0.347% 25.0% 13.3% 0.53  -36.79%  91.64%  3.80%
LT 41.0%  -0.309% 10.95% 26.8% 14.2% 0.53  -35.62% 100.29%  3.40%
DSM 41.7%  -0.145% 58.07% 27.8% 13.8% 0.50  -25.30% 94.36% 1.80%
V2G Ah Mup 41.7%  -0.101% 70.92% 28.2% 13.5% 048 -21.38%  93.66% 1.00%
V2G DoD Mup 41.7%  -0.109% 68.55% 28.1% 13.6% 0.48  -22.60%  92.67%  1.20%
Table A-22: Ramp rate parameters GER 2007 IWES

Time series rrfye M pos Gpos M neg Oheg Xy=0 I'Tmax I'T min

Load GER 1.271%  2.96%  2.65% -2.23% 1.69%  57.00% 13.33% -8.91%

RES GER 1.51%  3.09%  3.16% -2.98% 3.02% 51.07% 17.14% -17.48%

RS GER 1.96%  4.22%  3.48% -3.63% 2.60% 53.67% 20.17% -15.96%

LT GER 223%  4.86%  3.89% -4.12% 2.78%  54.08% 22.72% -15.88%

DSM GER 1.47%  2.77%  3.40% -3.10% 2.65% 47.04% 17.91% -14.18%

V2G Ah Mup 1.13%  2.23%  2.84% -2.29% 2.16% 49.18% 18.71% -12.54%

V2G DoD Mup 1.17%  2.28%  2.96% -2.39% 2.24% 48.61% 19.44% -12.70%
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Table A-23: Duration curve parameters GER 2009

Time series Cfpns Cfneg 1'(Cfneg(PEVs)/Cfneg CfQ<0.s CfQ>=0.s Fefo.8 P, min Ph,max nyfo
Load 71.9% 53.8% 18.1% 33.6% 39.7% 100.0%

RES 34.2% 20.9% 13.3% 0.64 1.78% 109.94%

RS 38.2%  -0.508% 24.7% 13.5% 0.55 -39.62%  95.20%  4.60%
LT 41.8%  -0.460% 9.32% 27.1% 14.7% 0.54 -39.47% 105.16%  4.00%
DSM 42.5%  -0.247% 51.29% 28.1% 14.4% 0.51 -28.75%  99.97%  2.60%
V2G Ah Mup 41.5%  -0.177% 65.05% 27.8% 13.7% 0.49 -25.51%  95.62% 1.80%
V2G DoD Mup 41.5%  -0.190% 62.61% 27.8% 13.8% 0.50 -26.01%  95.55%  2.00%

Table A-24: Ramp rate parameters GER 2009

Time series rrfyo M pos Opos M neg Oneg Xy=0 T max T min
Load GER 1.32%  3.04%  2.87% -2.32% 1.79%  56.72% 15.23% -8.33%
RES GER 1.69%  3.40%  3.42% -337% 3.53% 50.22% 18.71% -21.82%
RS GER 2.12%  4.58%  3.87% -3.94% 2.92%  53.77% 21.98% -18.55%
LT GER 245%  536%  437% -4.53% 3.09% 54.24% 24.37% -19.01%
DSM GER 1.65%  3.16%  3.87% -3.43% 2.99% 47.97% 20.88% -17.29%
V2G Ah Mup 127%  2.58%  3.12% -2.51% 2.40% 50.63% 20.84% -17.18%

V2G DoD Mup 1.32%  2.64%  3.25% -2.64% 2.48% 49.96% 21.32% -16.84%
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Grid connection power
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Figure A-19:  PEVs load curve, hourly mean versus quarter hourly mean values.

