
This paper examines a method to model plug-in electric vehicles as part of 
the power system and presents results for the contribution of plug-in electric 
vehicles to balance the fl uctuating electricity generation of renewable energy 
sources. 

The scientifi c contribution includes:

■ A novel approach to characterizing fl uctuating generation. This allows the 
detailed comparison of results from energy analysis and is the basis to 
describe the eff ect of electricity from renewable energy sources and plug-in 
electric vehicles on the power system. 

■ The characterization of mobile storage, which includes the description of 
mobility behavior using probabilities and battery discharging costs. 

■ The introduction of an agent-based simulation approach, coupling energy 
markets and distributed grids using a price-based mechanism design. 

■ The description of an agent with specifi c driving behavior, battery discharg-
ing costs and optimization algorithm suitable for real plug-in vehicles and 
simulation models. 

■ A case study for a 2030 scenario describing the contribution of plug-in 
electric vehicles to balance generation from renewable energy sources in 
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ABSTRACT 

 
I

Abstract 
 
This paper examines a method to model plug-in electric vehicles as part of the power 
system and presents results for the contribution of plug-in electric vehicles to balance 
the fluctuating electricity generation of renewable energy sources.  
 
To reduce emissions emitted by passenger vehicles and the dependence on oil, electric 
driving is discussed. The paper therefore analyses a situation assuming a high share of 
plug-in electric vehicles in Germany for 2030. To avoid an incising peak load due to 
electric vehicle charging and to use the load shifting and storage potential of vehicles’ 
batteries a mechanism to schedule charging or feeding back electricity is of high 
relevance. To implement such a mechanism and analyze the contribution of plug-in 
electric vehicles as a grid resource an agent- based simulation method is applied. Plug-
in electric vehicles are modeled as independent agents controlled by a mechanism 
designed making use of the marginal cost- based electricity market model PowerACE. 
The method allows considering single vehicles and a very high degree of details in 
terms of smart charging profits, battery degradation and driving behavior.  
 
The simulation results show that fueling passenger vehicles with electricity allows a 
reduction of carbon dioxide emissions. The magnitude of emission reduction is 
relatively small unless the electricity is supplied by additionally installed renewable 
energy sources. A very important finding for Germany therefore is that electricity from 
renewable energy sources should be used to provide sustainable transportation. In terms 
of revenues from smart charging, values are in the range of 50 – 250 euros per year and 
rather depend on the yearly electricity consumption than on power or battery size. In 
conclusion, smart charging technology must be low cost and make use of existing 
components implemented in passenger vehicles. The grid integration performance of 
fluctuating electricity generation strongly depends on the generation pattern. A daily 
generation pattern results in a better grid integration performance because the available 
energy for load shifting also follows a daily pattern. For Germany, therefore, especially 
solar power can be balanced with storage of plug-in electric vehicles. 
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Zusammenfassung  
 
Im Rahmen dieser Arbeit wird untersucht, inwieweit netzgekoppelte Elektrofahrzeuge 
zum Ausgleich fluktuierender Elektrizitätserzeugung von erneuerbaren Energien 
beitragen können. 
 
Die Elektromobilität gilt als eine vielversprechende Option, um Emissionen im 
Verkehrssektor und die Abhängigkeit von fossilen Energieträgern zu senken. Dies gilt 
im Besonderen, wenn die erforderliche Elektrizität aus erneuerbaren Energiequellen 
stammt. In Deutschland und Europa ist im Bereich der erneuerbaren Energien vor allem 
der Ausbau von fluktuierenden Erzeugern wie Windturbinen und Photovoltaikanlagen 
geplant (Beurskens et al., 2011). Eine große Herausforderung dieser Ressourcen ist 
jedoch die Volatilität der von Sonneneinstrahlung und Windgeschwindigkeit 
abhängenden Erzeugung. Inwieweit Last- und Erzeugungsmanagement mittels 
Elektromobilität zu einer besseren Integration von erneuerbaren Energien beitragen 
kann, ist daher eine entscheidende Forschungsfrage.  
 
Die Arbeit gliedert sich wie folgt. Nach einer Einleitung zur wissenschaftlichen 
Fragestellung und deren Bedeutung (Kapitel 1) werden die Grundlagen zur Steuerung 
netzgekoppelter Fahrzeuge geschaffen (Kapitel 2). Darauf aufbauend wird die Methodik 
zur Charakterisierung der verwendeten Zeitreihen  (Kapitel 3) und die Besonderheiten 
mobiler Speicher (Kapitel 4) thematisiert. Anschließend folgt das eigentliche 
Methodenkapitel (Kapitel 5), in dem das verwendete Simulationsmodell vorgestellt 
wird. Die Erstellung eines Zukunftsszenarios für das Jahr 2030 mit hohem Anteil 
erneuerbarer Energien und Elektrofahrzeugen definiert das Untersuchungsfeld der 
Arbeit (Kapitel 6). Die Ergebnisse (Kapitel 7) fokussieren auf die Möglichkeit zur 
Integration von erneuerbaren Energien, die mittels der in (Kapitel 3) festgelegten 
Charakterisierungsparameter quantifiziert werden. Außerdem werden marginale CO2-
Emissionen (Kapitel 7.5) und mögliche Einsparungen durch das gesteuerte Laden 
(Kapitel 7.6) diskutiert. Die sich anschließende Sensitivitätsanalyse (Kapitel 7.7) rundet 
das Ergebniskapitel ab und zeigt die größten Unsicherheiten der Untersuchung auf. 
Abschließend werden in Kapitel 8 wichtige Schlussfolgerungen und der sich aus der 
Arbeit ergebenden weitere Forschungsbedarf aufgezeigt.  
 
Das Kernstück der Arbeit ist die in Kapitel 3, 4 und 5 entwickelte Methodik. Dies 
beinhaltet die Festlegung und Definition von Charakterisierungsparametern mit denen 
die Zeitreihen als wichtige  Eingangsparameter und die Ergebnisse beschrieben werden. 
Dadurch wird es möglich, den Effekt von fluktuierenden Erzeugern auf das 
Energiesystem zu messen. Nur so kann anschließend quantifiziert werden, welchen 
Beitrag die Elektromobilität zur Integration leistet. Ein weiterer grundlegender 
methodischer Inhalt ist die Beschreibung von mobilen Speichern. Zur Bestimmung von 
Elektromobilitätsnutzern wurde ein Abfrageschema entwickelt (Biere, et al. 2009) und 
auf eine Mobilitätsstudie (MID, 2010) angewandt. Der so gefilterte Datensatz wird 
verwendet, um Wahrscheinlichkeiten für die Modellierung des Mobilitätsverhaltens 
abzuleiten. Nach wirtschaftlichen Gesichtspunkten zeichnen sich mögliche Nutzer von 
Elektrofahrzeugen durch eine hohe elektrische Fahrleistung aus. Höhere 
Anschaffungskosten von Elektrofahrzeugen müssen über die aufgrund der hohen 
Effizienz niedrigeren Betriebskosten amortisiert werden. Dies gelingt besonders im Fall 
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von Nutzern, die in kleineren Gemeinden wohnen und täglich zur Arbeit pendeln.1 
Städter sind in der Regel wesentlich weniger geeignet, weil sie oft nur ein Fahrzeug 
besitzen, die Lademöglichkeit unsicherer ist und die elektrische Fahrleistung trotz 
höheren Verbrauchs im Stadtverkehr nicht ausreicht, um die Anfangsinvestition in das 
Fahrzeug zu amortisieren. Durch die Filterung des Datensatzes wird erreicht, dass nur 
Fahrprofile von potentiellen Nutzern in die Modellierung einbezogen werden.  
Außerdem sind die Entladekosten ein wichtiger Einflussfaktor für die Bestimmung des 
Rückspeiseverhaltens von mobilen Speichern. Zur Quantifizierung der Entladekosten 
wurden zwei Ansätze in Abhängigkeit der Entladetiefe (Rosenkranz, 2003/2007) und 
des Energiedurchsatzes (Peterson et al., 2009) der Batterie untersucht. Bei der 
Entwicklung des Batteriealterungsmodells mussten viele Vereinfachungen getroffen 
werden. Beispielsweise wurden Temperatur und C-Rate2 sowie Abhängigkeiten 
zwischen Alterungsmechanismen vernachlässigt. Darüber hinaus ist heute aufgrund der 
hohen Entwicklungsdynamik nur sehr schwer abschätzbar, welche Batteriechemie sich 
zukünftig durchsetzt. Die generell für Lithium- Batterien entwickelten Ansätze erlauben 
daher nur eine sehr vereinfachte Darstellung der durch Alterung verursachten 
Entladekosten.     
 
Die Beschreibung der verwendeten Simulationsumgebung beginnt mit einem Überblick 
zum Agenten-basierten Strommarktmodell PowerACE (Sensfuß, 2007), das als 
Grundlage für die Modellierung verwendet wird. PowerACE bildet alle wichtigen 
Akteure der Angebots- und Nachfrageseite des Strommarkts in Deutschland ab und 
erlaubt es Grenzkosten-basierte Strompreise zu bestimmen. Für die Elektromobilität 
dient der Strompreis als Steuergröße, um das intelligente Lade- und Entladeverhalten 
der Fahrzeuge zu bestimmen.     
 
Im implementierten Steuerungsmechanismus werden einzelne Fahrzeuge einem 
Fahrzeug- Pool zugeordnet der wiederum in Fahrzeug- Gruppen unterteilt ist. Für 
Fahrzeug- Pools wird über eine Strompreisprognose ein spezifisches Preissignal 
ermittelt. Ausgehend von diesem Steuersignal wird auf der Gruppenebene ein variables 
Netzentgelt addiert, um die Situation im Verteilnetz abzubilden. Durch die 
fahrzeugspezifische Anpassung des variablen Netzentgelts in Abhängigkeit der 
Trafoauslastung und die Pool-spezifische Preisvorhersage wird eine gleichmäßige 
Verlagerung der Elektrizitätsnachfrage in Lasttäler erreicht. Dieser 
Steuerungsmechanismus erfordert eine uneinheitliche Tarifgestaltung, die in dieser 
Form heute aufgrund des Gleichheitsgedankens nicht rechtmäßig ist. Der verwendete 
iterative Prozess erlaubt jedoch eine sehr gute Steuerung der Fahrzeuge, ohne die 
individuellen Mobilitäts- und Batterieanforderungen zu vernachlässigen.  
 
Auf Fahrzeugebene wurde ein Software- Agent entwickelt, der in Zusammenarbeit mit 
dem Fraunhofer ISE in ein Versuchsfahrzeug implementiert wurde (Link, 2011).3 In 
PowerACE beinhaltet dieser Agent die Modellierung des Fahrverhaltens unter 
Verwendung der aus Mobilitätsstudien ermittelten Wahrscheinlichkeiten. Die einem 
spezifischen Fahrzeug zugewiesenen Fahrten ermöglichen die Ermittlung der 
Zeitperiode, die für das Erzeugungs- und Lastmanagement zur Verfügung steht sowie 
den Ausgangs- und erforderlichen Endzustand des Speichers. Über die entwickelten 
Funktionen zur Batteriealterung werden die Rückspeisekosten in Abhängigkeit des 
                                                 
1  Der Wirtschaftsverkehr wird in dieser Arbeit nicht betrachtet. Kleine Transporter weisen jedoch ein 
  hohes Potential aufgrund der Fahrprofile und der guten Planbarkeit von Fahrten auf. Bei der 
 Betrachtung von ganz Deutschland ist das Potential aufgrund der geringen Fahrzeugzahl im Vergleich 
  zu privaten PKW jedoch relativ gering. 
2  C- Rate: Lade- bzw. Entladerate definiert als Batteriekapazität (kWh) dividiert durch eine Stunde.  
3  Siehe auch Anhang B. 
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spezifischen Speicherzustands ermittelt. Der implementierte Optimierungsalgorithmus 
nutzt diese Informationen und das vom Steuerungsmechanismus bereitgestellte 
Preissignal, um einen optimalen Lade- und Entlade- Fahrplan zu ermitteln. Die 
Agenten-basierte Modellierung bietet in diesem Zusammenhang den Vorteil, dass 
individuelle Nutzerbedürfnisse wie das Mobilitätsverhalten oder die von der 
Entladetiefe bzw. dem vom spezifischen Speicherzustand abhängigen Rückspeisekosten 
abgebildet werden können. Außerdem können in zukünftigen Arbeiten 
Preissensitivitäten implementiert werden, um zu berücksichtigen, dass je Nutzer 
unterschiedliche Anreize zum Last- und Erzeugungsmanagement notwendig sind.  
 
Das Ergebniskapitel beginnt mit einer Auswertung der Verlagerungszeit bzw. der 
Zeitperiode zwischen zwei Wegen, über die das Lade- und Entlade- Verhalten optimiert 
werden kann. Diese zeigt, dass die Verlagerungszeiten über den Tag stark schwanken 
und vor allem nach dem letzten Weg lange Verlagerungsperioden möglich sind. 
Generell gilt, dass Elektrofahrzeuge nur als Kurzzeitspeicher mit Verlagerungszeiten im 
Bereich von wenigen Stunden bis Tagen eingesetzt werden können. Für die 
wirtschaftliche Nutzung der Fahrzeuge ist eine hohe Auslastung mit nahezu täglichen 
Fahrten vorteilhaft. Der Primärnutzen der Fahrzeuge, die Befriedigung des 
Mobilitätsverhaltens, reduziert demnach die Freiheitsgrade des Speichermanagements. 
 
Der Beitrag zur Integration von fluktuierenden Erzeugern durch die Elektromobilität 
wird anhand der entwickelten Charakterisierungsparameter gemessen und an zwei 
Fallstudien zum Lastmanagement untersucht. Dafür wurde für Kalifornien und 
Deutschland ein Szenario mit gleichem Anteil an fluktuierenden Erzeugern und 
Elektrofahrzeugen entwickelt und verglichen. Die Ergebnisse zeigen, dass die je nach 
Szenarien resultierende Fluktuation der Residuallast4 hohen Einfluss auf die Fähigkeit 
zur Integration hat. Für Kalifornien wird ein höherer Anteil an Sonnenenergie zugrunde 
gelegt. Außerdem schwankt dort die Windenergieerzeugung aufgrund des 
Temperaturunterschiedes zwischen Pazifik und Festland oft in einem täglichen 
Rhythmus. Der tägliche Rhythmus der resultierenden Residuallast begünstigt die 
Integration durch Elektrofahrzeuge deren zur Lastverlagerung verfügbare Energiemenge 
täglich durch Fahrten erneuert wird. In Deutschland wird die Windeinspeisung durch 
Tiefdruckgebiete bestimmt, die öfters zu längeren Perioden mit starker 
Windeinspeisung führen. Der durch die Elektromobilität integrierbare Überschussstrom, 
für Deutschland zwischen 50 % und 64 % und für Kalifornien von 73 %, zeigt die 
Eignung von Elektrofahrzeugen zur Integration von relativ regelmäßig schwankenden 
Erzeugern.  
 
Die Rückspeisung wurde ausschließlich für das Deutschland Szenario betrachtet, weil in 
diesem Anwendungsfall die notwendigen Informationen zum Kraftwerkspark für 
Kalifornien nicht verfügbar sind. Im Besonderen beim Ausgleich der 
Residuallastschwankungen wird durch die Rückspeisung eine Verbesserung gegenüber 
dem reinen Lastmanagement erreicht. Insgesamt wird die Residuallastschwankung um 
38 % bis 43 % gegenüber dem Referenzszenario ohne Elektromobilität reduziert. 
Gegenüber dem reinen Lastmanagement werden weitere 12 % bis 18 % an 
Überschussstrom genutzt. Beim Vergleich der beiden Methoden zur Berechnung der 
Rückspeisungskosten auf Fahrzeugebene zeigt sich, dass der Speicherhub bei der 
Alterung basierend auf der Entladetiefe wesentlich geringer ist. Insgesamt wird öfters 
und mit geringerer Entladungstiefe zykliert. Für die gesamte Fahrzeugflotte resultiert 
dies in einer höheren rückgespeisten Energiemenge im Fall der energiebasierten 

                                                 
4  Die Residuallast ist die resultierende Last aus Systemlast minus fluktuierender Einspeisung.  
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Berechnung der Entladekosten. Die Mengen des integrierten Überschussstroms weichen 
insgesamt jedoch nur um wenige Prozentpunkte voneinander ab.  
 
Zusätzlich zur Integrationsfähigkeit wurden Grenzemissionen sowie Einsparungen 
durch das intelligente Laden betrachtet. Die CO2-Grenzemissionen werden dabei stark 
vom Kraftwerkspark bestimmt. Beim Laden nach dem letzten Weg erhöht sich die 
Spitzenlast. Die Elektrizität wird in diesem Fall oft von Gasturbinen bereitgestellt, was 
zu vergleichsweise geringen Emissionen führt. Insgesamt stammen nur 1,8 % aus 
Überschussstrom von fluktuierenden erneuerbaren Energien. Durch die Lastverlagerung 
und die zusätzliche Rückspeisung wird dieser Anteil auf 8,1 % bzw. 10,4 % gesteigert. 
Die Gesamtbilanz verschlechtert sich beim zugrundegelegten Szenario jedoch von 100 
g CO2/km für ungesteuertes Laden auf 113 bis 116 g CO2/km für das intelligente Laden. 
Ursache ist die durch die Lastverlagerung erhöhte Auslastung von Kraftwerken mit 
niedrigen Grenzkosten. Diese Kraftwerke sind bei gewählten Brennstoff- und CO2-
Preisen meist Kohlekraftwerke mit hohen Emissionen. Der zusätzliche Verbrauch an 
Überschussstrom reicht nicht aus, um diese höheren Emissionen aus Kohlekraftwerken 
zu kompensieren. Daraus folgt, dass zusätzliche erneuerbare Energien erforderlich sind, 
um die Grenzemissionen der Elektromobilität zu verbessern. Für diesen Fall werden nur 
sehr wenige regelbare Kraftwerke benötigt bzw. gelingt bei der Betrachtung inklusive 
Rückspeisung sogar eine zusätzliche Verwendung von erneuerbaren Energien, die die 
Nachfrage der Elektromobilität übersteigt.   
 
Die mit Hilfe des Modells ermittelten Einsparungen durch intelligentes Laden 
gegenüber dem Laden nach dem letzen Weg liegen im Bereich von 50 - 250 Euro pro 
Fahrzeug und Jahr. Es zeigt sich, dass für reines Lastmanagement die Einsparungen 
linear mit dem jährlichen Elektrizitätsbedarf korrelieren. Die Batteriegröße, welche 
weitere Freiheitsgrade bei der Optimierung ermöglicht, hat beim reinen 
Lastmanagement keinen Einfluss. Bei Lastmanagement inklusive Rückspeisung zeigt 
sich im Gegensatz dazu, dass die Batteriegröße die Einsparungen durch intelligentes 
Laden beeinflusst. Größere Batterien ermöglichen höhere Einsparungen sind jedoch 
nicht über die Teilnahme am Elektrizitätsmarkt finanzierbar. Insgesamt sind die 
individuellen Einsparungen, die am Elektrizitätsmarkt erreichbar sind, jedoch sehr 
gering. Eine Steigerung der Anreize könnte über die Variabilisierung von heute fixen 
Kosten der Elektrizitätsversorgung, wie variable Netzentgelte, realisiert werden.    
 
In einer Sensitivitätsanalyse wurden die wesentlichen Eingangsparameter des Modells 
variiert. Besonders sensitiv sind Zeitreihen und Erzeugungsmix der fluktuierenden 
erneuerbaren Energien. Außerdem weisen Batteriegröße und -kosten eine erhöhte 
Sensitivität auf. Der Einfluss der Beladeinfrastruktur auf die Integration ist unerwartet 
gering. Eine hohe Verfügbarkeit von Infrastruktur erhöht den elektrischen Fahranteil 
und damit die verlagerbare Energiemenge. Die Verlagerungszeit an öffentlicher 
Infrastruktur, die meist während des  Tages genutzt wird, ist aber kürzer als nach dem 
letzten Heimweg des Tages. Ist nur private Infrastruktur verfügbar führt dies dazu, dass 
zwar weniger Energie verlagert werden kann, die Verlagerungszeit aber ansteigt. Beide 
Effekte gleichen sich weitestgehend aus und begründen die geringe Sensitivität der 
Verfügbarkeit von Infrastruktur. Im Fall des ungesteuerten Ladens haben auch das 
Mobilitätsverhalten und die Netzanschlussleistung einen sehr hohen Einfluss. Während 
beim gesteuerten Laden beide Faktoren nur geringe Abweichungen zum Referenzfall 
bewirken. Wird das Mobilitätsverhalten nicht berücksichtigt bzw. stationäre Speicher 
modelliert zeigt sich der hohe Stellenwert der Lastverlagerung. Trotz der erhöhten 
Freiheitsgrade für das Speichermanagement wird durch stationäre Speicher ein 
insgesamt geringerer Beitrag zur Integration erneuerbarer Energien geleistet. Dieser 
Zusammenhang zeigt, dass der Nutzen durch die verlagerbare Energie höher ist als die 



  ZUSAMMENFASSUNG VI

durch das Mobilitätsverhalten verursachten Restriktionen. Die duale Speicher-
verwendung erweist sich im Fall der Elektromobilität damit als ein Erfolgsfaktor.  
 
Das untersuchte Szenario für das Jahr 2030 weist Unsicherheiten bezüglich der 
verfügbaren Elektrofahrzeuge sowie den Annahmen zum Elektrizitätssystem aus. Die 
zu erreichende Penetration von Elektrofahrzeugen ist nach wirtschaftlichen 
Gesichtspunkten stark vom Preisen für Konkurrenzprodukte wie Öl oder Gas sowie der 
Batterietechnik abhängig. Aus heutiger Sicht erscheinen die politischen Ziele und das 
gewählte Penetrationsszenario als eher optimistisch. Inwieweit die diskutierten 
Preisanreize Nutzer motivieren am Lastmanagement teilzunehmen, wurde nicht explizit 
untersucht. Es wurde angenommen, dass Nutzer in jedem Fall auf das Steuersignal 
reagieren. Eine weitere Unsicherheit der Ergebnisse besteht daher darin, wie viele 
Nutzer tatsächlich zu einer Reaktion auf das Anreizsignal motiviert werden können.  
 
Zusammenfassend zeigt diese Arbeit, dass die Elektromobilität die Integration von 
erneuerbaren Energien fördern kann. Dabei ist die Elektromobilität ein Baustein, der im 
Zusammenspiel mit flexiblen Kraftwerken, anderen Speichertechnologien, der 
großflächigen Verteilung durch Netze und dem Lastmanagement mit anderen 
Verbrauchern einen hohen Anteil erneuerbarer Energien im Energiesystem ermöglicht. 
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1 Introduction  
 
 
1.1 Background 
 
The Intergovernmental Panel on Climate Change (IPCC) concludes that there is strong 
evidence that the observed climate change is being caused by carbon dioxide (CO2) and 
other greenhouse gas emissions caused by human activity (IPCC, 2007). Major emitters 
include the transportation (23 %) and electricity sectors (41 %) which together account 
for a total share of over 60 % of the worldwide energy-related CO2 emissions  
(IEA, 2008 p. 391). For both sectors, a rapid growth in energy use is expected to 
accompany the rising prosperity in developing countries. Low carbon energy conversion 
plays a key role in promoting this growth and reducing emissions in more developed 
countries. The low carbon intensity of electricity from renewable energy sources  
(RES-E) is one of the main measures to reduce CO2 emissions in the European energy 
strategy (EU, 2009a) and plays a globally important role as a mitigation instrument 
(Awerbuch, 2006; IPCC, 2011; Schmid et al., 2012). In the European Union, wind and 
solar are the fastest growing renewable energy sources (RES) for electricity generation. 
Electricity generation from biomass faces competition from the food and transportation 
sectors. Hydropower is already very well developed and the potentials to build 
additional capacities are limited in most of Europe. Therefore, it is expected that time-
varying electricity generation will be expanded to reach the goals of the European 
Union (Beurskens et al., 2011). The problem here is that the grid integration of 
fluctuating RES-E generated by photovoltaic panels or wind turbines requires storage, 
demand response and/or wide distribution options in order to balance the variable 
electricity output. Plug-in electric vehicles (PEVs) could provide both storage and 
demand response. Further, PEVs convert electricity very efficiently and can 
significantly reduce emissions from passenger transportation if low carbon technologies 
are used to generate the electricity consumed by electric vehicles. The interaction 
between fluctuating RES-E and PEVs therefore represents a major research challenge to 
reach the CO2 reduction goals of the European Union and to minimize worldwide 
climate change. 
 
 
1.2 Problem definition 
 
One of the main challenges associated with an electricity system featuring a high share 
of RES is the higher installed capacity and fluctuation in power (NERC, 2009;  
Parsons et al., 2004). Currently in Germany, there are 25 GW of installed photovoltaic 
power with a capacity factor of around 10  % (EEX, 2011). The simultaneous 
generation of these power plants reaches a maximum level of 70  % to 80  % and 
completely rises and declines within a time period of hours. To a lesser extent, the same 
applies to wind generation in Germany, which has an installed power of 30 GW and an 
average capacity factor between 20 % and 30 % (EEX, 2011). If even higher installed 
capacities of fluctuating generation are assumed, this results in a highly volatile residual 
load (RS) and demands a new way of thinking about the electricity system.  
 
Besides the fluctuating generation which determines the need for storage and demand-
side management, the storage unit investigated here – plug-in hybrid vehicles – has 
limitations due to consumer mobility needs. The main purpose of PEVs is to meet the 
demand for mobility and not to function as a storage or load shifting device. When 
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using PEVs to balance fluctuating generation, therefore, it is essential that they can be 
operated as storage units without user curtailment. The main challenge in this research 
paper is to account for fluctuating generation and the unique storage characteristics of 
mobile battery storage in a simulation environment which makes it possible to analyze 
future developments in the electricity system.  
 
 
1.3 Objective and procedure 
 
The objective of this paper is to investigates how PEVs can help to balance the 
fluctuation of RES-E in Germany in order to establish an electricity system with a very 
high level of low carbon electricity generation.  
To investigate the contribution of PEVs to balancing the fluctuating generation output 
of RES, the procedure is as follows. First, basic information about plug-in electric 
vehicles and demand-side management is provided (Chapter 2). This clarifies the 
scenarios and methods used in this work. Then the characteristics of fluctuating 
generation (Chapter 3) and mobile storage (Chapter 4) are described. A parameter set is 
defined to describe time series and the initial and resulting situation of the power 
system. Generation fluctuates very individually for specific regions and years. 
Therefore, time series of three generation years are analyzed for Germany. To account 
for a region with RES-E and a load characteristic different to Germany, an additional 
case study is provided for California. This case study is done to put the results on a 
broader basis and be able to compare two electricity systems characteristic for northern 
and southern countries. California differs from Germany because of the cooling load in 
summer, which is distinctive for southern countries. The characteristic of RES-E also 
differs because of higher solar generation potential and thermal wind caused by 
temperature differences between the mainland and the Pacific Ocean. The storage and 
demand-side management potential of PEVs is determined by mobility behavior and by 
battery ageing costs in the case of vehicle-to-grid services. Chapter 4 provides 
information from different mobility surveys and defines probabilities to characterize the 
mobility behavior and the availability of PEV storage. In addition, a method to account 
for battery degradation is presented. The simulation model using the fluctuation of  
RES-E and the characteristics of mobile storage as input parameters is demonstrated in 
Chapter 5. The simulation approach combines automated demand response and vehicle-
to-grid with an electricity market model. The electricity prices are modeled according to 
a marginal cost approach. Electric vehicles are included as distributed agents using price 
signals as the basis to determine their charging and vehicle-to-grid behavior. The 
framework of the analyzed electricity systems is presented in the section on scenarios 
(Chapter 6). Currently, fossil sources are mainly responsible for electricity generation 
and passenger vehicle fuels. To account for an electricity system with high RES-E share 
and PEV penetration, a future scenario is defined for 2030. This scenario distinguishes 
between Germany (GER) and California (CA), but keeps the relative number of 
vehicles and RES shares equal for comparison reasons. Finally, Chapter 7 presents the 
results which includes a sensitivity analysis and Chapter 8 the conclusions.  
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2 Controlling grid-connected vehicles  
 
 
2.1 Introduction 
 
This chapter introduces grid-connected vehicles and demand-side management (DSM) 
as a method to control distributed devices and is structured in two main parts. The first 
part contains basic information about electric vehicles and the relevant parameters for 
the vehicle simulation. The second part provides background information on demand-
side management and the chapter finishes with a summary of the discussed topics.  
 
 
2.2 Grid-connected vehicles  
 
Vehicles using an electricity-based propulsion system are discussed in the context of 
alternative transportation to reduce emissions and improve vehicle efficiency. A grid-
connected vehicle is defined as a vehicle able to charge a battery with electricity from 
the grid which is used as energy source to drive the propulsion system. The basic 
electric vehicle concepts and their current status in Germany are discussed in the next 
section. This paper focuses on private passenger transportation. Commercial light-duty 
vehicles on selected routes is another promising application for electric transport, but 
this is not considered here because of the relatively small vehicle fleet compared to 
private passenger vehicles.5 The additional investment needed for electric vehicles and 
batteries is provided. The cost structure of electric vehicles forms the basis for the 
assumptions made about possible users and underlines the vehicle specifications used. 
Finally, CO2 emissions are discussed as a major argument for analyzing the interaction 
of electric vehicle storage and RES.  
 
2.2.1 Vehicle concepts 
 
This paper focuses on vehicles which convert electricity from an external power source 
into the kinetic energy used for driving. These vehicles are referred to as grid-connected 
vehicles or plug-in electric vehicles (PEVs). They include pure battery electric vehicles 
(BEVs) and plug-in hybrid electric vehicles (PHEVs)6 as shown in Figure 2-1.  
 

 
Figure 2-1: Principal concept of plug-in electric vehicles  

                                                 
5 Commercial transport accounts for less than 10 % of all registered passenger vehicles in 2011. 
6  PHEVs are further distinguished by parallel and serial drive train concepts. For the presented work, 
 detailed drive train specification is not relevant. For further information on vehicle concepts see 
 (Naunin, 2007). 
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A BEV uses a single propulsion system that mainly consists of a battery as storage, 
power electronics to convert electricity and an electric motor (Chan, 1993;  
Emadi, 2005). The battery is designed to store the total energy necessary to meet 
mobility needs. A plug-in hybrid electric vehicle combines an electric propulsion 
system with a second drive train. In the majority of the discussed cases, this comprises a 
conventional internal combustion engine (ICE), but could also be a fuel cell or a 
microturbine. PHEVs allow the combustion engine to be kept within the optimum speed 
range so that power is transmitted more efficiently. PHEVs can be designed with 
smaller battery storage but needing two propulsion systems results in increased 
complexity. BEVs and PHEVs both recuperate braking energy. The main advantage of 
an electric propulsion system is its high efficiency between 69 % and 88 % from tank to 
wheel.7 The energy density of the battery storage (150 – 250 Wh/kg)8 is about one 
hundred times smaller than gasoline. This results in a higher vehicle weight. The option 
of generating the electricity required for vehicles from different sources enables the 
diversification of fuels and reduces the reliance on oil. The specifications of the vehicles 
used in the following simulation of the power system are shown in Table 2-1. 
 

Table 2-1:  Technical design of plug-in vehicles  

Technical data  PHEV (25) PHEV (57) BEV (100) BEV (167)  

Usable battery storage [kWh] 4.5 12 15 30 
Battery depth of discharge [%] 80 80 80 80 
Engine power [kW] 65 40 
Electric motor power [kW] 40 60 66 100 
Equivalent energy use [kWh/100 km, tank] 0.18 0.21 0.15 0.18 
Electric range [km] 25 57 100 167 

 
Two PHEV concepts are considered: The PHEV (25) with 25 km electric driving range 
accounts for a small to mid-size passenger vehicle.9 The bigger PHEV (57) can be 
characterized as typical mid-size sedan.10 The BEV concepts distinguish a 100 km 
(small sedan) and a 167 km (mid-size sedan) driving range. The specifications are based 
on own assumptions and research results from (Wietschel et al., 2008),  
(Biere et al., 2009), (Kley, 2011) and (Plötz et al., 2012). The studies rely on cost 
calculations and imply that the battery should be utilized as much as possible to recoup 
the higher investment of PEVs. Considering typical driving data results in a vehicle 
specification with a relatively small battery and favors PHEVs to account for the less 
frequent longer trips that do not justify a larger battery.11  
  

                                                 
7 Lithium-based battery: ηmin = 90 % and ηmax = 95 % (Vandenbossche et al., 2006) and  
 (Schuster, 2009); Power electronics: ηmin = 92 % (Tang, 2009) with IGBTs at 3.2 kW and ηmax = 97 % 
 Fraunhofer ISE prototype with silicon carbide transistors (SiC-JFETs); electric motor: asynchronous 
 motor ηmin =90 % and permanent magnet motors ηmin = 95 % (Maggetto et al., 2000). 
8 The value varies with the battery technology used, see (Kalhammer, 2007). For gasoline, the energy 
 density is 11 - 12 kWh/kg.  
9 The Prius plug-in hybrid provides 73 kW engine output and approximately 23 km electric range with 
 a 4.4 kWh battery (Toyota, 2012). 
10 The Chevrolet Volt or Opel Ampera provides 63 kW/111 KW engine/electric motor output, 
 respectively, and approximately 60 km electric range with 16 kWh battery (Opel, 2012). 
11 For research on the optimal design of PEVs, see (Shiau et al., 2010). 
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2.2.2 Current status  
 
A rising share of vehicles using electric engine assistance are being sold in Germany 
and across the world. Currently, these are mainly hybrid electric vehicles (HEVs) sold 
in the USA and in Japan with a share of 2–10 % of passenger car sales (DOE, 2012). In 
2011, Germany had 42.3 million registered passenger vehicles. The total number of 
HEVs on German roads is 37 thousand, representing a 2011 market share of 2.8 % of 
newly registered vehicles. The number of 2011 registered PEVs is 2.3 thousand  
(KBA, 2012). The model range of PEVs available in Germany is low compared to 
conventional vehicles. Announcements of new models, however, have increased 
strongly since 2008.12 Today, electric vehicles in Germany are only used by a small 
minority of innovative individuals and in research projects. Despite this, the market 
share of PEVs is expected to grow in the future (Mock, 2011) due to government 
support,13 legislation to reduce vehicle emissions (see EU, 2009b14; CARB, 2012) and 
the expectation of rising oil prices (e.g. Aleklett et al., 2010). 
 
2.2.3 Total costs of ownership 
 
The total costs of ownership (TCO) are an indicator for the economic success of 
alternative vehicles. A detailed TCO analysis in which the author was involved is 
available in (Wietschel et al., 2008 and Biere et al, 2009). In the following, additional 
investments are summarized for the vehicle concepts discussed to provide background 
information on the PEV types. The cost assumptions are based on (CONCAWE, 2008) 
referring to the year 2010+. The cost estimations are in line with (Thiel, 2010) and 
(Bandivadekar et al., 2008).  
 
Cost savings of the PEV design compared to the reference vehicle (77 kW)15 arise from 
downsizing the internal combustion engine and eliminating the standard alternator and 
starter. In case of BEVs, eliminating the fuel tank accounts for additional savings. Extra 
costs are caused by the electric motor, transmission and battery. Battery costs are 
adopted from (Kalhammer et al., 2007) and consider technology learning that could be 
achieved by 2030. In case of PHEVs, the power train also has to be adapted to account 
for the parallel or serial use of two transmission systems. The assumed additional 
investments are summarized in Table 2-2.  
  

                                                 
12 The website (UMBReLA, 2012) of the research project “Umweltbilanzen Elektromobilität” provides 
 an overview of available and announced vehicles.  
13 The German government has set the goal of at least 1 million PEVs on German roads in 2020  
 (BMBF, 2009). 
14 The Regulation (EC) No. 443/2009 of April 23, 2009 (EU, 2009b.) setting emission performance 
 standards for new passenger cars as part of the Community's integrated approach to reduce CO2 
 emissions from light-duty vehicles.  
15 For details see (CONCAWE, 2008, p. 4). 
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Table 2-2: Additional investments for PEVs compared to a conventional vehicle16 

Economic data  PHEV (25)  PHEV (57)  BEV (100)  BEV (167)  

Alternative engine + transmission (downsizing)1 -257 € -794 € -2,541 € -2,541 € 

Electric motor + modified transmission2 1,120 € 1,520 € 1,640 € 2,320 € 

Power train and vehicle components3 2,442 € 1,503 € 

Credit for standard alternator + starter + tank4  -300 € -300 € -450 € -450 € 

Battery [euros/kWh]5 281 247 247 233 

Battery  1,581 € 3,705 € 4,631 € 8,738 € 

Additional investment compared to ICE (77 KW) 4,585 € 5,634 € 3,280 € 8,067 € 
 

Note:1 33 euros/kW for BEV and 21.5 euros /kWmotor for PHEVs (downsizing); 2 Fixed cost 320 euros +  
20 euros /kWmotor; 

3 37.5 euros /kWengine; 
4 300 euros for alternator and starter, 150 euros fuel tank; Source: Derived 

from (CONCAWE, 2008);5 Derived from (Kalhammer, 2007), assumes a volume of >50k units per annum for 2020+.  

 
The higher investment needed for PEVs can be compensated for by their lower 
operating costs, mainly due to the fuel savings made during electric driving. Under 
optimistic assumptions about battery cost reduction and battery lifetime, amortization 
periods between 3 and 10 years are possible (Wietschel et al., 2008). The development 
of gasoline and electricity prices are crucial for the TCO of PEVs. This includes 
uncertainty about taxation because of the high taxes on German gasoline. It can be 
concluded that increasing electrification of passenger transport is likely given the 
expectation of rising oil prices. 
 
2.2.4 Carbon dioxide emissions  
 
The CO2 emissions of PEVs are strongly determined by the electricity generation 
source. The following discussion therefore focuses on the electricity generation mix for 
electric vehicles. The analysis does not consider the complete life cycle of electric 
vehicles including vehicle and battery production as well as recycling and transportation 
issues. A general literature analysis reveals that the emissions during the production of 
electric vehicles are higher than for conventional vehicles due to the materials and 
energy necessary to produce the battery (Helms et al., 2011; CONCAWE, 2007a; 
Burnham et al., 2006). The CO2 equivalent for combustion engine vehicles is in the 
range of 5200 kg CO2 per vehicle, whereas a PHEV accounts for 7200 kg CO2 per 
vehicle (TIAX LLC, 2007; Notter et al., 2009; Sørensen, 2004). The emissions per 
kilometer driven depend strongly on vehicle lifetime and driving range. For an vehicle 
with a life time of 12 years and 12,500 km driven per year the CO2 equivalent per km is 
3.6 g for a conventional vehicle and 4.8 g for an PHEV.  
 
Figure 2-2 illustrates the estimates17 of the fuel and/or technology pathway averages of 
CO2 emissions of an electric drive train compared to conventional vehicles. A strong 
variation depending on the fuel used can be observed for the conversion of electricity. 
Fossil fuels, especially coal and lignite, do not considerably alter PEV emissions per 
kilometer relative to conventional vehicles. Only a very efficient conversion technology 
using combined cycle gas turbines and renewable energy sources18 such as wind and 

                                                 
16 The component costs assume a volume of >50k units per annum and are projected for 2010+. The 
 reduction estimates through volume production for some of the key components could be very 
 optimistic and it is uncertain how much and at what rate future costs will decline under different 
 circumstances. 
17 Values can vary in the range of 10 to 20 % because of assumptions about efficiency and emission 
 factors. 
18 Note: For wind and solar, the CO2 emissions of production and transport are included in Figure 2-2. 
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solar can reduce PEV emissions significantly. The wide span between lignite and wind 
also underlines the importance of the electricity source for the life cycle analysis. It can 
be concluded that RES-E is decisive for PEVs’ related emissions (further see  
Schmid et al., 2012). 
 