Source: Own calculation, probabilities obtained from the data basis (MID 2008, 2010); Note: The reference scenario
uses a average grid connection power of 4.5 kW.
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Figure A-20: Sorted load curve for PEVs last trip charging

Source: Own calculation, probabilities obtained from the data basis (MID 2008, 2010); Note: The reference scenario
uses a average grid connection power of 4.5 kW.
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Table A-25: Average electric driving share of vehicle fleet in dependence of connection power

Last Trip DSM V2G DoD Mup V2G Ah Mup

Electric  Energy use  Electric = Energy use Electric  Energyuse  Electric Energy use

Power driving for driving driving for driving  driving for driving driving  for driving
share [kWh/a] share [kWh/a] share [kWh/a] share [kWh/a]

2 kW 53.66% 2963 69.02% 2973 69.05% 2970 69.08% 2961
Reference  53.73% 2966 70.26% 2969 70.33% 2962 70.32% 2965
12 kW 53.75% 2965 70.92% 2970 70.84% 2971 70.87% 2964
22 kW 53.79% 2964 70.77% 2973 70.97% 2958 70.86% 2966
44 kW 53.76% 2965 70.78% 2968 70.86% 2968 70.83% 2970

Note: Reference: GER 2030 scenario as defined in chapter 6 with grid connection power between 4 kW and 8 kW.
Sample size 12,000 vehicles.

Table A-26: Duration curve parameters last trip charging

Scenarios cfpos cfieg 1-(cFaegpEvsyChuce cfg<os cfgo—0.8 Fero.8 Py min Pi,max cfy
2 kW 41.34% -0.2544% 10.64% 27.56% 14.03% 50.90% 97.49% -42.83% 2.80%
Reference 41.34% -0.2517% 11.60% 27.44% 14.15% 51.55% 100.44% -42.56% 3.00%
12 kW 41.34% -0.2484% 12.75% 27.41% 14.17% 51.71% 102.66% -42.20% 2.80%
22 kW 41.34% -0.2470% 13.23% 27.40% 14.18% 51.74% 104.24% -42.21% 2.80%
44 kW 41.34%  -0.2469% 13.27% 27.40% 14.18% 51.76% 102.74% -42.29% 2.80%
Table A-27: Ramp rate parameters last trip charging
Scenario rrfpos M pos Gpos Mneg Gheg Xy=0 | § ITmin
2 kW 221% 4.87% 3.89% -4.01% 2.75% 54.84%  29.51% -19.15%
Reference 2.32% 5.04% 401% -427% 287% 54.12%  29.78% -19.17%
12 kW 2.36% 5.09% 4.09% -437% 2.98% 53.80% 31.68% -18.90%
22 kW 2.37% 5.09% 4.12% -439%  3.03% 53.68% 29.74% -19.00%
44 kW 2.37% 5.10% 4.13% -441%  3.04% 53.64%  30.10% -1927%
Table A-28: Duration curve parameters demand-side management
Scenario Cfpos Cfieg 1-(cfpeappveyChace  STo0s  Clo—0s  Tetns Ph.min Phmax cfy—
2 kW 42.20% -0.1024% 64.02% 28.57% 13.72% 48.02% 91.93% -34.02% 1.40%
Reference 42.21% -0.0970% 65.94% 28.58% 13.72% 48.02% 91.91% -34.03% 1.20%
12 kW 42.21% -0.0970% 65.91% 28.58% 13.72% 48.01% 91.84% -33.95% 1.20%
22 kW 42.24%  -0.0970% 65.93% 28.61% 13.72% 47.95% 91.55% -33.45% 1.20%
44 kW 42.22%  -0.0994% 65.08% 28.60% 13.72% 47.98%  91.53% -33.35% 1.40%

Table A-29: Ramp rate parameters demand-side management

Scenario rrio M pos Gpos W neg Oneg Xy=0 I'Tmax I'T min

2 kW 1.55% 2.96% 3.41% -3.24%  2.65% 47.72%  27.52% -17.51%
Reference 1.52% 2.88% 3.43% -3.19%  2.64% 47.38% 27.44% -17.74%
12 kW 1.50% 2.86% 3.42% -3.10%  2.62% 47.93% 27.72% -17.62%
22 kW 1.49% 2.84% 3.40% -3.08%  2.61% 4793% 27.42% -17.33%

44 kW 1.48% 2.83% 3.39% -3.07%  2.60% 47.89% 27.66% -17.38%
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Table A-30: Duration curve parameters vehicle-to-grid DoD battery aging and mark-up price