 
Figure 2-2: Comparison of CO2 emissions by fuel and conversion technology  

Assumptions: Efficiency: Gas turbine (GT) 37 %; combined cycle gas turbine (CCGT) 64.5 %; coal power plant  
46.5 %; lignite power plant 45 %; electric drive train 90 %; diesel engine 0.32 %; gasoline engine 28 %; Energy use 
at the wheel 0.18 kWh/km; Emission factors [CO2 eq/kWh]: Gas 201.6; coal 352.8; lignite 399.6, oil 266.4; wind 21; 
solar 106; For literature on emission factors e.g. see (Lenzen, 2008). 
 
The CO2 emissions of PEVs related to the electricity consumed can be determined with 
the following methods:   
 

 Average emissions: To calculate the CO2 emissions from electricity 
consumption, the average of the total power plant park is used, including RES-E, 
nuclear and fossil sources. In this approach the CO2 emissions from electricity 
production are attributed equally to all consumers.  

 Marginal emissions: The marginal emissions account for the emissions of the 
additional consumption of electricity. Only the power plants utilized for the 
additional electricity demand are considered when calculating the CO2 
emissions. The method is very precise in determining the total emissions of the 
power plant park, but different electricity consumers are treated differently. 

 Cap and trade: In the European CO2 emissions trading system, the total 
emissions are fixed by a cap. Assuming an unchanged cap and no exchange with 
other trading systems, additional electricity demand will not result in additional 
emissions. In this theoretical case, the CO2 emissions of PEVs would be zero.  

 
In the work conducted, the marginal emission approach is applied because it allows the 
exact calculation of the PEVs’ CO2 emissions. The results are strongly influenced by 
the merit-order, which mainly depends on power plant efficiencies and fuel prices as 
well as the residual load curve to which the PEVs’ demand is added. Therefore, results 
are compared to average emissions. The marginal emissions resulting from PEVs’ 
electricity demand have been examined by various other studies (e.g. see  
Park et al., 2007; McCarthy et al., 2010; Sioshansi et al., 2011). However, power 
systems with a high share of RES-E have not yet been analyzed nor has how balancing 
RES-E could change the CO2 emissions of PEVs. Chapter 7.5 of this paper focuses on 
the interaction of RES-E and PEVs.  
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2.3 Demand-side management 
 
Demand-side management (DSM) is described as the active effort to modify electricity 
customers’ usage patterns (Eto, 1996). This includes regulatory measures to improve the 
efficiency of appliances. In this paper, the focus is on DSM intended to realize load 
shaping objectives, which is also referred to as “demand response” (DR) (DOE, 2006).19 
Demand response is used to reduce the electricity demand in time periods with high 
wholesale electricity prices or when the system’s security is jeopardized. Besides load 
shifting, peak clipping and valley filling, the generation of small distributed units and 
vehicles feeding back power into the grid (vehicle-to-grid) are also considered in the 
context of DSM. The chapter is structured as follows. First, the framework conditions 
are discussed including the advantages of DSM in power systems with a large share of 
fluctuating generation. Then the current status in Germany and possible load 
management devices are described. The control strategies used for demand response 
and the necessary equipment make up sections 2.2.3 and 2.2.4. Finally, possible 
revenues are discussed. Chapter 2.3 is partly published in (Dallinger et al., 2012c). 
 
2.3.1 Framework conditions 
 
Methods to control the demand-side of the electricity system have been a subject of 
discussion since the very beginning of electricity supply (Hausman et al., 1984). In the 
USA, DSM became more important due to least-cost planning in the 1970s, when 
utilities realized that demand-side technologies can be used to limit the installed 
capacity needed and to reduce overall system costs (Eto, 1996). Especially in areas 
where high loads occur only rarely, such as air conditioning in California,20 DSM has 
been successful in reducing the under-utilization of the standing capacity of power 
plants and increasing system security. In Germany, peak load reduction is not as 
relevant because of the different load duration curve,21 the high capacity installed22 and 
the better connections with neighboring countries.23 In northern Europe (France, 
Germany, Denmark), night storage heating controlled by a radio ripple signal was 
introduced during the sixties and seventies to increase the demand during night load 
valleys which resulted due to the enforced use of nuclear power plants  
(Quaschning et al., 1999).  
DR services are mainly used for operation scheduling – organized in day-ahead 
electricity markets - and system balancing - organized in the regulation reserve markets. 
Through these applications, DR enhances the elastic demand needed for electricity 
markets to function properly (Talukdar et al., 2005; Wellinghof et al. 2007), to increase 
the efficiency of electricity production and allow for higher system security  
(Andersen et al., 2006; DOE, 2006).  
 

                                                 
19 “Demand response is a tariff or program established to motivate changes in electric use by end-use 
 customers in response to changes in the price of electricity over time, or to give incentive payments 
 designed to induce lower electricity use at times of high market prices or when grid reliability is 
 jeopardized.” (DOE, 2006) 
20 See load duration curve for California and Germany in Figure 3-4 in Chapter 3 and compare the 
 values of cfQ<0.8 in Table 3-6.  
21 No summer peaks; peak load is during the winter and the utilization of peak load power is higher, see 
 Figure 3-4, Chapter 3.  
22 The total capacity of dispatchable power plants is 100 GW (BMWi, 2012) with a maximal peak load 
 of approximately 80 GW. Note: Even the rapid nuclear phase-out of 8.4 GW after the Fukushima 
 catastrophe in Japan has not caused critical shortages in the German power system.  
23 Note that the electricity prices in Germany are higher partially due to the greater security of supply. 
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Barriers to residential demand response arise because revenues in electricity markets are 
determined by the energy that can be shifted to a later time period (energy arbitrage) 
and real-time adoption of power (system services). Both applications favor large 
customers because of less complex control as well as higher individual incentives.  
 
Other discussed DR barriers to the mass addition of small residential appliances are: 
 

 Efficiency gains stand in contrast to possible DR revenues. Especially in the 
residential sector, more efficient household devices reduce the demand available 
for load shifting.24 Potential revenues and the amortization time of smart grid 
technology are affected by efficiency gains and render the investments less 
attractive.  

 Almost all electricity markets are characterized by a oligopolistic structure with 
a dominant supply side. A higher price elasticity of demand reduces the 
revenues made during peak hours. Hence, there is only a low level of support 
from the dominant supply market players.   

 Customer stakeholder support is limited because of concerns about the impact 
on customer bills in the residential sector in the case of price-based incentives 
and because of low consumer acceptance of direct control and/or automation 
technology.  

 Changes to market rules and operation as well as regulatory policies are 
necessary to allow a higher share of DR services to participate in the markets.  

 Time-resolved energy consumption measures enable conclusions to be drawn 
regarding consumer habits and can therefore cause data security concerns.   

 
Two current developments that are helping to tackle some of the main barriers are the 
mass use of communications technology in the residential sector and a rising share of 
fluctuating generation in power systems. The costs of communications technology are 
decreasing and high network availability allows more and more applications and 
participants to be included. Additionally, a higher degree of automation of DR devices 
and electricity billing is possible. In combination with heat or electricity storage 
technologies, this development can reduce consumer curtailment and DR participation 
efforts (Franz et al., 2006). In terms of power systems, the rising share of fluctuating 
generation with mostly prioritized dispatch reduces the residual load25 or energy to be 
produced by dispatchable power plants (see Figure 2-3). Thereby, the capacity credit 
(Ensslin et al., 2008) of fluctuating RES-E is lower and the dispatchable capacity 
required – to ensure system security on the same level – cannot be reduced to the same 
extent as the added capacity of fluctuating generation. This lead to a power system with 
a higher share of under-utilized peak capacity, volatility in electricity prices and the 
need for higher ramping capacities to stabilize the system (see Chapter 7.3.1 and 
Cappers et al., 2011). Under these conditions, DR could be an attractive alternative to 
limit the necessary peak capacity and reduce overall system costs.   
 
 
 
 

                                                 
24 In terms of heating, e.g. for a passive house with extremely low heating and/or cooling needs, fossil 
 heating is likely to be replaced by electric heating, which increases the electricity demand and 
 possible DR revenues. The total energy demand is still reduced which can reduce the overall DSM 
 potential if combined heat and power is an included option.   
25 Definition: The residual load is the remaining load for dispatchable power plants calculated by 
 subtracting the fluctuating generation from RES from the load curve.  
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Figure 2-3: Fluctuation of renewable generation  

Source: Own calculation, data basis (Nitsch et al., 2010) Lead Scenario A 2030; installed capacity: Wind onshore 
37.8 GW; wind offshore 25 GW; photovoltaics 63 GW.  

 
In Germany, the installed capacity of wind power and photovoltaic was 54 GW or  
67.6 % of the annual peak load of approximately 80 GW by the end of 2011  
(ENTSO-E, 2011). Until 2030, a further increase to 162 % of the annual peak load is 
expected (Nitsch et al., 2010). In other European countries, similar developments are 
anticipated supported by the European policy in order to reduce greenhouse gas 
emissions, increase supply security and stimulate innovative industries (e.g. Held, 2010; 
Beurskens et al., 2011). In conclusion, the increasing installed capacity of fluctuating 
generation and the decreasing costs of applying DR programs are very promising 
starting points for further research. 
 
2.3.2 Current status  
 
The appliances available for DR can be assigned to the industry, tertiary and residential 
sectors (Klobasa, 2010). The potential of different DR technologies or processes is 
characterized by the energy available for load shifting, the positive or negative control 
power available and the length of time by which a process can be postponed – in the 
following referred to as the grid management time. Appliances which allow for the 
decoupling of demand and supply can be defined as follows.26  
 

 Process shifting appliances: Processes in the industry or residential sectors are 
postponed to a later time period. Typical examples include chlorine-alkali and 
aluminum electrolysis or electrical arc furnaces (industry sector) as well as 
dishwashers, washing machines and dryers (residential sector). 

 Demand reduction appliances: Demand reduction appliances are mostly 
limited to ornamental functionalities (Nestle, 2007). Typical examples include 
Christmas illuminations or water fountains. The demand of these appliances is 
not increased after the demand reduction.27 

 Storage appliances: An appliance coupled to a storage device allows load 
shifting without or only little curtailment (e.g. storage losses). Most common is 
the use of thermal storage in cooling devices (e.g. in the food retail sector) and 
electrical heaters (e.g. night storage heating or heat pump applications). This 
group also includes ventilation systems using the air inside a building as storage 
(Stadler, 2008) or PEVs using battery storage and generation from distributed, 
combined heat and power with thermal storage. 

 
                                                 
26 This definition follows (Nestle, 2007). 
27 Referring to the type of customer load response defined in (DOE, 2006, p. 20), demand reduction 
 appliances correspond to “foregoing”.  
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The potential for DR applications in Germany has been analyzed by (Stadler, 2005) for 
the residential sector and in general by (Klobasa, 2007). A virtual power plant28 is 
currently in use including DR industrial appliances (>1MW) that operate in the tertiary 
regulation reserve market (Steag, 2012). In the residential sector, 14 GW (Stadler, 2008) 
of night storage heating29 are currently in use with a yearly electricity demand of 15.4 
TWh.30 The grid management time of typical night storage heating is 6-24 hours 
depending on the ambient temperature (see Stadler, 2005). For a single household, the 
energy needed is in the range of 9500 kWh/a and is mainly obtainable in winter. 
Because of their low efficiency, new night storage heaters have now been prohibited 
(EnEV, 2009, § 10a). New installations31 of electric heating systems are therefore 
mainly heat pumps. Because an ambient heat source is used, the energy required is two 
to three times lower than in the case of night storage heating. In 2010, the total power 
installed of heat pumps was 0.93 GW with an energy demand of 2.4 TWh (GZB, 2010). 
The grid management time depends on the thermal water storage and is in the same 
range as night storage heating.  
 
The DR potential from cooling applications is not widely used at present. Applications 
exist mainly in the tertiary and the residential sectors. Accessing big appliances in the 
tertiary sector is easier than single refrigerators in the residential sector (Klobasa, 2010). 
The potential of the different sectors is about 1.5 GW (tertiary sector) and 3 GW 
(residential sector). The grid management time ranges between a few minutes and up to 
10 hours (Stadler, 2005). The DR demand varies with temperature and consumer 
behavior but is available throughout the entire year. A typical residential refrigerator 
uses 80 – 100 W of power with an annual energy demand of 120 – 250 kWh. As for 
electric heating, efficiency gains are expected that reduce the potential of existing 
cooling devices. 
 
Air conditioning in Germany is mostly used in the tertiary sector and not included in 
current DR programs. There is more than 5 GW power available but the shifting 
potential is heavily dependent on the ambient temperature (Klobasa, 2007). The grid 
management time is assumed to be relatively short (without curtailment of personal 
comfort) due to the limited heat storage capacity of many buildings. Especially 
California, with its huge demand for air conditioning, has a low shifting potential 
because of the generally poor insulation of buildings.  
 
Process shifting appliances in the industry sector account for 2.8 GW and 1350 GWh of 
shiftable load (Klobasa, 2007). Large industry consumers participate on the European 
Energy Exchange market (EEX) and in some cases on regulation reserve markets. 
Dishwashers, dryers and washing machines are typical process shifting appliances in the 
residential sector. The grid connection power is in the range of 1.81 GW with an annual 
energy demand of 3.1 TWh32 (Klobasa, 2007). The maximal grid management time is 
assumed to be one day but depends strongly on user preferences.  
  

                                                 
28 Including total generation capacities of 400 MW. 
29 For technical details on night storage heating see (Moditz, 1975). In West and East Germany, 4.5 % 
 and 2.2 % f the households, respectively, use night storage heating (RWI/forsa, 2011).  
30 Note: The demand depends on the ambient temperature. 
31 Approximately 30% of the heating systems installed in new buildings in 2011 use a heat pump. In 
 2000, this share was only 0.6 % of the heating systems and by 2008 heat pumps represented 18.5 % of 
 heating systems installed in new buildings (GZB, 2010).  
32 This equals 11 % (Geiger et al., 2005) of the total residential electricity demand of 141 TWh in 2010 
 (BMWi, 2012). 
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Table 2-3: Demand response applications in the residential sector 

Device 
Power  
[kW] 

Energy demand 
[kWh/a] 

Grid management 
time [hours]8 

Type of 
device 

Refrigerator /freezer  0.08 – 0.1 1201 – 4272  0.1 – 4.2 

Storage 
appliances 

Freezer  0.08 – 0.14 2111 – 3752  0.1 – 2 
Night storage heating 10 – 18 9902 1 6 – 24 
Heating with heat pump 3 – 6 25814 – 3670 5 6 – 24 
Electric vehicle 3.5 – 12 10006 – 40007  0 – 48 
Washing machine  2 – 2.5  160 – 192 0 – 24 Process 

shifting 
appliances 

Dishwasher  2 – 2.5  230 – 467 0 – 24 
Dryer 2.5 – 3.1 280 – 362 0 – 24 

 
Note: 1 New device (manufacturer specifications); 2 four-person household (RWI/forsa, 2011); 3 Average 2006-2008 
(RWI/forsa, 2011); 4 Coefficient Of Performance = 2.7 (GZB, 2010); 5 Power installed 0.93 GW; electricity demand 
2.4 TWh (GZB, 2010); 6 PHEV: Range 10,000 km/a; 50 % el. Driving share; 7 20,000 km/a: 100 % el. Driving share; 
8 Own estimations based on (Stadler, 2005) and (Klobasa, 2007). 

 
Table 2-3. summarizes typical power and demand values for residential DR appliances 
and gives an estimate of the grid management time. Unlike other home appliances being 
discussed, PEVs use electric battery storages. Electric storages enable vehicle-to-grid 
(V2G) services (e.g. see Brooks et al., 2001 or Kempton et al., 2008) and long grid 
management times (see Chapter 7.2.2) with low storage losses in the case of lithium 
batteries, but are associated with significantly higher costs (see Chapter 2.2.3) than the 
thermal storages used by devices such as freezers and heat pumps. A typical German 
grid connection for a PEV is single-phase 220 volt with 16 ampere which results in a 
power of 3.5 kW. Three-phase connections with 12 kW are also available or could 
easily be installed in German households. The energy demand and the grid management 
time depend on mobility behavior (see Chapter 4.2). PEVs have high DSM potential 
because of the battery storage – enabling low curtailment of consumer behavior – and 
the higher electricity demand compared to other appliances.  
 
2.3.3 Control mechanism  
 
Since the liberalization of the electricity market, prices have been the driving force for 
the dispatch decisions of power plants and storage devices. The order of magnitude of 
players operating on the supply side of the EEX does not allow typical consumers from 
the residential or tertiary sector to participate in the market. Trading costs and effort as 
well as the prequalification rules mean this is not feasible for residential consumers. 
Individual consumers are bundled by service providers who operate at the EEX. If DR 
is to be used, the question is how to control demand and small distributed generation 
within these consumer pools? Two possible approaches are discussed referred to as 
direct and indirect33 control. These approaches distinguish the parties taking the 
dispatch decision (Nestle, 2007; Chassin et al., 2008). In direct control, the decision is 
taken by the service providers on a system level and in indirect control, the decision is 
made by the consumers.  
 
Direct control or centralized optimal dispatch implies that a service provider can shut 
down or reduce loads and directly control distributed generation units. To do so, 
communication of the status and a signal to switch devices are necessary. This concept 
is traditionally used when utilities control a power plant portfolio, hydro pumped 
storage or very large demand from industry applications. Examples for the residential 
sector include the direct load control of water heaters (Ericson, 2009) and air 

                                                 
33 Also referred to as customer driven control. 
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conditioning loads in California. The advantages of direct control are prompt and 
predictable reactions in order to control signals. Drawbacks arise from reduced 
consumer acceptance in the case of controlling loads in private homes or vehicles and 
the communication and optimization efforts involved in controlling a large number of 
small storages or generation devices with varying consumer needs. 
 
Indirect control uses price signals to manage loads or generation units. The service 
provider sends price signals and the consumer (or an automatically controlled device 
programmed by the consumer) decides to either reduce or shift the load when the price 
is high, or to pay the higher price. The decision to participate in a specific event remains 
with the consumer. In this case, consumer acceptance should be higher than is the case 
for direct control (Valocchi, 2007). Disadvantages arise from the possibility of 
avalanche effects or simultaneous reactions to the signal (Schey et al., 2012;  
Dallinger et al., 2012a)34 and inherent forecasting errors due to the necessity to predict 
the reaction of consumers to different price signals.  
 
Another distinction made is between price-based and incentive-based DR, which 
describes how the change in consumer behavior is obtained (DOE, 2006, p.9). Price-
based demand response options are the same as indirect control. Incentive-based options 
include direct control but also interruptible/curtailable (I/C)35 services or the 
participation on capacity or ancillary service markets. In cases of I/C and specific 
markets, the operation decision is made by the consumer. Incentive-based options 
excluding direct control are only offered to large industry customers and are therefore 
not considered in detail. Micro-level self-organizing systems or markets that bundle 
consumption are regarded as indirect control.  
 
The discussed price-based signals are time-of-use (TOU) rates,36 real-time prices 
(RTP)37 and critical peak pricing (CPP).38 Compared to incentive-based options, time-
based retail rates account for the vast majority of DR offerings in the USA but have 
lower efficiency in peak load reduction39 (Cappers et al., 2010). Research projects40 

                                                 
34 Avalanche effects are electricity demand peaks caused by automated demand response which occur if 
 several consumers start using electricity at the same time when rates are low; see  
 (Ramchurn et al., 2011; Schneider et al., 2011). 
35 “Interruptible/curtailable (I/C) service: programs integrated with the customer tariff that provide a rate 
 discount or bill credit for agreeing to reduce load, typically to a pre-specified firm service level (FSL), 
 during system contingencies. Customers that do not reduce load typically pay penalties in the form of 
 very high electricity prices that come into effect during contingency events or may be removed from 
 the program. Interruptible programs have traditionally been offered only to the largest industrial (or 
 commercial) customers.” (DOE, 2006, p. 9). 
36 “Time-of-use (TOU): a rate with different unit prices for usage during different blocks of time, usually 
 defined for a 24-hour day. TOU rates reflect the average cost of generating and delivering power 
 during those time periods. TOU rates often vary by time of day (e.g., peak vs. off-peak period), and by 
 season and are typically pre-determined for a period of several months or years.” (DOE, 2006, p. 9). 
37 “Real-time pricing (RTP): a rate in which the price for electricity typically fluctuates hourly reflecting 
 changes in the wholesale price of electricity. RTP prices are typically known to customers on a day-
 ahead or hour-ahead basis.” (DOE, 2006, p. 9). 
38 “Critical Peak Pricing (CPP): CPP rates include a pre-specified high rate for usage designated by the 
 utility to be a critical peak period. CPP events may be triggered by system contingencies or high 
 prices faced by the utility in procuring power in the wholesale market, depending on the program 
 design. CPP rates may be super-imposed on either a TOU or time-invariant rate and are called on 
 relatively short notice for a limited number of days and/or hours per year. CPP customers typically 
 receive a price discount during non-CPP periods.” (DOE, 2006, p. 9). 
39 The drop in demand is in the range of 13 – 20 % (Faruqui et al., 2009). 
40 E.g. the GridWise project described in (Hammerstrom et al., 2007a; Hammerstrom, et al., 2007b) 
 shows that automated DR significantly increases DR performance. The same conclusion is drawn 
 from other projects such as DINAR (IWES, 2012) or the e-Energy model regions (e-Energy, 2012). 
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using real-time pricing showed that automated control of DR devices can improve the 
DR services from retail customers, but require low-cost standardized technology. 
Hourly prices in combination with smart devices represent an adequate tool to involve 
consumers in the electricity markets (Wolak, 2010). Since 2011, the German Energy 
Act (EnWG, 2012, §40, (5)) requires every retail supplier to provide a tariff reflecting 
the demand and supply situation in Germany. However, due to the expectation of time-
of-use tariffs for electric heating, DR is currently rarely used in the German residential 
sector. Experiences with advanced DR technology mainly stem from research projects 
on new communication and information technology (e-Energy, 2012).  
 
The degree of control accuracy of price-based options is lower than direct control. 
Therefore direct control is better for units with a high system impact because of the 
higher relevance of forecasting errors.41 The time scale of control and notice 
requirements are lower for direct control. Time-based retail rates must be available in 
advance to allow for reactions. Hence, indirect control is better suited to (day-ahead) 
operation scheduling.42 System balancing requires higher accuracy and short notice 
times which favor direct control or self-organization (e.g. via frequency or voltage 
measurement by distributed devices). Direct control can best be applied to control 
problems with a manageable number of participants and individual constraints. Indirect 
control is preferable for an increasing number of individual objectives (e.g.  
Nestle, 2007; Chassin et al., 2008; Ma et al., 2010). Since consumer acceptance seems 
to be crucial for managing mobility-related systems and because of the high number of 
distributed devices with inherent objectives,43 an indirect energy management system is 
considered the most promising option to control mass applications with plug-in electric 
vehicles.  
 
2.3.4 Control equipment  
 
A communication unit and a meter are the minimum requirements for a vehicle to be 
capable of automatically controlled smart charging (see Figure 2-4). In principle, these 
components can be installed in the car or directly at the grid connection. At present, the 
billing point of electricity is a meter installed at the grid connection with the exception 
of railway metering. Hence, each grid connection point is coupled to a contract with an 
energy supplier. As shown in Figure 7-1 (Chapter 7.2), charging at home is the most 
likely option for PEVs. The standing time and the energy demand at home is the 
highest. Therefore, a smart meter at home offers the individual consumer the biggest 
benefits. To extend the smart grid connection time, other meters could be installed at 
work or at different commercial and leisure locations. In unbundled electricity markets 
it is possible that each of these grid connections has a different supplier contract. The 
moving vehicle needs to adopt the grid connection contract and the electricity rate or 
smart grid service agreement at each connection. Another contract is necessary to share 
the revenues of smart grid services at public grid connections. Recent research projects 
have shown that billing customers at public charging stations with relatively low 
utilization comes at a very high cost (Kley et al., 2010). In addition, infrastructure at the 

                                                                                                                                               
 (Faruqui et al., 2009) and (Barbose et al., 2005) gives an overview of recent research in this direction 
 in the US and France. For a field test on automated critical peak pricing see (Piette et al., 2006). 
41 Note: It is not accurate here to refer to kW or MW to define the unit impact. In a micro-grid, a device 
 with a power consumption of less than 1 kW can still have a high impact, whereas in a power system 
 at the level of, e.g. Germany, the impact will be negligible. 
42 See (DOE, 2006, p. 13). 
43 Compared to a heating system the objectives of individual drivers are much more diverse  
 (see Chapter 4).  



CONTROLLING GRID- CONNECTED VEHICLES  

 

15

grid connection and in the vehicle should provide the same functionality. For example, 
if the vehicle provides V2G, but the grid connection only allows unidirectional 
metering, only a reduced service can be offered and the utilization of the bidirectional 
components would be lower.  
 
Installing the meter and the communication unit in the PEVs makes the vehicles more 
independent of the available infrastructure. But in this case the electricity is metered 
twice and it is necessary to deduct the PEV’s electricity consumption from the regular 
electricity demand. From today’s perspective, off-board metering without special PEV 
billing is the easiest option. In the long term, however, onboard metering could 
guarantee a more efficient expansion of the infrastructure. Shorter vehicle life cycles 
also facilitate faster technology adoption and therefore favor the mobile metering 
concept. The components required for automated control are illustrated in Figure 2-4. 
 
 

 
Figure 2-4: Components for automated control of electric vehicles 

Note: PEV: Plug-in electric vehicle. Figure design by Jakob Zwick. 

 
Looking at the costs for grid connections and smart grid services, power and real-time 
capability play an especially important role. Increasing the power increases the costs44 
for circuit breakers, current protection, plugs, wiring and power electronics. Real-time 
capability only comes with permanent communication links and the need for reliable 
communication technology also costs more. For example, the price for a 22 kW mode 3 
International Electrotechnical Commission standard 61851 plug is about 300 euros 
today.45 A regular household plug (about 3 kW), which is sufficient to charge a vehicle 
over night, costs less than 5 euros.46 The costs for control equipment are hard to 
quantify because it is not clear yet which equipment in vehicles could also be used for 
the control system. (Tomić et al., 2007) assumes 50 dollars for a meter and 100 dollars 
for the communication system. Costs of power inverters used in photovoltaic systems 
can be taken as a guideline for bidirectional V2G electronics. According to  
                                                 
44 Especially the step from 1-phase to 3-phase increases the costs. 
45 Economies of scale could reduce the price in the future. Costs are expected to be about 100 euros.  
46 A wall box (excluding smart charging) is offered by different suppliers for prices above  
 1000 euros.  
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(Meinhardt et al., 2007), power inverter costs are in the range of 0.15 to 0.2 euros/W in 
2020. Costs for the billing process and providing a control signal are not yet clear. 
 
Especially in the near future, the author expects PEVs to use low power standard 
technology. In the medium term, it will be necessary to exploit synergies between 
components already available in the vehicle and smart grid applications and therefore 
move the meter into the vehicle. Car-PCs or smart phone processors are able to schedule 
charging depending on the electricity rate, or record meter data. Communication 
hardware will probably be available in vehicles by 2020. Transaction and charging 
inverters could be integrated in one device using the same power electronics. In this 
case, a bidirectional grid connection would come at a lower extra cost  
(AC Propulsion, 2003). In contrast, installing additional charging infrastructure with its 
own communications, processor, meter, circuit breaker and current protection does not 
seem to be the best approach in a world with rapidly evolving technologies and 
consumer needs.  
 
2.3.5 Revenue potential 
 
PEVs with DR or V2G can generate revenues due to operation scheduling and system 
balancing. Classical operation scheduling takes place on the day-ahead and to a lesser 
extent intraday markets. System balancing uses regulation reserve markets to trade 
different services. Besides the common markets, PEV services could be used in the 
portfolios of network and system operators, utilities and micro grids47  
(Momber et al., 2010).  
 
A detailed analysis of regulation reserve markets conducted by the author is available in 
(Dallinger et al., 2011). It is concluded here that revenues on regulation reserve markets 
are restricted because of driving behavior and current legislation. Furthermore, 
regulation reserve requires more sophisticated and expensive control than demand 
scheduling. The market volume is limited and does not account for mass participation of 
PEVs. In addition, generation from RES is mainly traded over the day-ahead market. 
This is why this paper focuses on the day-ahead electricity market. For additional 
research on regulation reserve see (Kempton et al., 2001; Kempton et al., 2005;  
Tomić et al., 2007; Andersson et al., 2010).  
 
The earning potential of smart grid devices on the electricity markets is determined by 
the spread between low and high prices over the load management time. Figure 2-5 
illustrates possible spreads in electricity markets and compares the marginal and total 
electricity generation costs depending on the operating hours. The price spread between 
the base (a coal power plant η= 49 %) and the peak (a gas turbine η= 37.5 %) in  
Figure 2-5 is 44 euros/MWh. For electricity systems with a high share of fluctuating 
RES-E, the total generation costs of a power plant become more relevant for pricing. 
The difference between the total costs of a coal power plant with 6,000 hours of 
operation and a gas turbine with 500 hours of operation is about 130 euros/MWh  
(see Figure 2-5).  
 

                                                 
47 One example is the self-consumption of photovoltaic generation in terms of photovoltaics grid parity 
 or under the current feed-in tariff in Germany that provides an extra subsidy for local consumption of 
 photovoltaic generation.  
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Figure 2-5: Marginal versus total costs of different power plant options 2010 

Assumptions: Gas turbine (GT): specific investment: 350 euros/KW, efficiency: 37.5 % ; combined cycle gas turbine 
(CCGT): specific investment: 750 euros/kW, efficiency: 59 %; gas price 27.1 euros/MWhtherm; coal power plant: 
specific investment: 20 euros/kW, efficiency: 49 %; coal price 12 euros/MWhtherm; CO2 price 15 euros/t;  
interest rate 10 %. 

 
The total cost curves rise sharply at low operating hours. This shows the tendency for 
price peaks in high capacity electricity systems used to provide back-up power for 
fluctuating generation from RES. A recent study estimating revenues from energy 
arbitrage (Peterson et al., 2010), which includes battery degradation but not costs for 
smart grid technology, reports possible annual profits of 10 – 120 US dollars. For the 
base peak spread of 44 euros/MW and a PEV demand of 1000 – 4000 kWh/a, a 
theoretical load shifting revenue of 44 – 176 euros could be made. This implies no costs 
and perfect use of the base-peak spread. Hence, achievable DR revenues are lower and 
do not provide incentives. Rising fuel prices and a high share of fluctuating generation 
could accentuate the base-peak spread and result in higher revenues as discussed in 
Chapter 7.4.2. 
 
On a residential level, electricity prices also include additional components such as grid 
fees and service costs. Making these fixed price components more flexible could also 
cause greater price spreads. Today, however, flat retail rates, which do not provide load 
shifting incentives, are most common in Germany.  
 
2.4 Summary 
 
Chapter 2 aimed to provide the basic knowledge needed to understand this thesis. 
Today, PEVs do not play an important role for transportation or DR. This is mainly 
because of their significantly higher costs and storage limitations. Overall, PEVs only 
offer cost advantages if their operating savings due to their lower fuel costs exceed the 
higher vehicle investment. PEVs are discussed as a promising option to reduce CO2 
emissions in the transportation sector and balance RES-E in the future. This paper 
concentrates on PEVs as a device which could offer a mass application for DR with a 
high load shifting potential compared to other devices in the residential sector. 
Especially in combination with RES-E as the enabler for low PEVs’ emissions, the 
research question on how PEVs can contribute to integrate fluctuating supply is of 
highest relevance.  
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3  Characteristics of fluctuating generation  
 
 
3.1 Introduction 
 
The residual load, which is defined as the system load curve minus the fluctuating 
generation, forms the starting point of analyzing the contribution of storage devices in 
electricity systems with a high share of RES-E. In contrast to the system load, the 
residual load is characterized by a non-recurring time-dependent demand. Because of 
the individual characteristics of fluctuating generation, it is important to specify the time 
series of RES-E used. Further, it is necessary to investigate different weather years to 
reduce the uncertainty associated with only analyzing one specific generation time 
series. As a result, three different weather years with specific RES generation are 
analyzed for Germany. Additionally, a case study for California is conducted. Both 
areas are leaders in green technology adoption but have different climate conditions and 
load behavior. In Germany, the focus is on wind power, including offshore, and on 
photovoltaic with a very low capacity factor. The load peak here occurs in winter. In 
California, solar power including photovoltaic and solar thermal is more important. In 
terms of wind energy, mainly onshore farms are discussed, offshore installations are not 
included. The load peak is sharper and occurs during the summer months. A comparison 
of these two states should deliver insights into the specific demand-side management 
capabilities of integrating RES-E into the grid. The next section introduces the time 
series used. Then, the criteria used to measure the effects of different charging strategies 
and compare time series of renewable generation technologies are defined. Finally, the 
time series used are discussed and characterized by applying the defined parameters.   
 
 
3.2 Method and input data 
 
Hourly-resolved generation time series of RES representing the fluctuation in the 
investigated area are required as model input to analyze the contribution of PEVs as a 
grid resource. The transmission within the investigated area is not considered. 
Therefore, a single time series is used representing all the generation units of a specific 
RES. Compared to the generation output of a single site, combining data from several 
sites results in a smoothing effect48 (Holttinen, 2005). The energy output of the 
available data is scaled up to the assumed generation output in the scenario (see  
Chapter 5.3.2). This method relies on simplified assumptions that weather, site-specific 
and RES technology data can be used to describe future RES-E output with a higher 
installed capacity. Methodological weaknesses stem from limited weather data 
availability, technological change and changes in the geographic distribution of 
installation sites.  
Table 3-1 gives an overview of the time series used as input for the simulation as well 
as the data source, underlying weather years, and information about the method of data 
preparation as well as the scenario in which the time series are used.  
 
  

                                                 
48 The smoothing effect describes a reduction in standard variation when more turbines and a higher 
 separation of the turbines are used to generate one time series. The smoothing effect of a specified 
 area is limited. 
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Table 3-1: Overview of the renewable energy input data 

Time series Scenario 
Method of data 

preparation 
Weather 

year Source 

Wind onshore GER 

GER 2030 

Measured 2007/2008/ 
2009 

EEX,  2011 

Wind offshore GER Measured Schubert, 2010/11 

Wind offshore IWES GER Weather data (model) 2007 Lange, 2011 

Photovoltaics GER Weather data (measured) 2007/2008/ 
2009 

Schubert, 2011 

Load GER Measured ENTSO-E, 2011 

Wind CA 

CA 2030 Weather data (measured 
and model data) 

CAISO, 2011 and   
NREL, 2009 

Solar thermal CA 2005  

Photovoltaics CA 

Load CA Measured 2005 
 
There are three different methods of generating RES-E time series. Measured data from 
areas with many well developed sites is of very high quality such as wind onshore 
generation in Germany. If such data is insufficient, additional time series can be 
generated from weather data (wind speed and irradiation) using weather models and 
weather data measured at weather stations. In general, measured weather data represents 
the characteristics of a specific site more accurately. However, such data is also prone to 
measurement errors and measuring stations are often not available in sufficient 
numbers. Measured energy data is available for wind onshore in Germany and the total 
system load. All other time series are taken from sources that use weather data to 
calculate the generation output of RES.  
 
The German photovoltaic (PV) time series are taken from (Schubert, 2011)49 and were 
created using irradiation data from over 750 metering stations (SoDa, 2011) spread all 
over Germany. To generate the time series of different weighted cell technologies, site 
categories as well as the different installation angles are taken into account. Diffuse and 
direct radiation, reflection and temperature-dependent efficiencies of modules and 
inverters are also included. The time series is considered to be of high quality because 
of the advanced method used and the large quantity of radiation measurement data 
considered.  
 
The German wind offshore time series 2007 – 2009 are also taken from  
(Schubert, 2010 and 2011). Data from up to 24 measurement stations50  
(Meteomedia AG, 2009) at off- and near shore locations in the German North and Baltic 
Sea are considered. A multi turbine power curve (McLean, 2008) is used to calculate 
the power output with a hub height of ninety meters. The number of measurement 
stations considered is relatively low and includes near-shore measurement stations. 
Additionally, a 2007 weather data offshore time series from Fraunhofer Institute for 
Wind Energy and Energy System Technology (IWES, 2011) is used. To calculate the 
data, 50 wind speed time series from weather model data51 and common offshore 
turbine power curves52 with ninety meter hub height are used (Nitsch et al., 2010). Real 
offshore turbine output and measured wind speed data are limited and the real output of 
several wind parks is not known. Therefore, the data quality is considered to be 

                                                 
49 The used method refers to Quaschning, 2009, Klucher, 1979 and Vallo, M. et al., 2004. 
50  2007: 21 stations; 2008: 24 stations; 2009: 19 stations 
51  COSMO EU: spatial resolution 7 x 7km², temporal resolution 1 hour, height 68.8 m and 116.2 m, 
 respectively. 
52  Possible examples are Vestas V112, ENERCON E126 and AREVA M5000 (see Vestas, 2011,  
 AREVA, 2011 and ENERCON, 2011) 
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adequate with the potential for improvements as soon as measured German offshore 
time series become available.  
The basis of the German onshore wind time series are quarter hourly measured data 
from the years 2006/07/08 from 18,685/19,460/20,301 installed turbines with a capacity 
at the end of the respective year53 of 20.622/22.247/23.903 GW  
(Bundesverband Windenergie e.V., 2011). The hourly data is published by national 
transmission system operators and the European Energy Exchange AG (EEX, 2011). 
The data quality is considered to be excellent because of the high diversity of turbines 
and sites. For a time series referring to a future scenario, the data underestimates the 
generation output because many older turbine types are installed (average turbine power 
is between 1.10 and 1.18 MW). The geographic distribution of the turbines is expected 
to be similar in the future. 
 
The time series for solar thermal, photovoltaics, load and wind output in California are 
taken from the California independent system operator (CAISO, 2011). The source 
distinguishes between different time series for photovoltaics and solar thermal (ST) (see 
Table 3-2). In this paper, the time series are aggregated and weighted by the installed 
capacity to obtain single time series for PV and ST.  
 

Table 3-2: Installed capacity assumptions of CAISO data. 

Technology Installed capacity [MW] 
Total photovoltaics (PV)    6,661 
Large PV  3,527 
Distribute PV  1,045 
Customer Side PV   1,749 
Out of State PV 340 
Total solar thermal (ST) 4,458 
Large Solar Thermal  4,058 
Out of State ST 400 
Wind 9,436 
 
Source: (CAISO, 2011); Scenario: ”33 percent trajectory case” 

 
The CA time series are generated using measured data from existing sites as well as 
weather data from numerical weather prediction models. For details on the CA time 
series for the total system load as well as wind, PV and ST generation, see  
(NREL 2009; Solar Anywhere, 2011; CPUC, 2012). 
 
 
  

                                                 
53  The average installed capacity is assumed to be 50 % of the total newly installed capacity plus the 
 capacity already installed at the beginning of the year. 
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3.3 Evaluation criteria of energy fluctuation  
 
To describe the generation of intermittent RES-E and the resulting residual load, the 
following three types of criteria are distinguished:  
 

 Factors counting the available energy. These factors are the most common ones 
used but do not consider fluctuation and availability aspects. These factors are 
discussed and supplemented in Chapter 3.3.1. 

 The load change rate or the ramp rate. This factor describes the change in 
generation and load output between time steps. To compare different time series, 
the ramp rate factor as well as the mean and standard deviation of the ramp rate 
are considered in Chapter 3.3.2. 

 The interval availability is introduced to account for the average time 
intermittent power output is available (see Chapter 3.3.3). This factor is related 
to the capacity credit but takes different power levels into account.  

These evaluation criteria are used to describe PEVs’ contribution to better integrating 
intermittent RES-E into the electricity grid (Chapter 7) and to characterize the input 
data.  
 