Scenario fpos Cfieg 1-(cfpeappveyChace  CTo08  cfoo0s Ten.g Ph,min Phmax cfy—

2 kW 42.18% -0.0716% 74.87% 28.76% 13.49% 46.89%  90.13% -29.57% 0.80%
Reference 42.25% -0.0611% 78.56% 28.85% 13.46% 46.65% 90.14% -27.42% 0.80%
12 kW 42.29% -0.0585% 79.44% 28.90% 13.44% 46.51%  90.06% -27.06% 0.60%
22 kW 42.28% -0.0590% 79.27% 28.89% 13.44% 46.50% 90.13% -27.06% 0.60%
44 kW 42.28% -0.0583% 79.52% 28.90% 13.43% 46.47% 90.14% -26.96% 0.60%

Table A-31: Ramp rate parameters vehicle-to-grid DoD battery aging and mark-up price

Scenario rripos M pos Gpos M neg Gneg Xy=0 ITmax ITmin
2 kW 1.2514% 2.44% 3.08% -2.54% 2.35% 49.01% 22.79% -15.68%
Reference 1.1966% 2.35% 3.00% -2.42% 2.27% 49.24% 22.90% -15.34%
12 kW 1.1652% 2.31% 2.93% -2.33% 2.20% 49.74% 22.36% -14.62%
22 kW 1.1624% 2.30% 2.93% -2.33% 2.19% 49.63% 22.19% -14.80%
44 kW 1.1567% 2.29% 2.92% -231% 2.18% 49.72% 2227% -15.14%

Table A-32: Duration curve parameters vehicle-to-grid Ah battery aging and mark-up price

Scenario fpos Cfieg 1-(cfpeappveyChace  CTo0s  cfoo0s Ten.s Ph,min Phmax cfy—

2 kW 42.19% -0.0595% 79.10% 28.81% 13.42% 46.58%  90.05% -28.28% 0.80%
Reference 42.27% -0.0509% 82.11% 28.93% 13.37% 46.22% 89.87% -26.20% 0.60%
12 kW 42.30% -0.0488% 82.85% 28.98% 13.35% 46.07%  89.84% -25.61% 0.60%
22 kW 42.30% -0.0478% 83.23% 28.99% 13.35% 46.03% 89.79% -25.51% 0.60%
44 kW 4231% -0.0475% 83.31% 29.01% 13.34% 4599% 89.81% -25.53% 0.60%

Table A-33: Ramp rate parameters vehicle-to-grid Ah battery aging and mark-up price

Scenario rripos M pos Gpos M neg Gneg Xy=0 ITmax ITmin
2 kW 1.2291% 2.42% 297% -249%  2.27% 49.22% 19.31% -15.03%
Reference 1.1527% 2.28% 2.86% -2.31% 2.18% 49.64% 19.79% -14.69%
12 kW 1.1230% 2.23% 2.80% -2.25% 2.11% 49.78% 19.32% -13.48%
22 kW 1.1114% 2.23% 2.77%  -2.21%  2.09% 50.13% 19.14% -14.24%
44 kKW 1.1035% 2.22% 2.76% -2.19% 2.07% 50.29% 18.75% -14.58%
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Battery costs

Table A-34: Duration curve parameters vehicle-to-grid DoD battery aging and mark-up price

Scenario cfpos Cfeg 1-(cfocgpEvs)/Cfncg) cfo<os cfo-0s Tef.8 Ph max Py min [

V2G DoD +20 42.24% -0.07% 76.90% 28.80% 13.50% 46.87%  90.40% -28.39% 0.80%
V2G DoD +40 42.23% -0.07% 74.97% 28.76% 13.54% 47.06%  90.48%  -29.28% 0.80%
V2G DoD -20  42.26% -0.06% 80.13% 28.90% 13.41% 46.38%  89.91% -26.65% 0.60%
V2G DoD -40 42.27% -0.05% 81.78% 28.98% 13.35% 46.06%  89.30% -26.18% 0.60%

Table A-35: Ramp rate parameters vehicle-to-grid DoD battery aging and mark-up price

Scenario rrfyo M pos Gpos W neg Oneg Xy=0 I'Tmax I'Ymin

V2G DoD +20 1.24% 2.44% 3.10% -2.51% 234%  49.25% 24.33% -15.95%
V2G DoD +40 1.28% 2.51% 3.17% -2.59% 241%  49.12% 25.73% -16.04%
V2G DoD -20 1.14% 2.23% 2.87% -2.30% 2.19%  49.21% 21.14% -14.35%
V2G DoD -40 1.07% 2.09% 2.71% -2.16% 2.09%  49.06% 19.84% -14.00%

Table A-36: Duration curve parameters vehicle-to-grid Ah battery aging and mark-up price

Scenario cfpos [ 1-(cfhegprvsy/Clhneg) cfo<os cfo-s Iefo.8 P max P, min cfy

V2G Ah +20 42.25% -0.05% 28.89% 13.42% 46.46% 90.30%  -26.11% 0.60% 81.32%
V2G Ah +40 42.24%  -0.06% 28.84% 13.46% 46.68% 91.19%  -26.08%  0.60% 80.31%
V2G Ah -20 42.27%  -0.05% 28.99% 13.33% 45.99% 89.31%  -2591% 0.60% 83.28%
V2G Ah -40 42.29%  -0.04% 29.05% 13.28% 45.73% 88.50%  -25.83%  0.60% 84.27%

Table A-37: Ramp rate parameters vehicle-to-grid Ah battery aging and mark-up price

Scenario rrfyo M pos Gpos M neg Oneg Xy=0 | § I'T min

V2G Ah +20 1.21% 2.39% 2.96% -2.43% 2.25%  49.51% 20.62% -13.91%
V2G Ah +40 1.26% 2.47% 3.04% -2.54% 231%  49.23% 21.53% -14.22%
V2G Ah -20 1.09% 2.16% 2.74% -2.19% 2.11%  49.56% 19.41% -15.84%

V2G Ah -40 1.02% 2.01% 2.60% -2.07% 2.04%  49.31% 19.26% -16.06%
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Battery size

Table A-38: Duration curve parameters battery size 15 kWh

Scenario cfpos cfheg  1-(cliegrprvs/chhe)  cfgas cfo-0s Tefo.8 Ph,max Ph min cfy

LT 42.18%  -0.25% 13.35% 27.98% 14.44% 51.61% 102.32% -42.47% 2.80%
DSM 42.70%  -0.09% 68.92% 29.00% 13.79%  47.57%  92.21%  -32.81% 1.00%
V2G DoD Mup  42.76%  -0.05% 83.15% 29.32% 13.48% 4597%  90.50%  -25.22% 0.60%
V2G Ah Mup 42.76%  -0.05% 83.15% 29.32% 13.48% 4597%  90.50%  -25.22% 0.60%

Table A-39: Ramp rate parameters battery size 15 kWh

Scenario rrfyo M pos Gpos W neg Gheg Xy=0 I'Tmax I'Y min
LT 2.38% 5.21% 4.10%  -4.36% 2.90% 54.42%  30.11%  -19.08%
DSM 1.46% 2.74% 3.42%  -3.09% 2.67% 46.98%  27.46%  -17.39%

V2G DoD Mup 1.12% 2.18%  2.80%  -2.29% 2.15% 48.72%  20.76%  -14.09%
V2G Ah Mup 1.12% 2.18%  2.80%  -2.29% 2.15% 48.72%  20.76%  -14.09%

Table A-40: Duration curve parameters battery size 30 kWh

Scenario cfpos cfieg 1-(cfoegpevs) Cfneg) cfg<os cfo—0s Fefo.s P max Ph.min cfy
LT 43.00% -0.24% 15.63% 28.62% 14.61% 51.06% 102.52% -42.50% 2.80%
DSM 43.20% -0.08% 72.89% 29.42% 13.85% 47.07% 92.45% -31.48%  0.80%

V2G DoD Mup 43.27% -0.03% 88.98% 29.87% 13.43% 44.94% 90.02% -21.29%  0.20%
V2G AhMup  43.27% -0.03% 88.98% 29.87% 13.43% 44.94% 90.02% -21.29%  0.20%