3.3.1 Duration curve 
 

Table 3-3: Nomenclature duration curve parameter 

Parameter   Unit 

cfpos Capacity factor  - 

cfneg Capacity factor to characterize the negative residual load  - 

flh Full load hours  h 
T Time period t Є T  8760 h/a 
t Time period of time step t Є {0…T} h 
E(t).  Energy produced in a certain time period  MWh 

Prated Rated power  MW 

PMax Maximal power MW 

PMin Minimal power MW 

rcf0.8  Ratio between cfQ<0.8 and cfQ>=0.8 - 

cfQ<0.8 Capacity factor for sorted power values smaller than the 0.8 quantile - 

cfQ>=0.8  Capacity factor for sorted power values equal to and bigger than the 0.8 quantile - 
Index     

t Time step  - 
Q Quantile - 

 
The energy produced by generation units is often described using the capacity factor cf 
or the full load hours flh respectively. 

 
( )

*

T
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rated
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E t
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P
   (3-1) 

Both factors are related to the energy produced E(t) in a certain time period T. Prated is 
the rated power of a generation unit. In terms of the negative residual load, cfneg and 
cfy=0 are used to indicate the intercept of the duration curve with the y-axis. For 
fluctuating RES-E, part load (generation) operation dominates the duration curve (see 
Figure 3-1). Therefore, an additional factor, the capacity factor ratio rcf0.8, is introduced. 
to describe the energy production. 
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rcf0.8  is defined as the ratio between the capacity factor cfQ<0.8 for sorted power values 
smaller than the 0.8 quantile and the capacity factor cfQ>=0.8 for sorted power values 
equal to and bigger than the 0.8 quantile. The normalized area under the curve in  
Figure 3-1 represents the capacity factor and the areas left and right of the 0.8 quantile 
represent cfQ>=0.8 and cfQ<0.8, respectively. In addition, the maximal and minimal power 
PMax and PMin (1 hourly mean) and the correlation between fluctuating RES-E and the 
total system load are used as indicators for aggregated time series.  
 

 

Figure 3-1: Duration curve of a wind turbine illustrating the characterization parameters used 

Source: Wind onshore turbine: (NREL, 2009), Pmax = 100 % = 10 MW; Note: cf: capacity factor; Q: quantile; 
CA: California; NREL: National Renewable Energy Laboratory. 

 
The information value of the capacity factor and the full load hours serves to compare 
the energy production of different technologies and installation sites. The capacity 
factor ratio allows for a more detailed analysis of the energy availability. A rcf0.8 of 0.2 
indicates that the energy generation over the total time period is the same. A rcf0.8 of 1 
shows that, for 20 % of the time with the highest output, the energy production equals 
the output of the other 80 % in the time period. A capacity factor cfQ>=0.8 close to 20 % 
indicates a high share of full-load operation (e.g. photovoltaics CA). Hence, lower 
values indicate higher part-load operation (e.g. photovoltaics GER).  
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3.3.2 Ramp rates 
 

Table 3-4: Nomenclature ramp rate parameter 

Parameter   Unit 
P(t) Mean power of time step MW 
rr Ramp rate - 
RR Total set of ramp rates  
rrf Ramp rate factor  - 

Ppeak Peak power  MW 

Prated Rated power  MW 
T Total time period  8760 h/a 
t Time period of time step t Є {0…T} h 
σ standard deviation - 
μ mean value - 
Index     

t Time step  - 

 
An important value to characterize the fluctuation of wind time series is the ramp rate 
(Sørensen et al., 2009; Gottschall et al., 2007).54 The ramp rate rr is defined as:  

 1 1( ) t t t t

rated peak

P P P P
rr t or

P P
  

  (3-3)  

where P is the mean power (hourly mean power) and n the counting index of one time 
step t in the time period T.55 The values are normalized to the rated power Prated for 
generation technologies and the peak power Ppeak (1 hour mean) for the system load. A 
positive ramp rate reflects an increase in either generation or load.  
 
To quantify the ramp rate rr of different technologies and scenarios, the following 
parameters are introduced. The ramp rate factor rrf gives the area under the sorted ramp 
rate curve for positive rrfpos and negative rrfneg ramp rates (see Figure 3-2). The two 
areas are equal.56 The ramp rate factor allows a comparison of the overall ramping of 
duration curves. Using the trapezoid function approach, rrf is calculated using  
Equation 3-4. 

 1 1

1
( ) ( ) 0.5t t t t

t

rrf t t rr rr
T        ;

 
0posrrf RR   ; 0negrrf RR 

 
(3-4) 

In addition, the standard deviation σpos,neg, the mean value of rr μ pos,neg and the 
intersection value of xy=0 are applied to characterize the fluctuation. Figure 3-2 
illustrates the different parameters used to describe the ramping of fluctuation based on 
the German system load.  
 

                                                 
54 The ramp rate is also described as power output increments.  
55 In this paper, a time resolution of one hour is used, T = 8760 h. 
56 rrfpos = rrfneg is true if t is high or the first and the last state of power are the same. For t = 8760-1  
 rrfpos = rrfneg with high accuracy.  
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Figure 3-2: Sorted ramp rate for the German system load in 2008 

Source: Load GER: (EEX, 2011) load year 2008, Pmax = 100 % = 77.950 GW; Note: GER: Germany. 

 
The ramp rate factor serves to compare the fluctuation of different technologies, 
installation sites and resulting load curves. The mean and standard deviation of the 
positive and negative ramp rates make it possible to characterize the irregularity of the 
fluctuation. An intersection with the y-axis higher than 50 % indicates a more frequent 
negative ramp rate with less variation (see Figure 3-2) and the reverse is true for an 
intersection smaller than 50 %.  
 
3.3.3 Interval availability  
 

Table 3-5: Nomenclature interval availability parameter 

Parameter   Unit 

ΔPnormalized Delta of normalized power in a time series % 

Pmin Minimum power   MW 

Pmax Maximum power   MW 

Ppeak Peak power of the load curve MW 

Prated Rated power of installed capacity  MW 
X Total number of events crossing section boundary  - 
t Time period of time step  h 
Cor Correlation % 
Index     
t Time step  - 
x Number of events - 

 
The energy parameters and the ramp rates do not describe for how long which fraction 
of fluctuating RES generation or residual load is available consecutively. To address 
this specific property, the average time availability t0-t4 of the specific power levels 
section 0-4 is investigated. The power levels are defined as a section of the normalized 
delta power value ΔPnormalized. 

 max min max min( ) - ( ) ( ) - ( )
normalized

rated peak

P t P t P t P t
P or

P P
   (3-5) 
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Note that ΔPnormalized depends on a specific time series. Hence, sections of photovoltaics 
and wind time series are different. The sections in detail are: 
 

 Section 0:  0 % <  Pt <= 10 %  
 Section 1:   10 %  < Pt <= 30 %  
 Section 2:  30 %  < Pt <= 60 %  
 Section 3:  60 %  < Pt <= 90 %  
 Section 4:  90 %  < Pt <= 100 %  

 
The average availability of a section tSec is defined as the average time of all time 
periods tt a section is available.  

 
.
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tx
Sec

t
t

X
 

 
(3-6) 

The total number of events x in which a time series crosses a section boundary is X. 
Figure 3-3 illustrates the values used to quantify the time availability. 
 

 
Figure 3-3: Average time availability for different sections of normalized power 

Source: Time series (Wind onshore GER 2008): (EEX, 2011); Note: Sec: Scention, t: time. 
 

The average time availability is applied to describe the reliability of a fluctuating energy 
source. The standard deviation of t is used for a more detailed assessment of average 
time availability. Related values in the literature are the capacity credit  
(Ensslin et al., 2008) and correlation (e.g. see Blarke et. al, 2008). Unlike the capacity 
credit, the average time availability also describes the mid and peak availability values. 
The correlation Cor is used to characterize the relation between the system load and 
supply from fluctuating generation. 
 
 
  



  CHARACTERISTICS OF FLUCTUATING GENERATION  26 

3.4 Evaluation of energy fluctuation 
 
In the following, the time series used in the simulation are characterized using the 
parameters defined in Chapter 3-3. For Germany, the time series of 2008 are applied as 
the basis for the simulation because the generation output of wind in 2008 is roughly 
equal to the 10-year generation average. Besides the GER 2008 time series, the time 
series for CA 2005 are discussed in detail. All values are normalized to provide a basis 
for comparison. The detailed evaluation parameters for the different weather years of 
GER 2007 and GER 2009 as well as available wind data from Denmark are provided in 
the Appendix A2. 
 
3.4.1 Total system load  
 
The total system load curve and its correlation with fluctuating generation from RES 
determine the residual load. Figure 3-4 shows the load duration curve for Germany  and 
California. The differences occur due to individual consumer and industry demands. Air 
conditioning is the most obvious load; this is typical for California and other countries 
with a hot summer climate and the reason for the very steep CA system load curve 
within 10 % of the highest values. The parameter cfQ>=0.8 (14.3 % compared to 18 %) 
indicates that peak generation is needed for fewer hours in CA than in GER, where the 
value close to 20 % shows that a high load occurs for numerous hours over the year. 
The values for the capacity factor cf and the minimum power Pmin are also characteristic 
for the specific conditions in CA. 
 

 
Figure 3-4: Sorted duration curves of the total system load for Germany and California 

Source: GER: Germany (ENTSO-E, 2011) reference year 2008, Pmax = 100 % = 77.950 GW;  
CA: California (CAISO, 2011), reference year 2005, Pmax = 100 % = 63.545 GW. 

 
In terms of the ramp rates, GER 2008 values yield a higher ramp rate factor (rrf 1.19 % 
compared to 1.05 %). Especially in the morning hours, a high ramping up is typical for 
Germany. In this context, Xy=56.40 % indicates that ramping down occurs more often in 
GER but is not as rapid as ramping up (μpos > μneg). In CA, ramping up is also faster than 
ramping down, but not as fast as in GER. The discussed parameters are summarized in 
Table 3-6.   
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Table 3-6: Selected parameters used to characterize the load curve.  

Load GER 2008 Load CA 2005 

cf 73.53% rrfpos 1.19% cf 54.58% rrfpos 1.05% 

cfQ>=0.8  17.99% μ pos 2.74% cfQ>=0.8  14.27% μ pos 2.12% 

rcf0.8   0.32 μ neg -2.12% rcf0.8   0.35 μ neg -2.07% 

Pmin 44.70% xy=0  56.40% Pmin 36.29% xy=0  50.59% 
 
Source: Own calculation; data basis (EEX, 2011) and (CAISO, 2011). 
 
3.4.2 Wind onshore 
 
Onshore wind is the fluctuating energy source with the highest installed capacity in 
Germany57 and worldwide. The available time series are very accurate and smoothing 
effects in areas with high installed capacity are well known (compare aggregated data 
with data of single turbines in Figure 3-5). Onshore wind time series for CA and GER 
indicate a similar peak mean power output Pmax of around 80 % (see Pmax in Table 3-7) 
of total installed capacity. The CA values of cfQ>=0.8 and rcf0.8 are higher than for GER, 
which demonstrates a higher availability of peak as well as off-peak generation hours. 
 

 
Figure 3-5: Sorted duration curves for wind onshore  

Source: SWK 4161 GER: (SWK, 2010); NREL 3568: (NREL, 2009); wind onshore CA: (CAISO, 2011); wind 
onshore GER: (ENTSO-E, 2011); Note: CA: California; NREL: National Renewable Energy Laboratory; 
 GER: Germany; SWK: Stadtwerke Karlsruhe. 

 
The CA time series also show a higher ramp rate factor rrf and mean ramp rates μ. The 
CA intersection with the x axis xy=0 is 47.14 %. Consequently, ramping down is more 
rapid (μneg > μpos) in California. Ramping down and up in GER shows similar values 
with xy=0 close to 50 %. The discussed parameters are summarized in Table 3-7.   
 
  

                                                 
57 The installed wind onshore capacity in Germany was about 30 GW at the end of 2011.  
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Table 3-7: Selected parameters to characterize the wind onshore time series.  

Wind onshore GER 2008 Wind onshore CA 2005 

cf 19.99% rrfpos 0.66% cf 28.88% rrfpos 1.25% 

cfQ>=0.8  10.00% μ pos 1.34% cfQ>=0.8  10.58% μ pos 2.21% 

rcf0.8   1.00 μ neg -1.30% rcf0.8   0.58 μ neg -2.63% 

Pmin 0.56% xy=0  49.72% Pmin 2.02% xy=0  47.14% 

Pmax 82.51% Pmax 80.75% 
 
Source: Own calculation data basis (EEX, 2011) and (CAISO, 2011). 
 
The interval availability of wind is heavily dependent on weather events. The standard 
deviation of the average interval availability time is very high, especially in section 1 
(Quantile 10 – 30 %). In CA, the interval availability is higher (section 1-3) except for 
the peak hours (section 4). Hence, weather events with a long and high output are more 
likely for GER. Periods with a long absence of significant capacity are also more often 
and longer in GER (section 0). Analyzing the availability for different hours of the day 
shows a peak output during the evening (17 – 24 hour clock) in CA, whereas no clear 
trend is apparent for GER (see Appendix A2). The parameters for wind availability are 
summarized in Table 3.8.   
 

Table 3-8: Selected parameters to characterize the interval availability of  wind onshore time 
series.  

Wind onshore GER 2008 Wind onshore CA 2005 

Quantile 
% of peak 

power 
Number of 

events 
t mean 

[h] 
tσ  

[h] 
Quantile

% of peak 
power 

Number of 
events 

t mean 
[h] 

tσ  

[h] 

Sec. 0 < 8.8 173 16.5 20.5 Sec. 0 < 9.9 122 6.6 7.2

Sec. 1 8.8 – 25.1 173 34.1 61.0 Sec. 1 9.9 – 25.6 122 64.9 127.8

Sec. 2 25.1 – 49.7 100 24.8 29.3 Sec. 2 25.6 – 49.2 267 16.7 19.3

Sec. 3 49.7 – 74.3 47 15.9 14.0 Sec. 3 49.2 – 72.9 168 6.7 6.1

Sec. 4 >74.3 16 6.1 3.8 Sec. 4 >72.9 2 3.0 0.0
 
Source: Own calculation; data basis (EEX, 2011) and (CAISO, 2011); Note: σ: standard deviation, t: time in hours. 

 
3.4.3 Wind offshore 
 
For GER, offshore data from two different sources are available (wind offshore  
IWES 2007 and wind offshore GER 2007-2009), while offshore wind is not considered 
in the CA scenario (CAISO, 2011). The 2007 GER data uses different wind speed time 
series and methods to calculate the power output. Comparing the two data sets reveals 
significant differences (see Figure 3-6). This indicates possible uncertainty about real 
offshore time series for Germany and suggests limitations of the available weather data.  
German offshore wind generation is expected to produce large amounts of energy and 
have a higher nominal power availability than onshore wind. The IWES data set 
accounts for a higher energy output with a capacity factor of 48.4 % and a higher 
availability of nominal power (cfQ>=0.8 close to 20 %) compared to the wind offshore 
GER 2007/08 data set. The difference in Pmax results from the different turbine power 
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curves used.58 Offshore ramping is higher than onshore. Wind offshore GER 2007-2009 
shows significantly higher ramping than the IWES time series. One possible 
explanation is the lower number of available measurement points in the GER 2007-
2009 time series.  
 

 
Figure 3-6: Sorted duration curves for wind offshore  

Source: Wind onshore GER 2007 and 2008: Data set (Meteomedia AG, 2009), method (Schubert, 2010);  
wind onshore GER IWES 2007: (IWES, 2011); Note: GER: Germany; IWES: Fraunhofer Institute for Wind Energy 
and Energy System Technology. 

 
In this thesis, the wind offshore GER 2008 time series are used since real data for 
offshore are not available. To account for the different data sets, a sensitivity analysis is 
carried out (see Chapter 7.7.1). The discussed parameters for wind offshore availability 
are summarized in Table 3-9. 

 Table 3-9: Selected parameters to characterize the wind offshore time series.  

Wind offshore GER 2008 Wind offshore GER 2007  Wind offshore GER 2007 IWES 

cf 40.65% rrfpos 1.61% cf 41.33% rrfpos 2.04% cf 48.42% rrfpos 0.95% 

cfQ>=0.8  15.00% μ pos 3.21% cfQ>=0.8 14.87% μ pos 4.09% cfQ>=0.8 18.20% μ pos 2.64% 

rcf0.8   0.58 μ neg -3.19% rcf0.8   0.56 μ neg -4.07% rcf0.8   0.60 μ neg -2.70% 

Pmin 0.13% xy=0  49.86% Pmin 0.40% xy=0  49.79% Pmin 0.18% xy=0  49.86% 

Pmax 85.93% Pmax 86.71% Pmax 96.45% 

 
Source: Own calculation, data basis (EEX, 2011) and (IWES, 2011). 
 
3.4.4 Solar power 
 
CA parameters for photovoltaics and solar thermal show very high energy output and 
availability of nominal power during the main hours of generation (indicated by a high 
cfQ>=0.8). The energy output in Germany is less than half that generated in California 
(cfCA PV = 24.7 % compared to cfGER PV = 10 %). The peak of simultaneous generation is 
64.5 % of the nominal power in GER, whereas the CA time series show a much higher 
Pmax. Absolute ramping is also higher in CA (rrfGER,PV = 1.35; rrfCA,PV = 3.18;  
rrfCA,ST = 3.2) as are the CA average ramp rates (Figure 3-7). One possible explanation 
for this is the higher share of direct radiation in CA, which leads to simultaneous 

                                                 
58 The maximal power output is limited to 89 % in the Trade Wind turbine curve used for the wind 
 offshore GER 2007 data set. 
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generation and a greater tendency towards very large installations as well as PV tracing 
systems. In terms of the solar thermal generation time series, the higher ramp rates also 
indicate the use of thermal storage. The solar thermal power plants are operated to 
maximize electricity output during peak hours. 
 

 
Figure 3-7: Sorted ramp rates for solar generation in California and Germany  

Source: Photovoltaics Germany (GER) 2008: Data set (SoDa, 2011), method (Schubert, 2011); solar thermal and 
photovoltaics California (CA): (CAISO, 2011). 

 
Ramping down and ramping up are more evenly balanced for solar thermal generation 
than for photovoltaics. Photovoltaics shows a tendency to more rapid and greater 
ramping down for CA. The parameters used for solar availability are summarized in 
Table 3-10. 
 

Table 3-10: Selected parameters to characterize the solar time series. 

Photovoltaic GER 2008 Photovoltaic CA Solar Thermal CA 

cf 10.02% rrfpos 1.35% cf 24.66% rrfpos 3.18% cf 25.81% rrfpos 3.20% 

cfQ>=0.8  7.57% μ pos 4.36% cfQ>=0.8  15.45% μ pos 7.60% cfQ>=0.8 16.88% μ pos 10.79% 

rcf0.8   3.10 μ neg -4.71% rcf0.8   1.68 μ neg -10.40% rcf0.8   1.89 μ neg -9.37% 

Pmin 0.00% xy1=0  72.76% Pmin 0.00% xy1=0 69.76% Pmin 0.00% xy1=0  70.36% 

Pmax 64.62% xy2=0  29.47% Pmax 98.42% xy2=0 30.61% Pmax 95.72% xy2=0  34.14% 

 
Source: Own calculation data basis (Schubert, 2011), (SoDa, 2011) and (CAISO, 2011). 
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3.5 Summary 
 
This chapter described load and RES-E fluctuation as the main input parameters to the 
presented simulation model (Chapter 5). In detail the following points were considered:  
 

 The time series of fluctuating generation for German photovoltaics as well as 
wind on- and offshore and for Californian solar thermal, photovoltaics and wind 
onshore were introduced (Chapter 3.2)  

 A novel approach to characterizing the time series was defined in Chapter 3.3. 
This allows the comparison of data from similar studies and is the basis to 
describe the effect of RES-E and PEVs on the power system in detail.  

 In section 3.4, all time series were characterized using the defined parameters. 
Additional information on the time series is available in the Appendix A2.  

 Characterizing the time series shows that uncertainty can be high, especially for 
time series with limited real data such as offshore wind in Germany. This 
indicates the importance of clearly characterizing the data used to allow for a 
comparisons of different studies.  