Table A-41: Ramp rate parameters battery size 30 kWh

Scenario rrfyo M pos Gpos W neg Gheg Xy=0 I'Tmax I'T min
LT 236% 5.26% 4.14% -426% 2.83% 55.19% 30.57% -19.14%
DSM 1.42%  2.68% 3.34% -2.99% 2.62% 47.23% 27.65% -17.16%

V2GDoDMup  1.00%  1.95% 2.46% -2.03% 1.93% 48.90% 16.88% -12.21%
V2G Ah Mup 1.00%  1.95% 2.46% -2.03% 1.93% 48.90% 16.88% -12.21%
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Mobility behavior

Table A-42: Duration curve parameters deterministic MOP mobility behavior

1-

Scenario cfpos [ cfo<ns cfo-os Yero.8 Ph max Py min cfy
(Cfneg( PEVs)/ Cfneg)

LT 40.85% -0.24% 17.01% 27.19% 13.89%  51.06% 98.31% -41.95% 2.80%
DSM 41.42% -0.11% 60.81% 27.98%  13.54%  48.40% 91.30% -34.29% 1.60%
V2G DoD Mup 41.47%  -0.07% 77.09% 2827%  1327%  46.93% 88.76% -27.72% 0.80%
V2G Ah Mup 41.48% -0.05% 80.99% 28.34%  13.19%  46.55% 88.77% -26.18% 0.60%
Table A-43: Ramp rate parameters deterministic MOP mobility behavior

Scenario rrfpos n pos tjpos n neg tsnv:g xy=0 IFmax IY'min

LT 2.20% 4.82% 3.83% -4.04% 2.81% 54.44% 28.46% -19.21%

DSM 1.52%  2.96% 3.49% -3.09% 2.72% 48.85% 27.73% -18.39%

R//I%S DoD 1.18%  2.37% 2.96% -2.35% 2.25% 50.17% 22.91% -15.80%

V2G AhMup 1.15% 2.33%  2.84%  -2.27%  2.16%  50.70%  19.87%  -13.43%
Table A-44: Duration curve parameters probability based MOP mobility behavior

Scenario cfpos cfieg 1-(cfucgeEvs/clneg)  €fo<os cfgo—08 Iefo.8 Ph,max Pt min cfy—

LT 40.94% -0.24% 15.37% 27.22%  1397%  51.32% 99.44% -42.13% 2.80%
DSM 41.40% -0.12% 59.31% 27.96%  13.56%  48.49% 90.89% -34.76% 1.60%
V2G DoD 41.45% -0.07% 75.45% 28.24%  13.28%  47.02% 88.96% -27.76% 0.80%
V2G Ah 41.46% -0.06% 80.16% 2831% 13.20%  46.64% 88.67% -26.31% 0.80%
Table A-45: Ramp rate parameters probability based MOP mobility behavior

Scenario rrfye M pos Gpos W neg Oneg Xy=0 I'Tmax I'T min

LT 2.25% 491% 3.89% -4.14% 2.85% 54.25% 28.76% -18.98%

DSM 1.55%  2.98% 3.50% -3.18% 2.69% 48.35% 27.76% -17.85%

V2G DoD 1.18% 237%  2.96%  -235%  2.25%  50.17% = 2291%  -15.80%

V2G Ah 1.15% 2.33% 2.84% -2.27% 2.16% 50.70% 19.87% -13.43%

Table A-46: Duration curve parameters commuter scenario

Scenario cfos cfeg 1-(cfuegprvsy/clneg)  cfg<ns cfgo—os Fefo.s Phmax Ph.min ef
LT 42.58% -0.2833% 0.48% 29.37%  14.05%  47.84% 95.88% -32.70% 1.40%
DSM 43.31% -0.1118% 60.75% 29.43%  13.96%  47.44% 94.44% -29.21% 1.00%
V2G DoD Mup 43.32% -0.0806% 71.69% 29.47%  13.92%  47.22% 94.02% -26.54% 0.80%
V2G Ah Mup 43.33% -0.0633% 77.76% 26.65%  16.22%  60.86% 151.65% -43.52% 3.20%
Table A-47: Ramp rate parameters commuter scenario