 
Describing time series for RES-E and the system load using evaluation parameters can 
become very complex if applied to analyze the fluctuation of time series. The 
parameters used to describe the fluctuating generation of RES (see Chapter 3.3.3) 
represent a first approach to compare different generation profiles and do not claim to 
be complete. Nevertheless, it seems insufficient to focus only on energy-related 
parameters such as the capacity factor to describe RES-E. Therefore, the applied 
method is of high scientific value for the presented work. The method described is 
partly published in (Dallinger et al., 2013). 
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4 Characteristics of mobile storage  
 
 
4.1 Introduction 
 
The contribution PEVs can make to balancing the power system is mainly determined 
by the technical vehicle configuration, the battery degradation and driver behavior. In 
terms of the technical configuration such as battery size and grid connection power, 
parameters are determined by the market penetration of specific PEVs. These 
parameters are estimated using cost calculations (see Chapter 2.2) and provided by 
scenarios (see Chapter 6.3). The major difference between stationary and mobile storage 
is mobility behavior and the acceptance of DSM by consumers with PEVs. Consumer 
acceptance is not included in this research because of the complexity of accounting for 
qualitative aspects in a simulation model. Hence, when characterizing mobile storage, 
my focus is on mobility behavior (Chapter 4.2) given by mobility surveys and battery 
degradation-related discharging costs as another main aspect to determine the storage 
operation (Chapter 4.3).  
 
 
4.2 Mobility behavior 
 
This section characterizes the mobility behavior of typical PEVs users. Mobility 
behavior determines the parking time and location as well as the battery state of charge 
of vehicles being plugged back into the grid. These parameters are crucial for analyzing 
the contribution PEVs can make to balancing the fluctuating generation of RES and are 
therefore investigated in great detail in the following section. First, surveys 
investigating mobility behavior in Germany are discussed (see Chapter 4.2.1). Based on 
the information provided by such mobility surveys, possible PEVs’ users in terms of 
technical requirements and economic criteria are selected (see Chapter 4.2.2). The 
driving behavior of these users is then described using probabilities applied to model the 
driving behavior in the simulation model (see Chapter 4.2.3). Finally, the definition of 
the grid management time is presented in Chapter 4.2.4 as the most important parameter 
for DSM of PEVs. 
 
4.2.1 Method and input data  
 
There are two main mobility surveys of private car owners in Germany: “Mobility in 
Germany” (MID) and “German Mobility Panel” (MOP). Both surveys focus on 
passenger cars. The MID survey was conducted in 2002 and again in 2008 with about 
60,000 participants each time. MID is a longitudinal cross-sectional survey with a 
survey period of one year and interview periods of one day. The MOP survey has been 
realized annually since 1994. MOP data from 2002 until 2008 are used for this research. 
The MOP is a multi-day or cross-sectional survey recording a one week travel behavior 
diary. Table 4-1 gives the number of persons, households and cars involved as well as 
the reported trips for the discussed surveys.  
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Table 4-1: Overview of the main German mobility surveys  

  MOP 2002-08  MID 2002 MID 2008 

Report period One week One day 

Persons participating 12,235 61,729 60,713 

Households participating 6,958 15,380 21,063 

Passenger car trips 298,008 66,114 94,151 

Passenger cars participating 8,162 33,768 34,601 

 
Source: Own calculation using data from German Mobility Panel (MOP, 2002-2008),  
Mobility in Germany (MID) 2002 (MID, 2003) and Mobility in Germany 2008 (MID, 2010). 

 
The MOP data has the advantages of a high number of reported trips and weekly chains 
of trips. Information on the trip’s destination allows infrastructure aspects to be 
included. The number of persons, households and cars involved is lower than in MID. 
The MID data provides a wider spectrum of participants representing German mobility 
behavior. The MID reporting period of one year means the data are less dependent on 
weather conditions or holiday seasons affecting mobility behavior. Further, MID 
collects data on the annual driving distance which has been identified as the main 
parameter for determining the total costs of ownership and which is not available in the 
MOP survey. For these reasons, MID data is used to determine a user group particularly 
suited to PEVs.  
 
4.2.2 Data preparation and filter criteria 
 
Analyzing the data sets of the different mobility surveys indicates that driving behavior 
is specific to the different user segments. The classification of the MID 2008 data set 
into the main driver’s professional activity and municipal size in Figure 4.1 shows for 
example that the segment representing the average yearly driving distance of full-time 
employees is much larger than homemakers or pensioners. In addition, Figure 4-1 
provides the segment’s size as a percent of the total sample, representing all vehicle 
owners in Germany. The biggest user segment comprises full-time employees living in 
cities with 5,000 to < 20,000 inhabitants. Technical and economic filter criteria are 
defined to identify the most suitable users for PEVs.  
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Figure 4-1: Classification of the MID 2008 data set 

Source: Own calculation using data from Mobility (MID) in Germany 2008 (MID, 2010); Note: The bubble size and 
the values in brackets represent the segment’s share of the total data set. 
 
The technical filter criteria consider the parking situation of passenger car users at 
home. A grid connection with minimal outlay for the public charging infrastructure 
requires a regular parking spot on private property or in close proximity to the user’s 
home. For the BEVs’ segments, additional queries on the availability of a second car in 
the household and of regular trips shorter than 90 km are implemented . 
 
An analysis of the total costs of ownership forms the basis of the economic filter 
criteria. Details of the TCO calculation for 2020 can be found in (Biere, et al. 2009).59 
In addition to scenario parameters such as the expected fuel and the battery prices, the 
electric driving distance decisively influences the TCO of a PEV compared to a 
conventional diesel or gasoline vehicle. Users with a high electric driving share are able 
to recoup the higher PEV’s investment because of operating cost savings (see  
Chapter 2.2.3).  
 
Another parameter under investigation is the percentage of kilometers driven with an 
average speed under 45 km/h. This parameter is used to determine the inner-city driving 
share. Because of the low part-load efficiency of internal combustion engines and the 
possibility in electric motors to recuperate braking energy, PEV fuel savings are higher 
for inner-city driving. Hence, in segments with a high inner-city driving share, a lower 
electric driving distance is sufficient to compensate the higher investment. 
The results of selecting data to find potential PEV users are presented in Figure 4.2. 
Figure 4.2 indicates that, for most segments, the average km driven per year increase. 
The filtration results in an increase of the inner-city driving share only in a few 
segments such as part-time employees in cities with more than 500,000 inhabitants. 
From this, it can be concluded that, in most cases, the impact of the km driven per year 
is higher than the impact of the inner-city driving share. Hence, additional fuel savings 
from inner-city driving are not high enough to compensate the shorter distances of users 
living in cities. 

                                                 
59 For the data basis see CONCAWE (2007a) and CONCAWE (2007b). 
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Part-time employees living in cities with 20,000 to 50,000 inhabitants comprise a very 
specific segment, for which both characterization values decrease. This segment 
includes numerous BEV users driving the second car of a household. A shorter driving 
distance is needed for BEVs to be able to recoup the investment because all trips are 
driven in purely electric mode. For PHEVs, an electric driving share of 65 % is assumed 
(Biere, et al. 2009). 
 

 
Figure 4-2: Classification of the MID 2008 data set implementing the filter criteria for PEV users 

Source: Own calculation using data from Mobility in Germany (MID) 2008 (MID, 2010); Note: The bubble size and 
the values in brackets represent the segment’s share of the total data set. Transparent bubbles correspond to unfiltered 
MID 2008 classification as showen in Figure 4-1. 
 
As a result of applying the filters, full- and part-time employees gain shares at the 
expense of homemakers and pensioners. The same applies to the residents of small 
cities.  
 
The selected data set represents drivers who are suited to using a PEV under the 
assumptions of rising fuel prices, declining prices for batteries and current driving 
behavior. Possible changes in driving behavior due to electric mobility in the future, e.g. 
due to increased intermodal transport, are not considered. (Kley, 2011) shows that 
behavior changes are negligible between the data sets of MOP 1994 and MOP 2008 and 
conventional vehicles and a United Kingdom-based PEV trial (BMW Group, 2011) 
indicates that this finding could also be valid for the change in propulsion type. The 
used filter criteria mainly account for economic aspects. Recent studies have shown, 
however, that the economic performance is only one of many criteria – such as the 
limited driving range in BEVs or lifestyle and vehicle image – influencing a consumer’s 
decision to buy a vehicle.  
 
Please refer to Appendix A3 for additional information on the values behind Figure 4.1 
and 4.2 and information about the data set size for the MOP and MID surveys after 
filtration.  
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4.2.3 Probabilities describing mobility behavior  
 
A stochastic process described by probability distributions is used to estimate driving 
behavior. Compared to a deterministic process using given data sets and dealing 
exclusively with one possible reality, a stochastic approach allows for the indeterminacy 
of driving behavior. A stochastic simulation approach as described in Chapter 5.4.7 is 
preferred because deterministic data result in simultaneousness and repetitive behavior, 
especially if data are limited and scaling up to a larger sample size is necessary. The 
stochastic process is simplified to six probability parameters which are defined and 
discussed in the following. The probabilities are derived from the filtered MID 2008 
date set described in the previous section.   
 

Table 4-2: Nomenclature of stochastic simulation parameters 

Parameter   Unit 

Protravel Probability to travel with the vehicle on a certain day  % 

Travelday Boolean value driving / not driving true/false 

Prostart  Probability starting a trip % 

Prorange Probability for a range class % 

Proloc Probability location % 

avtrip Average trips - 
km Range of a trip km 

tdrive,m Duration of a trip or driving time min 
M Total number of trips - 
X Total number of participants - 
Index     
day Day of sample collection day Є {Sun, Sat, Mon, Fri, WD} - 
x Participant of the survey - 
m Trip Є { 0…M} - 
t Time step Є { 0…95} - 
k Range class Є { 0…20} - 
l Location class Є { 0…2} - 

 
Distinct patterns of traveling behavior are observed on Fri, Sat, Sun, Mon and on other 
weekdays. Other weekdays (WD) are Tues, Wed and Thur and these were merged into 
one data set because driving behavior was found to be very similar on these days  
(day Є {Sun, Sat, Mon, Fri, WD}). 
 
The probability to travel with the vehicle on a certain day Protravel (day) is defined as: 

 

day

travel

1
Pro (day) = × Travel

X

dayx
x

X
   (4-1) 

where Travel is a Boolean value (true, false) indicating whether the respondent x is 
driving on a certain day. X represents the total number of participants. Table 4-3 shows 
the value of Protravel for the original and the filtered MID 2008 data. Compared to the 
unfiltered data, the probability to travel increases for the selected PEV user group for all 
days.  
 

Table 4-3: Probability to travel derived unfiltered versus filtered data set  

Protravel (day) Sun Sat WD Fri Mon 

MID 2008 44.7% 59.7% 70.4% 69.8% 69.5% 

MID 2008 with filter 47.7% 62.3% 75.5% 71.6% 73.5% 
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The probability for starting a trip Prostart on a specific day and time slot is given by:  

 

day

start day,t1
day

1
Pro (day, t) = ×

M
m

M   (4-2) 

with Mday representing all trips on a specific day and mday,t a single trip started on a 
specific day and time t. t is an index out of 0 – 95, or a 15 minute time resolution during 
a day, respectively. Figure 4-3 gives the values of Prostart of the MID 2008 survey for 
the selected group of PEVs (see Chapter 4.2.2) on weekdays and Saturdays. For Prostart 
an accumulation of full and half-hour time steps is absorbed and equalized with a 
gliding average60. 
 

 
Figure 4-3: Probability to start a trip on weekdays and Saturdays 

Source: Own calculation using data from Mobility in Germany 2008 (MID, 2010) with filter criteria from  
Chapter 4.2.2  

 
The probability of starting a trip also depends on the average trips per day avtrip(day) 
given by Equation 4-3.  

 

  day
trip

day

M
av day

X
  (4-3) 

The different driving range values are classified in k element out of 0, 1, …, 20. The 
assignment between the range km and the range class k is given in the Appendix A3. The 
probability Prorange on a specific day for a range class k is given by Equation 4-4. 

 

day

range day,k1
day

1
Pro (day, k) = ×

M
m

M 
 

(4-4) 

For the MID 2008 surveys the range was found not to be a time-dependent parameter. 
Hence, the probability for a trip with the range k is the same for all start time steps and a 
time discrimination is not necessary.61 The class specification and the used probabilities 
are given in the Appendix A3.62 

                                                 
60 The data set shows a high accumulation of full- and half- hours. The author suggests that this is 
 determined by the survey methodology and does not represent real behavior.  
61 In the MOP survey, longer trips are more likely in the morning hours. Therefore, Probrange should be a 
 function of the day, range classification and time.  
62 A function of Prorange(t) is not used because, for most hours of the day, the difference between the 
 average Prorange of all hours of the day and specific hours is marginal. During the night hours 23 to 4, 
 Prorange(t) (where trips are rare) deviations from the average values are found. Hence, in some specific 
 cases, the use of Prorange(t) could make sense.  
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For all data used (MID and MOP), range and duration exhibit a linear correlation, which 
is shown for the MID 2008 survey in Figure 4-4. 
 

 
Figure 4-4: Correlation between the average duration of a trip and the range of a trip 

Source: Own calculation using data from Mobility in Germany (MID) 2008 (MID, 2010) with filter criteria from 
section 4.2.2  

 
Taking this correlation into account, trip duration tdrive,m(k) is calculated according to 
Equation 4-5. 

 drive, mt ( ) 0.7211 k   5m k    (4-5) 

Including aspects related to the infrastructure in the simulation model requires 
additional probability values concerning the destination of a trip. To reduce possible trip 
destinations, data is classified into locations l private,63 work64 and public.65 Prolocation 
represents the probability of a trip ending at l out of 0…2 locations. 

 

day

loc 1
day

1
Pro (day, t, ) = × (day, t, )

M
l m l

M   (4-6) 

Details on the probabilities used and the difference between the mobility surveys are 
shown in the Appendix A3. The method described is published in  
(Dallinger et al., 2012a) using data of the mobility survey MID 2002. The defined 
probabilities are applied as input parameters for the stochastic mobility behavior 
simulation approach presented in Chapter 5.4.7. To improve the stochastic simulation, 
combinatorial probabilities would be needed but this would greatly increase the 
complexity of the model and the effort for data preparation. 
 
4.2.4 Grid management time 
 
The grid management time is used as an input parameter for the charging and 
discharging optimization. Chapter 7.2 discusses the resulting average grid management 
time of a vehicle fleet. In the following, the calculation of the grid management time is 
introduced on single vehicle level.  
 
  

                                                 
63 The way home; loop trips: from home to home. 
64 Trip to the work place. 
65 Shopping trips; leisure trips and service trips.  
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Table 4-4: Nomenclature of grid management time parameters 

Parameter   Unit 
Δt Grid management time  h 

tstart  Start time of a trip h 

treturn  Return time of a trip h 

tdrive Driving time  h 

tcharge Charging time until state of charge = 100 % h 

tunc Uncertainty of the exact start and end time of a trip h 

Δt,night  Management time during the night  h 

Δt,day  Management time during the day h 
M Total number of trips - 
Indices     
m Trip Є { 0…M} - 

 
The limited availability of the PEV storage is the main difference compared to 
stationary storage units which are available 24 hours seven days a week. Hence, the 
mobility behavior defining the time available for load management and V2G is an 
important parameter when modeling PEV devices. In the following, the time between 
trip m and the following trip m+1 available for DSM is called “grid management time 
Δt”. Figure 4-5 illustrates the grid management time for a typical weekday. 
 

 
Figure 4-5: Grid management time of plug-in electric vehicles 

Source: Own calculation using data from Mobility in Germany 2002 (MID, 2003); Note: WD: Weekday. 

 
Δt is defined as the time period between the start time of a trip tstart,m and the start time 
of the next tstart,m+1 minus the driving time tdrive,m and the charging time tcharge,m. To 
calculate tcharge,m, the nominal grid connection power is used. To consider the 
uncertainty of the exact start and end time, tunc,m can be included. At present, vehicle 
users do not schedule their driving behavior exactly. Hence, tunc can be used to describe 
the fact that some users prefer to charge immediately after arriving at a destination, do 
not like to charge at all because the state of charge (soc) is sufficient for all expected 
trips in the next days, or wish to have a soc of 100 % two hours before using the 
vehicle. Including this aspect the calculation of Δt for a specific trip m results in 

 , 1 , , arg , ,( ) ( )start m start m drive m ch e m unc mt m t t t t t       (4-7)  
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For a more precise analysis, the grid management time is divided into the grid 
management at night Δt,night and during the day Δt,day. For data evaluation tunc is assumed 
to be zero. Δt,night is defined as the period between the return from the last trip treturn,lasttrip 
of one day and the start of the first trip tstart,firsttrip (of the next day).  

 , , arg ,( )night return lasttrip start firsttrip ch e lasttript t t t     (4-8)  

Δt,day is defined as the time period between the first and the last trip of a day minus the 
sum of the driving and charging times during the day.  

 , , , arg ,1 1
( ) day dayM M

day return lasttrip start firsttrip drive m ch e mt t t t T       (4-9)  

The grid management time is affected by the availability of charging infrastructure and 
the grid connection power. Further, note that Δt can adopt negative values if the time 
period is too short to recharge the battery completely.  
 
 
4.3 Battery degradation  
 
Information about the wear of vehicle batteries is needed as a decision-making aid for 
feeding back electricity into the grid. In this chapter, battery degradation is discussed 
with regard to finding a simplified approach to model battery wear and related 
discharging costs. In the following section lithium-ion batteries are addressed in general 
without distinguishing the broad variety of different lithium-ion battery chemistries and 
their specific characteristics. The battery degradation algorithms should be suitable for 
use in the multi-agent model PowerACE and for controlling the test vehicles in the 
related field (see Appendix B). 
 
4.3.1 Discussion of modeling approaches and stress factors 
 
Battery ageing describes irreversible physical and chemical effects that reduce battery 
performance. The end-of-life of automotive batteries is defined as a nominal capacity 
fade of 80 % compared to the initial rated capacity (USABC, 1996). The capacity fade 
of lithium batteries is mainly influenced by the following stress factors  
(Ramadass et al., 2002; Smith et al., 2009; Sauer et al., 2008):  
 

 temperature  
 cycles  
 state-of-charge swing   
 c-rate66  
 waiting periods 
 soc in waiting periods. 

 
The calendar life of batteries is mostly determined by thermal ageing. An increase in 
temperature augments the relative cell resistance over time and reduces the lifetime 
(Wright et al., 2002). The relevance of temperature for V2G is reduced if battery pre-
cooling or heating is assumed before a V2G cycle is started. If conditions are too harsh, 
cycling could be restricted. During discharging it is assumed that the cooling system is 
able to keep the temperature within the defined levels. Hence, temperature-related 
calendar life is only an issue if no grid connection is available and does not apply to 
cycling under conditions that can be defined to limit battery ageing. 
 
                                                 
66 C- rate: Charge or discharge rate defined as the battery capacity (kWh) divided by 1h. 
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The c-rate or discharging and charging power affects ageing and influences cell 
temperature. For example in (Peterson et al., 2009), ageing factors are defined for 
specific c-rates. In terms of V2G cycles, the c-rate is very low compared to driving 
cycles. The rated power of a PEV motor ranges from 30 to 100 kW with 
correspondingly higher peak power, whereas the power used in a V2G cycle is in the 
range of 3 to 20 kW at a standard home grid connection. In terms of LiFePO4 cell 
chemistry, (Peterson et al., 2009) found that the capacity fading factor for driving  
(2.85 C-rate) is 2.2 times higher than for V2G (0.5 C-rate). 
 
The cycle life related to the depth of discharge (DoD) or soc-swing is described in 
various publications (e.g. Ning et al., 2004; Sarre et al. 2004) and given by battery 
manufacturers for batteries under test conditions. Most experts describe this relation as 
one of the main factors for cycle-based battery ageing, even if the influence of this 
factor seems to be rather low for LiFePO4 based chemistries (Peterson et al., 2009). 
 
The influence of the stress factors on battery ageing varies for different lithium-based 
battery chemistries. Furthermore, cell dimensions and system design play an important 
role for the lifetime (Smith et al., 2009). Modeling physical and chemical processes 
yields the most accurate information about battery ageing but also has the highest 
complexity (e.g. Sauer et al., 2008). Laboratory experiments are necessary to 
characterize each specific battery chemistry. This is not feasible for this research and 
algorithms are too complex to run in a vehicle-embedded system.  
 
Weighted energy throughput or ampere-hour (Ah) models are less complex and can be 
used as an accurate heuristic approach to determine battery ageing (Sauer et al., 2008). 
In this case detailed information about the effects of different stress factors is required. 
Because lithium-based battery chemistries are undergoing rapid development, the 
relevant information is not readily available and it is still unclear which will be the 
dominant materials used in the future so the definition of these factors is very complex. 
A related approach, which simply takes one stress factor into account, is the event-
oriented ageing model or Wöhler curve (Sauer et al. 2008).  
 
This approach is used to determine the number of cycles of a battery as a function of the 
depth of discharge until the end of its lifetime. In terms of battery ageing, an exact 
detection is not possible because of the many interdependent stress factors. 
Furthermore, the factors are assumed to remain constant over the total capacity fade. 
For V2G cycles where it is possible to define cycling conditions (temperature, c-rate, 
waiting periods etc.), cycle life related to the depth of discharge seems to be adequate 
for modeling V2G in the electricity sector. In addition, this approach can be adapted to 
model degradation costs for future scenarios considering batteries with a better cycle 
life performance. To account for a lower influence of the DoD, a model based on the 
energy throughput with parameters published by (Peterson et al., 2009) is also used and 
compared to the common DoD functions.  
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4.3.2 Model based on the depth of discharge  
 

Table 4-5: Parameters for battery cycle life calculation 

Parameter   Unit 
DoD Depth of discharge % 

Ncycle Number of cycles  - 
soc State-of-charge % 

a, b Parameters of Ncycle function - 
 
According to (Rosenkranz, 2003/2007) and (Kalhammer, et al., 2007), battery 
degradation is influenced by the depth of discharge (see Figure 4-6). The cycle life Ncycle 

dependent on the soc-swing referred as depth of discharge DoD can be described by 
Equation 4-10.  

 
b

cycleN a DoD   (4-10) 

For a currently available Li-ion battery, parameters aSaft=1331 and bSaft=-1.825 are used. 
The parameters result from a trend line drawn from data given by  
(Kalhammer et al., 2007) for a high energy cell manufactured by the company Saft. In 
general, the performance of a single cell is better than the entire battery system because 
of non-uniform degradation. The cell performance is used in a simplified manner here. 
The U.S. Advanced Battery Consortium (USABC) goal is the basis for estimating the 
degradation of future battery systems (Pesaran et al., 2009). In this case the parameters 
result in aUSABC=2744 and bUSABC=-1.665. For this thesis, a very optimistic 2030 
scenario was assumed with the parameters aScenario2030=4000 and bScenario2030=-1.632. 
Figure 4-6 summarizes the data used and shows the performance of a nickel-metal 
hydride (NiMH) battery and manufacturer values as a reference.   
 

 
Figure 4-6:  Battery cycle life dependent on depth of discharge  

Source: U.S. Advanced Battery Consortium (USABC) goal trend line: Own calculation using data from  
(Peterson et al., 2009) for (DoD 70 %=5,000 cycles and DoD 3 %=1,000,000 cycles); Scenario2030: Own 
assumptions; NiMH: function Cycles=1515 DoD-0.65 (Rosenkranz, 2003); A123 System: According to (Peterson et. 
al, 2009); other data from (Kalhammer et al., 2007); Note: soc: state-of-charge; NiMH: Nickel–metal hydride battery. 
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The discussed model indicates the highest lifetime for a fully charged (100 % soc) 
battery without cycling. However, when considering calendar life, a soc of 100 % is the 
most demanding condition. This contraction indicates a weakness of the model.  
 
4.3.3 Model based on energy throughput 
 
Furthermore, especially for A123 Systems batteries, cycle life and DoD do not seem to 
be appropriate approaches. Analyses from (Peterson et al., 2009) show that the most 
important factor for capacity fade of A123 Systems is the energy processed and not the 
DoD, which is used in the equations above. According to the A123 Systems website, a 
cycle life of 7,000 cycles for a capacity fade of 20 % is assumed. This results in a 
lifetime reduction of 0.0029 percent points per cycle. (Peterson et al., 2009) conclude 
that capacity fade per normalized Wh processed is 0.0062 percent points (maximum 
2.85 C-rate) for driving and 0.0027 percent points (0.5 C-rate) for arbitrage. The 
disparity of the two values is caused by different C-rates for driving and for arbitrage 
cycling. 
 
4.3.4 Discharge costs  
 

Table 4-6: Parameters to calculate battery discharge costs 

Parameter   Unit 

cdis Discharge costs ct/kWh 

cdis,energy Discharge costs for one processed kWh ct 

cdis,unit Discharge costs per discharge unit e.g. 1 % of soc ct/kWh 

Cbat  Costs for the battery ct/kWh 

Ebat  Usable energy of the battery kWh 
DoD Depth of discharge % 

Ncycle Number of cycles  - 

 
To decide whether V2G options are profitable, the battery degradation costs per unit 
discharge are required. When the battery is discharged, the degradation costs are a 
function cdis (DoDstart, DoDend), which depends on the DoD at the start of the 
discharging (DoDstart), and the DoD at the end (DoDend). Additional parameters of the 
function are battery-specific parameters, the cost for the battery Cbat and the usable 
energy of the battery Ebat. The special case of regular charging and discharging up to a 
certain DoD is considered here, assuming that the degradation costs are equally 
distributed over all life cycles of the battery. In this case, the costs for one cycle, i.e. one 
discharge from DoDstart= 0 to DoDend = DoD, represent the total battery costs divided by 
the number of cycles. 

 (0, )
( )
bat

dis
cycle

C
c DoD

N DoD
  (4-11)

  

The costs for one processed kWh illustrated in Figure 4-7 are given by Equation 4-12.  

 , (0, )
( )

bat bat
dis energy

cycle

C DoD E
c DoD

N DoD

 
  (4-12) 

It follows that the general degradation costs are:  

 ( , ) (0, ) (0, )dis start end dis end dis startc DoD DoD c DoD c DoD   (4-13) 

 for end startDoD DoD  
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Then, the cost per discharge unit cdis_unit as a function of the DoD before the discharge 
is: 
 

 , ( ) ( , 1%)dis unit disc DoD c DoD DoD   (4-14) 

 (0, 1%) (0, )dis disc DoD c DoD    

 
( 1%) ( )

bat bat

cycle cycle

C C

N DoD N DoD
 


 

 
Figure 4-7 illustrates these specified discharge costs as a function of the DoD for the 
degradation functions described earlier, with specific investment costs of 247 euros per 
kWh of usable energy. The investment costs of bidirectional power electronics, 
charging equipment, metering and V2G efficiency losses are not included.  
 

 
Figure 4-7: Battery degradation costs 

Note: Investment 247 €/kWhusable energy for the battery system; costs caused by electricity losses due to V2G 
efficiencies are not included; soc: state-of-charge; USABC: U.S. Advanced Battery Consortium.  

 

The cost calculation per energy unit discharged illustrates the necessary spread between 
base and peak price for feeding electricity back into the grid. With the model based on 
the depth of discharge, the cost function rises with increasing DoD rates. For USABC 
and scenario 2030 assumptions, the costs per kWh are between 2 and 9 ct. The model 
based on the energy processed with the A123 battery performance results in constant 
costs of about 4 ct per kWh. The costs for a full cycle with the Saft cell are about 18 ct 
per kWh. The presented method is published in (Link et al., 2010 and  
Dallinger et al., 2012). 
 
  



CHARACTERISTICS OF MOBIL STORAGE 

 

45

4.4 Summary 
 
Chapter 4 considered the following issues and information necessary to model PEVs in 
the power system: 
 

 The main surveys on mobility behavior were introduced and compared with 
regard to their suitability for this thesis. The survey mobility in Germany 2008 is 
the most representative study available and is therefore used as the main source 
for modeling mobility behavior.  

 Because of PEVs’ higher investment costs and their lower operating costs 
compared with conventional vehicles, PEVs favor specific vehicle user 
segments. The most promising segments are full-time employees living in small 
towns with less than 100,000 inhabitants. Considering this issue as well as the 
required availability of private parking, filter criteria are defined to select 
potential PEV users from the MID survey representing the German average.    

 Probabilities were defined as input parameters to model driving behavior. The 
method used makes it easy to compare the data of different surveys using only 
six probability parameters and can be simply adapted to different driving 
behavior. 

 The grid management time is one of the main parameters to determine the 
contribution of PEVs as DR and V2G devices.  

 Battery ageing is analyzed for V2G services. DoD-specific discharge costs can 
be calculated using the battery investment and the two ageing parameters 
defined for different ageing assumptions.  

 
In a critical appraisal of this section it should be mentioned that driving behavior could 
change in the future and may be heavily influenced by the use of electric vehicles. 
Furthermore, lithium batteries are a fast-developing research area and how batteries age 
is not fully understood so far. The introduced method does not account in detail for 
battery ageing and is very simplified. Further, it is assumed that V2G is only done if 
positive profits can be made and the investment in bidirectional power electronics is not 
taken into account.  
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5 Simulation model 
 
 
5.1 Introduction 
 
The following chapter describes the model used to analyze how a hypothetical PEV 
fleet could contribute to balancing fluctuating RES-E. The chapter starts with a 
discussion of simulation approaches and develops the approach used (Chapter 5.2). 
Next, the PowerACE model is introduced as the framework for this analysis  
(Chapter 5.3) and the further development of the model is described (Chapter 5.4). 
Finally, the control strategy used is evaluated (Chapter 5.5) and the chapter closes with 
a summary (Chapter 5.6).  
 
 
5.2 Simulation approach 
 
The simulation model used to examine the role mobile storage can play in balancing 
residual load fluctuation focuses on the German power system in 2030. The research 
questions and model applications sparked by the main objective are:   
 

 How do specific DR control mechanisms and charging strategies affect PEV 
grid operation? 

 What generation portfolio would be used to produce the electricity for PEVs? 
 What is the possible revenue from smart charging?  
 How do price sensitivity and consumer behavior affect the results? 
 To which extent will elastic demand affect the electricity prices and reduce 

supply side market power? 
 How many kilometers can be driven electrically with specific vehicle 

configurations und charging strategies? 
 How does a strategy to integrate RES-E on a system level affect the distribution 

grid?  
 What is the contribution of PEVs to balance RES-E compared to other DR 

applications? 
 Is it possible to adopt the research results for Germany to other power systems? 

 
Possible applications of the approach developed include generating price signals to test 
real-life reactions to prices and modeling possible price schemes to test the effects on 
the grid. Not all of these research questions can be addressed in this work, but the model 
has to be suitable for a wider scope of research to guarantee its future prospects. 
In the following sections, the requirements for answering the research questions are 
specified first, then approaches to modeling PEV, power systems and markets as well as 
control mechanisms for distributed devices are discussed. Finally, the approach applied 
for modeling PEVs in the power system is introduced.  
 
5.2.1 Model requirements  
 
The main goal of this thesis is to analyze the interaction of grid-connected electric 
vehicles and fluctuating renewable energy generation in the German power system. For 
this task it is essential to simulate the fluctuation characteristics of RES-E (see  
Chapter 3) and the specific requirements for using PEVs for DR and V2G (see  
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Chapter 4). Additionally, the main players and components of the power system have to 
be taken into account. The key research issues are the following: 
Technical requirements: Electricity as a product with special storage and 
transportation characteristics means it is necessary to account for the technical 
restrictions of power plants, storage devices and transportation grids. A detailed analysis 
of the power plant dispatch67 that matches the total system demand must be made to 
calculate the DSM revenues and emissions of PEVs. Further, the specific fluctuation of 
RES-E has to be represented in the model. This fluctuation, which is dependent on time 
and season, has to be simulated over a longer time period (e.g. one year) with an 
adequate time resolution. There are a wide variety of grid-connected vehicles being 
discussed, which makes it necessary to take different vehicle specifications into 
account. Additionally, not only the power system but also the mobility needs of users 
are important. Aspects such as changes in the state of charge due to driving, the 
availability of different grid connections or user segments with specific behavior should 
also be included in the simulation environment.  
 
Economic requirements: The dispatch of the power plants and storage technologies 
have to mirror the demand and supply situation and follow the economic rules applied 
in today’s liberalized electricity markets. The model should be capable of including 
possible incentives for players to shift demand or feed-in electricity in order to calculate 
the value of load shifting and V2G. With respect to the diversity of different consumer 
groups, it might be useful to  implement individual price sensitivities. 
 
Flexibility: Given the currently very low number of PEVs and the growing share of 
RES-E, the simulation model should be able to adapt to different RES and PEV 
scenarios and changing framework conditions. The charging strategy, vehicle 
specifications and battery degradation costs must also be adjustable. With regard to 
further research applications, accounting for  other smart grid devices (e.g. heat pumps 
or combined heat and power) would be an additional useful feature. 
 
Feasibility requirements: The model should consider the electricity market with all its 
relevant players and technical restrictions as well as mobility behavior and vehicles 
interacting with the power system. It is obvious that simplifications are necessary to 
apply the simulation model with the given computing resources and time frame. 
Therefore, it is important achieve a good balance between the computational effort 
required and reliable modeling output. 
 
5.2.2 Existing model approaches 
 
There is a wide range of different models concerning PEV. An overview of the 
available modeling approaches is given below, divided into related model approaches, 
power system models, which are the main focus, and indirect control approaches. The 
literature overview does not claim to be exhaustive and presents work regarded as the 
most relevant for this research.  

Related model approaches 

Models and model approaches are described in the following which either provide input 
parameters or utilize the results of a power system model.  
 
  

                                                 
67 For example, to account for marginal CO2 emissions or RES used for electric driving. 
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Market penetration: The market diffusion of PEV and the possible vehicle 
configuration affect the available storage capacity and grid connection power of PEVs 
in a power system. The decision to buy any product is influenced by numerous social 
factors which are very complex to include in a simulation model. Therefore, many 
studies reduce decision-making to a discrete choice among different vehicle 
technologies based on the total costs of ownership (e.g. Biere et al., 2009). These 
simplified approaches can be extended by assumptions about learning rates for the 
different components used in alternative vehicles and penetration constraints in specific 
vehicle segments (Mock, 2011). Other approaches include modeling macroeconomic 
framework conditions using system dynamics (IWW, 2000; Christidis et al., 2003) or 
include conditional likelihood (Bass, 1969) and/or network externalities  
(Katz et al., 1985) as presented in (Becker, 2009). This thesis does not focus on 
modeling the market penetration of vehicles and the number of vehicles available in the 
power system is taken as an exogenous variable. 
 
Vehicle configuration: In terms of vehicle configuration, battery size and energy use 
are relevant when simulating PEVs in the power system. Vehicles converting electricity 
from an external source to kinetic energy can be configured in a variety of ways. These 
vehicles are not available on the mass market so the exact configurations that will be 
successful on the market are not yet known. Therefore – as was the case for market 
penetration – analyzing the total costs of ownership is used to predict feasible future 
vehicle configurations. Optimal battery size considering constraints due to infrastructure 
and deterministic driving behavior has been analyzed by (Kley, 2011) and (Plötz, 2012). 
The optimal PHEV design minimizing total costs, fuel consumption and emissions has 
been modeled by (Shiau et al., 2010). An analysis package for advanced vehicle 
modeling to investigate fuel economy is provided in (Markel et al., 2002). The level of 
detail in these models is very high and difficult to reproduce in a model focusing on the 
effects of PEVs in the power system. Therefore, vehicle configurations are taken as an 
exogenous variable as described in Chapter 2.2.1, taking into account the results of 
current research in this field. 
 
Mobility behavior: To account for mobility behavior deterministic data from surveys 
or traffic counts as well as traffic or trip models can be used. Methods to model mobility 
behavior mainly focus on specific street systems to reflecting expected traffic loads in 
rush hours (e.g. Cascetta et al., 1984). This is not suitable for the research on power 
systems, which focuses on standing vehicles. The exact driving routes are not relevant. 
The problem of PEVs’ availability can be analyzed with the method of event simulation 
(e.g. Banks et al., 2004; Zeigler et al., 2000). Applications accounting for the PEVs as 
resource in the power system are presented in (Fluhr et al., 2010). Most publications 
investigating PEVs in the power system use deterministic or average data. In this paper 
a stochastic simulation model is used (see Chapter 5.4.7).  
 
Long-term models for energy planning: Long-term models used for strategic 
planning such as PERSEUS (Gerbracht et al., 2010), PRIMES (PRIMES, 2011), 
MASSAGE (Schrattenholzer, 1981), TIMES (Loulou, 2008) or PowerACE-ResIvest 
(Held, 2010) supply information on the power plant mix, fuel prices or RES distribution 
in a future scenario (Pehnt et al., 2011). These models provide very valuable 
information for the research question tackled here but are beyond the scope of this 
thesis focusing on short-term effects. Therefore, a simplified approach is used to derive 
the new installations of conventional power plants (see chapter 7.4.1). Installed 
capacities of renewable energy plants and their respective generation are taken as 
exogenous parameters provided by scenarios and model results taken from the 
literature. 
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Life cycle emission models: The results of the dispatch in the power system form the 
basis for characterizing the carbon intensity of the consumed electricity in the life cycle 
emission analysis. Examples for life cycle analysis models are GREET (Greenhouse 
gases, Regulated Emissions, and Energy use in Transportation, Burnham et al., 2006) 
and TREMOD (Transport Emission Model, Knörr et al., 2010). Only the direct CO2 
emissions of electricity generation lie within the scope of this thesis (Chapter 7.5).  

Power system and market models 

Models of the power system and related markets are most relevant to analyze the 
research questions raised in this work. Due to the wide range of models dealing with the 
energy sector, the discussion here concentrates on models with an hourly or smaller 
time resolution and a one year time frame (short-term models) to account for the 
fluctuation of RES-E and PEV load.  
 
In general, models including PEVs can be distinguished into those with passive and 
those with active operation dispatch. Passive PEV operation accounts for load shifting 
through scenarios using a load or a generation profile that is not affected by the 
simulation model. In contrast, a model with active PEV operation uses an objective 
function to adopt the charging or discharging operation. In terms of driving behavior, 
the distinction is between static and dynamic. Static driving behavior in this context 
refers to average values taken to characterize a vehicle fleet as a whole, whereas 
dynamic driving behavior refers to studies using real driving data and a time-resolved 
availability of vehicles. 
 
Most basic models discussing PEVs in power systems can be characterized as 
simulation models without objective functions and with static driving behavior. The 
given load curve from a specific power system is matched with the expected PEV load 
and the resulting situation is analyzed in terms of peak load increase  
(Rahman et al., 1993; Hadley et al., 2009). The charging load profile is distinguished by 
scenarios, e.g. start charging after 8 pm or perfect valley filling68 and does not account 
for vehicle-specific driving profiles. Instead, the load profile represents a fleet of 
vehicles based on average values in terms of availability, energy used and connection 
power. A simulation model for California including PEVs and power plant dispatch is 
introduced by (McCarthy et al., 2010). The model is used to account for the marginal 
CO2 emissions of PEVs. The hourly resolved PEV demand is applied using scenarios 
and does not model dynamic demand. More sophisticated models account for detailed 
driving behavior using deterministic profiles tracked by the global positioning system or 
derived from mobility surveys (Parks et al., 2007). Nonetheless, the charging strategy 
remains passive and is based on different scenarios. To account for specific system 
impacts, the PEVs’ load simulation is coupled with unit commitment models for power 
systems (Wang et al., 2011), the total energy system including heat and transportation 
sector (Lund et al., 2008) or distribution grids (Green et al., 2011;  
Clement-Nyns et al., 2010; Markel et al., 2009).  
 