Scenario rrfpo M pos Gpos M neg Oneg Xy=0 I'Fmax I'T min

LT 1.33%  2.67% 3.89% -2.64% 2.74% 50.21% 37.95% -25.37%

DSM 1.18%  2.36% 3.66% -2.32% 2.60% 50.39% 37.25% -24.33%

V2G DoD Mup 1.14%  231% 3.57% -2.21% 2.58% 51.04% 36.89% -24.54%

V2G Ah Mup 3.66%  8.62%  13.32% -6.36% 757%  57.55%  63.01%  -38.19%
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Table A-48: Duration curve parameters vehicle-to-grid DoD without mobility behavior

. 1-
Scenario cfpos Cfpeq (Choegrive/ehucy) cfg<s [6 .8 Ph max Ph min cfy—o
V2G 2 kW 38.60% -0.1069% 62.46% 2598%  12.73%  49.00% 8491% -33.32% 1.40%
V2G reference 38.60% -0.1037% 63.59% 25.98%  12.72%  48.97% 84.90% -32.45% 1.40%
V2G 12 kW 38.60% -0.1029% 63.87% 25.98%  12.72%  48.95% 84.92% -32.42% 1.40%
V2G 22 kW 38.60% -0.1036% 63.60% 25.98% 12.72%  48.95% 84.91% -32.43% 1.40%
Table A-49: Ramp rate parameters vehicle-to-grid DoD without mobility behavior
Scenario rrfye M pos Gpos M neg Gheg Xy=0 I'Tmax I'T min
V2G 2 kW 142% 2.99%  3.14%  -2.67%  2.42%  52.86% = 24.87%  -18.69%

V2G reference  1.41%  2.98%  3.13%  -2.65%  2.41%  52.92% = 24.75%  -18.33%
V2G 12 kW 141% 2.98%  3.13%  -2.64%  2.40%  52.97% = 24.44%  -18.42%
V2G 22 kW 141% 2.99%  3.12%  -2.64%  2.40%  53.10%  24.58%  -18.31%
Table A-50: Duration curve parameters vehicle-to-grid Ah without mobility behavior

. 1-

Scenario cfpos Cfncg (Cfncg(PEVs)/Cfan cfQ<0.8 CfQ>=0‘8 Fefo.8 Ph,max Ph,min ny:()
V2G 2 kW 38.60% -0.0990% 65.24% 2598%  12.72%  48.95% 87.43% -31.95% 1.20%
V2G reference 38.60% -0.0987% 65.33% 25.98% 12.71%  48.93% 87.27% -31.81% 1.20%
V2G 12 kW 38.60% -0.0987% 65.34% 25.99% 12.71%  48.89% 87.23% -31.85% 1.20%
V2G 22 kW 38.61% -0.0979% 65.60% 25.99% 12.70%  48.88% 87.18% -31.75% 1.20%
Table A-51: Ramp rate parameters vehicle-to-grid Ah without mobility behavior

Scenario rrys M pos Gpos Mneg Oneg Xy=0 I'T'nax I'T'min

V2G 2 kW 1.49% 320%  3.08%  -2.78%  2.34%  53.56% = 20.72%  -15.56%

V2G reference  148%  3.19%  3.07%  -2.76% = 2.34%  53.54%  21.51%  -15.30%

V2G 12 kW 1.48% 3.18%  3.05%  -2.75%  2.33%  53.57%  21.47%  -15.01%

V2G 22 kW 1.47% 3.16%  3.05%  -2.75% = 2.32%  53.50% = 21.42%  -14.99%

Note: V2G scenarios include mark-up prices
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Table A-52: Duration curve parameters demand-side management

Scenario cfpos cfneg 1-(cfucgpeve/chucg)  Cfo<os  cfgo=os s Ph,max Ph,min cfy—
Permanent available  42.21% -0.1017% 64.29% 28.58% 13.72% 48.00% 91.91% -33.87% 1.40%
Home + work 42.10% -0.1021% 64.15% 28.51% 13.69% 48.02% 91.74% -33.82% 1.40%
Home 41.98% -0.1004% 64.74% 28.43% 13.64% 4797% 91.83% -33.48% 1.20%
Table A-53: Ramp rate parameters demand-side management

Scenario iy I pos Gpos M neg Gneg Xy=0 ITimax T min
Permanent available 1.50% 2.82% 3.47% -3.17% 2.68% 47.03% 27.68% -17.38%
Home + work 1.51% 2.83% 3.49% -3.18% 2.69% 47.07% 28.01% -17.53%
Home 1.52% 2.84% 3.49% -3.24% 2.72% 46.67% 27.99% -17.65%

Table A-54: Duration curve parameters vehicle-to-grid DoD battery aging and mark-up price

Scenario cfpos cfyeq 1-(cfuegpevs/Chueg)  €fo<os cfoo—08 Yero.8 Py, max Pi,min cfy
Permanent available ~ 42.25% -0.0610% 78.59% 28.85% 13.46% 46.64% 90.14% -27.41% 0.80%
Home + work 42.13% -0.0660% 76.83% 28.75% 13.44% 46.76% 89.94% -28.22% 0.80%
Home 42.01% -0.0660% 76.80% 28.66% 13.42% 46.82% 89.11% -28.34% 0.80%
Table A-55: Ramp rate parameters vehicle-to-grid DoD battery aging and mark-up price
Scenario iy I pos Gpos M neg Oneg Xy=0 I'Tmax I'T min
Permanent available 1.20% 2.34% 3.00% -2.42% 2.27% 49.17% 22.90% -15.34%
Home + work 1.22% 2.37% 3.03% 2.48% 230%  48.90% 23.73%  -15.41%
Home 1.25% 2.42% 3.07% -2.54% 2.36% 48.82% 23.73% -15.82%

Table A-56: Duration curve parameters vehicle-to-grid Ah battery aging and mark-up price

Scenario cfpos cfieg 1-(cfhegpevs/chueg)  cfg<ns cfo—0s Ieo.8 Ph max Py min cfy—
Permanent available ~ 42.26% -0.0504% 82.30% 28.93% 13.37% 4623% 89.87% -26.02% 0.60%
Home + work 42.14% -0.0545% 80.84% 28.83% 13.36% 46.33% 89.58% -27.13%  0.60%
Home 42.03% -0.0545% 80.84% 28.74% 13.34% 46.39% 89.58% -27.22%  0.60%
Table A-57: Ramp rate parameters vehicle-to-grid Ah battery aging and mark-up price

Scenario rrfpos W pos Gpos Weg Oneg Xy=0 ITFax I'T'in
Permanent available 1.15% 2.29% 2.86% -2.31% 2.18% 49.78% 19.78% -14.64%
Home + work 1.17% 2.30% 2.89% -2.37% 2.21% 49.21% 21.01% -14.68%
Home 1.19% 2.34% 2.93% -2.42% 2.27% 49.04% 21.16% -14.73%
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Table A-58: Duration curve parameters

Scenario cfpos cfieg (Cfncg(l’l:\:s)/(:fngg) cfo<os  cfge—0s  Tens Ph,max Pi,min ef—
RS-PV 0% 38.54% -0.697% 25.06% 14.16% 56.50% 90.71% -51.46%  6.40%
DSM RES-PV 0% 4220% -0.427% 38.79% 27.76% 14.87% 53.56% 92.58% -31.54% 4.20%
V2GDoD RES-PV 0%  42.24% -0.348% 50.10% 27.98% 14.61% 52.21% 90.86% -29.34%  3.80%
RS-PV 15% 38.54% -0.286% 25.56% 13.26% 51.87% 89.87% -32.16% 3.40%
DSM RES-PV 15% 4221% -0.132% 53.97% 28.47% 13.86% 48.70% 91.64% -24.85%  1.80%
V2GDoD RES-PV 15%  42.24% -0.087% 69.41% 28.66% 13.66% 47.65% 90.51% -20.40%  1.40%
RS-PV 30% 38.54% -0.429% 25.72% 13.24% 51.47% 90.71% -51.46% 4.20%
DSM RES-PV 30% 4220% -0.159% 63.03% 28.62% 13.73% 47.97% 92.25% -40.75%  2.00%
V2GDoD RES-PV 30% 42.26% -0.077% 81.99% 28.92% 13.41% 4637% 90.01% -33.65%  1.00%
RS-PV 45% 38.54% -1.499% 2647% 13.57% 5127% 91.55% -70.82%  9.20%
DSM RES-PV 45% 4221% -0.763% 49.07% 28.99% 14.00% 48.29% 93.04% -58.68%  6.00%
V2GDoD RES-PV 45% 42.30% -0.389% 74.03% 29.19% 13.51% 46.28% 90.14% -49.29%  3.80%
Note: V2G scenarios include mark-up prices

Table A-59: Ramp rate parameters

Scenario rrfye I pos Gpos M neg Oneg Xy=0 I'Tax I'T min
RS-PV 0% 1.64% 3.46% 2.92% -3.11% 2.40% 52.68% 18.13% -16.86%
DSM RES-PV 0% 1.23% 2.24% 3.09% -2.70% 2.59% 45.29% 19.01% -17.42%
V2GDoD RES-PV 0% 1.03% 1.93% 2.83% -2.18% 2.27% 46.93% 18.78% -15.65%
RS-PV 15% 1.75% 3.78% 3.03% -3.25% 2.33% 53.70% 24.47% -14.48%
DSM RES-PV 15% 1.25% 2.28% 2.97% -2.73% 2.43% 45.48% 23.83% -14.09%
V2GDoD RES-PV 15% 1.02% 1.95% 2.63% -2.14% 2.10% 47.65% 18.75% -12.56%
RS-PV 30% 2.26% 4.91% 4.09% -4.17% 3.27% 54.09% 30.82% -22.63%
DSM RES-PV 30% 1.72% 3.28% 3.96% -3.56% 3.09% 47.93% 30.06% -21.04%
V2GDoD RES-PV 30% 1.34% 2.66% 3.36% -2.67% 2.61% 49.90% 25.53% -18.19%
RS-PV 45% 2.87% 6.26% 5.65% -5.28% 4.98% 54.21% 37.16% -30.92%
DSM RES-PV 45% 1.72% 4.52% 5.48% -4.64% 4.71% 49.29% 36.33% -30.52%
V2GDoD RES-PV 45% 1.34% 3.44% 4.57% -3.34% 3.97% 50.70% 33.30% -26.24%

Note: V2G scenarios include mark-up prices
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B. Field test

The price-based control of PEVs as introduced in Chapter 2 and Chapter 5 is applied in
the field test “Flottenversuch Elektromobilitit” (BMU, 2009; E.ON AG, 2012 and
Volkswagen AG, 2011). The Flottenversuch Elektromobilitit is a project funded by the
German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety
(BMU) with Volkswagen AG and E.ON Energiec AG as the main industry partners.'”
As one task within the subproject AP1 under E.ON AG leadership a on-board meter was
developed and implemented in 20 Golf Variant “TwinDrive” plug-in hybrid electric
vehicles. Details on the technical specification are available in (Link, 2011, Chapter
5.3). The depth of discharge-based battery cost calculation (see Chapter 4.3.4) and the
optimization algorithm (see Chapter 5.4.6) were implemented in the Volkswagen
vehicles and the PowerACE DSM simulation environment. The tariff used in the field
was generated with the PowerACE simulation model including variable grid fees for a
2030 scenario'** and gives incentives for the grid integration of fluctuating generation
units (see Chapter 5.3.5). This shows a valuable application of the simulation model in a
research project. The application of the methods in the field test and the simulation
environment provides evidence on the technical feasibility and practical relevance of
this work.

123 Further partners are GAIA Akkumulatorenwerke GmbH, Evonik Litarion GmbH, ifeu - Institut fiir
Energie- und Umweltforschung Heidelberg GmbH, Westfilische Wilhelms-Universitdt Miinster
Fraunhofer ISiT - Fraunhofer Institut fiir Siliziumtechnologie.

¥ Note: The scenario introduced in Chapter 6 is not consistent with the scenarios of the Flottenversuch
Elektromobilitét.
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