Simulation models including active operation dispatch can be classified as market 
equilibrium, single-firm optimization and simulation models (Ventosa et al., 2005). 
Single-firm optimization seeks an optimal decision (vector) for a market participant in a 
given situation, whereas in market equilibrium and simulation models, different players 
with different objective functions and/or restrictions are modeled. The main application 
for market equilibrium models in the energy sector is the interaction between demand 

                                                 
68 Valley filling describes the increase of demand in off-peak periods or load valleys. “Perfect” in this 
 context refers to a social optimum with respect to minimizing electricity costs for the demand side.  
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and supply players facilitating a clear formulation of equations (Green et al., 1992). 
POLES69 (POLES, 2006) is an example of a partial-equilibrium world model. A 
bottom-up equilibrium model including technical details often faces limitations 
concerning numerical tractability (Ventosa et al., 2005). The only published market 
equilibrium model including PEVs – which was found by the author – discusses 
distributed control (Ma et al., 2010) and introduces an algorithm for overnight valley 
filling of PEV demand (social optimum). The simulation covers one day and uses a 
homogeneous70 population. Similar approaches controlling devices in smart grids or the 
control of wireless devices (Huang, et al., 2003) are also discussed on a theoretical 
basis. The scope of formal equilibrium models is limited to broader applications that do 
not have the technical and behavioral details necessary for this thesis. 
 
Single-firm optimization models optimize an objective function under specific system 
constraints. (Sioshansi et al., 2009) introduces a single-firm optimization model for a 
power system including PEVs. The model solves a unit commitment problem and is 
capable of different objective functions such as the minimization of total system costs 
and emissions (Sioshansi et al., 2010; and Sioshansi et al., 2011). Because of the 
intractability of a year-long optimization horizon, the problem is solved in two 
simulation steps. An example focusing on buildings with distributed generation and 
exogenous, variable electricity tariffs is provided by (Momber et al., 2010). This model 
uses average vehicle availabilities but active operation dispatch to account for the 
minimization of energy costs or emissions. Other single-firm models addressing 
electricity markets include, e.g. (Anderson et al., 2002) and (Baıllo, 2002). In the 
context of liberalized electricity markets, the single-firm objective is not capable of 
player-specific optimization goals. 
 
Simulation models are used if the formal equilibrium framework of the analyzed 
system is too complex to be addressed with the usual market equilibrium models 
(Ventosa et al., 2005) or if the problems do not match a single equilibrium. In terms of 
electricity market models, (Otero-Novas et al., 2000) consider firms with different 
objective functions and different technical constraints. (Day et al., 2001) shows that 
simplified simulation models (considering a symmetric case) with nearly optimal supply 
functions obtain similar results to market equilibrium models. Because of the possibility 
to integrate asymmetric firms and more detailed technical constraints, simulation 
models can establish a more realistic framework. 
 
Agent-based71 modeling is a subarea of simulation models. Agent-based simulation is 
used in two fields relevant for this work, market or power system modeling (referred as 
Agent-based Computational Economics (ACE)) and in the context of distributed and 
indirect control (see Chapter 2.3.3 and the following section). In the context of 
electricity market modeling, bidding strategies and market design are investigated. For 
example (Bower et al., 2000) investigate market design, (Visudhiphan et al., 2001) 
analyze how market actors learn to maximize profits, and (Bunn et al., 2007) determine 
the effects of different power plant portfolios. Besides these theoretical research models, 
applied models are also used. For example, (Conzelmann et al., 2005) introduce an 
agent-based model covering different markets and physical layers representing the grid 
infrastructure. A model focusing on the German electricity market was introduced by 

                                                 
69 Prospective Outlook on Long-term Energy Systems. 
70 All PEVs have the same battery size, grid connection power and state of charge at the beginning of the 
 simulation. 
71 The idea of agent- based system combines game theory, social sciences and software engineering. An 
 Agent is defined as: “.... a computer system that is situated in some environment, and that is capable 
 of autonomous action in this environment in order to meet its design objectives.” (Wooldridge, 2002). 
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(Sensfuß, 2007). This particular model was used to calculate electricity prices and 
analyze the price effects of RES-E on the power system (Sensfuß et al., 2008). The high 
flexibility needed to account for individual behavior requires arguments for the specific 
behavior of agents and is the main drawback of agent-based modeling  
(Ventosa et al., 2005). To the author’s best knowledge, so far there has been no large-
scale, agent-based power system simulation including PEVs.  
 
In addition to this section focusing on models including PEVs, a broader discussion 
including the principles of energy system modeling approaches can be found in 
(Sensfuß, 2007; Wietschel, 2000; Ventosa et al., 2005). For more details on models 
including RES and agent-based electricity market models, see (Connolly et al., 2010) 
and (Weidlich et al., 2008), respectively. 

Distributed or indirect control 

As outlined in Chapter 2.3.3, indirect control seems preferable for involving consumers 
in the power markets. In this section, approaches are discussed that consider automated 
demand response with indirect control. Most approaches integrate both the management 
of automated devices, referred to as mechanism design (Rosenschein et al., 1994), and 
the devices themselves that measure parameters of their environment and react to these 
measurements. All automated devices (including computer systems and mechanical 
systems) are referred to here as “agents”.72 It should be noted that the functionality of a 
basic software agent is equal to a simple controller, a concept which was well known 
long before (Woolridge, 2002) introduced agent-based programming. There is a huge 
selection of publications defining the term “agents” and only a few can be discussed 
here. (Schneider et al., 2011) defines an agent for a residential cooling system that 
receives a price signal, a 24 h rolling average price and the standard deviation of the 
price to generate a minimal cost operation schedule under temperature constraints. 
(Nestle, 2007) defines control algorithms for storage, process shifting and demand 
reduction appliances. PEVs’ agents are defined in (Link et al., 2010) and (Rotering et 
al., 2010). Autonomous PEVs’ frequency and voltage base control is discussed in 
(Peças Lopes et al., 2010). The theory and implementation of multi-agent systems are 
discussed in (McArthur et al., 2007a/b) and (Roche et al., 2010). (Kok et al., 2010) and 
(Akkermans et al., 2004) present a multi-agent coordination concept that is 
implemented by (Roossien, 2009) in a field test using different DR devices. Based on 
simulations, (Ramchurn et al., 2011; Fahrioglu et al., 2000) discuss the design of 
controls and incentives in smart grids. Design examples of indirect control mechanisms 
including PEVs are presented for congestion pricing (Fan, 2011; Wu et al., 2012) and 
managing a distributed grid energy hub (Galus et al., 2008). As far as the author is 
aware, there are no published studies of coupling automated DR using indirect or 
distributed control with a large-scale, agent-based power system simulation.  
 
5.2.3 Modeling grid-connected vehicles 
 
Two principle models are suggested by the model requirements and simulation 
methods: a single-firm optimization and a multi-firm optimization model.73 This thesis 
applies a multi-firm, agent-based approach for the following reasons:  
  

                                                 
72 A simple example of a mechanical (e.g. cuckoo clock) or software agent (e.g. cell phone) is a clock 
 timer that measures time and reacts when a specific time is reached. 
73 Equilibrium models are not capable of the necessary level of detail.   
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 Due to the (still ongoing) liberalization of the electricity system, decision-
making is affected by different players competing on electricity markets. The 
wholesale electricity price as well as prices for regulation reserve are generated 
by this competitive context. As a consequence, operating generation units no 
longer depends on centralized decisions, but rather on the decentralized 
decisions of multiple firms acting in a market (e.g. see  
Ventosa et al., 2005; Sensfuß, 2007; Weidlich et al., 2008). Hence, a multi-firm 
approach is a better fit to the framework conditions.  

 The detailed description of the supply side (e.g. unit commitment) requires the 
implementation of technical and economic constraints, leading to a complex 
optimization problem when solved on an hourly basis for one year. Including 
constraints that consider different driving behavior, vehicle specifications and 
consumer needs further increases complexity. This can result in intractability 
with the currently available computing resources.74 

 In a simplified approach, PEVs can be characterized as an elastic demand. 
However, a detailed analysis shows (see Chapter 4 and Chapter 7.2) that the 
availability of PEVs in the grid and individual constraints with respect to the 
required state of charge, vehicle specification, battery degradation, V2G 
capability and consumer behavior result in a very complex problem. A multi-
agent system is one approach that can account for such complex interactions 
(Wooldridge, 1995/2002; Roche et al., 2010).  

 In practice, it is obviously extremely difficult to control multiple devices with 
individual requirements in a smart grid environment. Centralized control 
requires high volume real-time data exchange, which can be computationally 
intractable (Ma et al., 2010) or at least very difficult to solve. Furthermore, 
directly controlled charging by a utility or third party face resistance on the part 
of consumers. Therefore, distributed or indirect control is better suited to 
controlling large populations of distributed devices which act as independent 
agents.   

 Mixed Integer Linear Programming – mainly used in single optimization models 
to achieve reasonable computing time – cannot solve a non-linear function of 
battery degradation described by the depth of discharge (see Chapter 4.3). As a 
result, the objective function determining the unit commitment cannot include 
the defined input parameters for battery degradation. Hence, solving this 
function increases the complexity or creates the need for a linearization of 
functions describing battery ageing.  

 In terms of programming, an agent-based model allows object-oriented 
structures providing a higher flexibility and reduced susceptibility to errors. 
With regard to further research, it is then easy to implement additional smart 
grid agents such as heat pumps or combined heat and storage devices.  

 
The applied approach combines a large-scale, agent-based power system model with 
indirect control of PEVs. The PEVs are programmed as individual agents controlled by 
a mechanism design framework that pools PEVs and interacts with the other parts of the 
power system model. The implemented agents do not account for learning capabilities. 
A stochastic model is used to determine the individual mobility behavior of each PEV 
agent. This very detailed approach was only feasible because the simulation model 
PowerACE (Sensfuß, 2007) was available in the research group the work is conducted 
in.  

                                                 
74 This problem occurred in the single-firm optimization presented by (Sioshansi et al, 2011). 



SIMULATION MODEL  

 

53

5.3 Basis of the model development   
 
The next section describes the PowerACE simulation model used as the basis for the 
simulation of PEVs in the power system. The contribution of the author in this chapter 
is limited to describing work mainly conducted by Frank Sensfuß.75  
 
5.3.1 The PowerACE simulation model 
 
In the PowerACE model, agent behavior is implemented in terms of the strategic 
bidding of single power plants or power plant pools (see Genoese et al., 2012;  
Sensfuß, 2007). The model uses stepwise marginal cost functions and bid-based 
dispatch to match generation and load on an instantaneous basis. The regular electricity 
demand is inelastic and the clearing prices mainly result from the marginal generation 
costs of different power plants (perfect competition). In total, PowerACE considers 
about 1500 different power plants in Germany. Fluctuating energy generation is 
implemented using the time series introduced in Chapter 3. The dispatch is calculated 
on an hourly basis for an entire year. Imports and exports can be considered 
exogenously or using an extended European version of the model (Pfluger et al., 2012). 
Dispatch of pump storage and other storage technologies is optimized based on a price 
forecast. Grid restrictions can be considered using areas with limited transition capacity. 
PowerACE considers day-ahead electricity as well as regulation reserve markets. In this 
thesis, only the day-ahead market module is used. Table 5-1 gives the nomenclature of 
the section and Figure 5-1 provides an overview of the PowerACE model. Model details 
can be retrieved from (Sensfuß, 2007).  
 

 
Figure 5-1: Principle structure of the PowerACE model  

Source: PowerACE research group Fraunhofer ISI; Note: PowerACE Germany single market model. 
 
 
  

                                                 
75 The PowerACE simulation module was developed in a project sponsored by the "Volkswagen 
 Stiftung" in cooperation with the University of Karlsruhe, the University of Mannheim and the 
 Fraunhofer Institute for Systems and Innovation Research. PowerACE is a simulation model in the 
 object-oriented programming language “Java”. 
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Table 5-1: Nomenclature PowerACE market model 

Parameter   Unit 
D Energy demand (total system load) MWh 
S Energy supply (total generation) MWh 
dt Demand in time step t (average power) MW 
st Supply in time step t (average power) MW 
x Normalized time series  % 

R Number of renewable energy technologies (onshore wind, offshore wind, 
photovoltaics, solar thermal, biomass, hydropower, geothermal) - 

Ki Generation capacity of power plant i MW 
ηi Efficiency of power plant i % 
pbid,i Bid price of power plant i euros/MWh 
zi Start-up costs of power plant i euros/MWh 
vi Number of unscheduled hours of power plant i - 
oi Operation and maintenance costs of power plant i euros/MWh 
pfuel,f Fuel price of fuel f  euros/MWh 
pCO2 CO2 price  euros/ t C02 
ef CO2 emission factor of fuel f t C02/MWh 
mup Mark-up  euros/MWh 
Index     
i Power plant Є of power plant database  - 
f Fuel Є {gas, coal, lignite, oil, waste and nuclear} - 
t Time steps Є {0…hours of the year} - 
r Renewable energy technology Є {0…R} - 

 
 

5.3.2 Supply and demand time series 
 
Normalized time series are used to characterize non-dispatchable demand (inelastic 
system load) and supply (see Chapter 3). The normalized, hourly resolved time series x 
for a RES technology r out of all renewable energy technologies R or the system load 
are multiplied by the assumed yearly energy generation S or demand D in the simulation 
scenario to calculate the supply s and demand d in the time step t.   
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Geothermal generation is evenly distributed over all hours of the year as given by 
Equation 5-2. 
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For hydropower run-of-river, the same function is used with a monthly adaptation. This 
approximation does not consider technological improvements or a changing distribution 
of renewable generation. The time series represents the characteristics of a specific load 
or weather year.  
 
Biomass is a dispatchable renewable energy source. However, due to the current RES-E 
legislation in Germany, biomass does not follow the supply and demand situation but 
feeds in nominal power 24 hours seven days a week. It is likely that in a power system 
with limited controllable generation available, biomass dispatch will have to account for 
the market situation. Therefore, in the scenario simulations, biomass generates power in 
time periods with high residual load. In this case, the total generation and the installed 
capacity is given as an input parameter and power is dispatched in the hours of the year 
with the highest residual load.  
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5.3.3 Supply bid 
 
The necessary information of a power plant i is taken from a database covering the main 
(capacity > 10 MW) power plants available in Germany (Platts, 2010). For scenario 
simulations, power plants reaching the expected end of their technical lifetime are 
excluded from the data set. Newly installed power plants are introduced as exogenous 
input parameters.76 A bid point of a single power plant consists of the bid price pbid and 
the capacity Ki of the bid. The supply curve or merit-order represents all power plant 
bids for a specific hour. The supply curve changes daily because of the probabilistic 
availability of power plants (see Sensfuß, 2007, pp. 75-76). The bid price pbid is 
calculated according to marginal generation costs including fuel, expenditures for 
emission trading allowances, start-up, operation and maintenance costs. 
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In equation 5-3 η is the efficiency, pfuel is the price for fuel f, pCO2 is the price for CO2, ef 
the CO2 emission factor and o the operation and maintenance costs. Equation 5-3, 
including the start-up costs z divided by the number of unscheduled hours v, is added by 
the agent if peak load power plants are expected to be dispatched and deducted if base 
load power plants try to avoid an expected start-up operation (see  
Sensfuß, 2007, pp. 74-77). In this thesis, base load power plants (on the left-hand side 
of the merit-order) can place bids below their marginal costs including avoided start-up 
costs, and peak power plants (on the right-hand side of the merit-order) can place bids 
including start-up costs. The price mark-up mup is used to cover fixed costs, and applied 
only in hours of demand scarcity. Mark-up prices (Chapter 7.4.2) are used when 
considering V2G (Chapter 7.4 and 7.7) and consumer revenues (Chapter 7.6) and are 
assumed to be zero in all other simulation runs. Fluctuating RES-E is prioritized and 
their bids are placed with a price of zero. 
 
5.3.4 Market clearing  
 
Market clearing uses a uniform price auction.77 All bid points of a time step t are sorted 
according to the bid price. Starting with the lowest pbid, capacity is subtracted from 
demand until the intersection with zero is reached. The market clearing price is 
determined by the last bid necessary to meet demand. The price is valid for the total 
quantity sold in the hour t. The price elasticity of the total system load is assumed to be 
zero. For details on market clearing see (Sensfuß, 2007, pp. 78-80).  
 
5.3.5 Merit-order effect  
 
In a perfectly competitive market assuming bids based on variable costs, fluctuating 
RES-E affect the resulting clearing prices because of the merit-order effect  
(Sensfuß et al., 2008; Green et al., 2010; Sáenz de Miera et al., 2008). High RES 
generation shares lead to a high volatility of the residual load and market clearing 
prices. The merit-order effect describes the phenomenon that RES generation using a 
bid price of zero replaces bids of thermal power plants with higher variable costs. The 
reduction of the clearing price depends on the residual load and the merit-order 

                                                 
76 The model can be used in combination with long-term models of power plant parks such as PERSEUS 
 (Gerbracht et al., 2010). 
77 Electricity is a homogenous commodity. 
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sequence affected by the residual load reduction. For the 2008 German electricity 
market, Figure 5-2 illustrates the principle of the merit-order effect.  

 

Figure 5-2: Principle of the merit-order effect  

Note: Merit-order of the power plants in Germany 2008 with and without the total installed capacity of wind  
(23,883 MW) and photovoltaics (6,019 MW); RES-E: Electricity from renewable energy sources. 

 
In terms of the German electricity market with an installed capacity of 54 GW78 from 
fluctuating RES equaling 67.6 percent the of annual peak load79 by the end of 2011, the 
price reducing effect of RES-E can be observed by comparing the residual load and the 
EEX spot market prices (see Appendix A2; Nicolosi et al., 2009). Even negative prices 
are becoming increasingly common in the context of RES generation, oligopoly markets 
and the current subsidy system (Genoese et al., 2010). With regard to the future 
development of increased RES capacity in the power system, providing low capacity 
credit price bids including total costs (Chapter 7.4.2) and capacity markets are being 
debated. In the simulation approach used here, the effect of RES-E on the clearing price 
plays an important role in controlling the charging and discharging of PEVs to better 
integrate fluctuating generation.  
 
  

                                                 
78 Wind power: 27.2 GW installed end of 2010 (BMU, 2011) plus about 2 GW installed in 2011;  
 Photovoltaics: 17.3 GW installed end of 2010 (BMU, 2011) plus about 7.5 GW installed in 2011 
79 The annual peak load in Germany is 2008 76.8 GW; 2009 73.0; 2010 79.9 GW. 
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5.4 Model description 
 
The following section describes the simulation model developed to analyze the 
contribution of PEVs to integrating RES-E. A principal overview of the model’s 
structure is provided, then the multi-agent control approach is presented and finally the 
agent functions are defined. Chapter 5.4 is partly published in (Dallinger et al., 2012d). 
 
5.4.1 Layers of the simulation model  
 
The PowerACE model extension is constructed at three different levels (see Figure 5.3). 
At the system level, the demand-side management agents interact with the PowerACE 
market. The DSM-agents place supply and demand bids on the PowerACE market and 
represent the related demand of the assigned PEVs. 
 

 
Figure 5-3: Overview of the PowerACE extension to model grid-connected vehicles 

Note: Abbreviations see Table 4-2, Table 4-6 and Table 5-2. 
 
The distribution grid level is represented by the distribution grid (DG) agents used to 
control the device agents. The DG-agents also account for regionalization and grid 
restrictions. A device agent represents a single PEV with vehicle and storage 
specification as well as individual driving behavior. A DSM-agent bundles one or more 
DG-agents and the DG-agent bundles one or more device agents. The principal structure 
of the model is shown in Figure 5-3. Table 5-2 gives the nomenclature used in this 
chapter. 
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Table 5-2: Nomenclature PowerACE DSM-Agent 

Parameter   Unit 
D Energy demand (total system load) MWh 
S Energy supply (total generation) MWh 
dt Demand in time step t (average power) MW 
st Supply in time step t (average power) MW 

wt Operation (average power) wt=st+dt MW 

wW Normalized transformer utilization  % 
A  Total number of demand-side management agents (DSM-Agent) - 

Ga Total number of distribution grid agents (DG-Agents) from DSM-Agent a - 

Ng Total number of devices agents from DG-Agents g - 

Wg Nominal transformer power DG-Agent g MW 
R Number of renewable energy technologies  - 
RS Residual load 
I Dispatchable power plants - 
T Time period 1/4h 

soct State of charge for time step t % 
η Efficiency % 

pt Price signal for time step t ct/kWh 

Δpt Delta of price signal for time step t ct/kWh 
ag,cg Fixed parameter of grid fee function ct/kWh 

cdis Discharge costs ct/kWh 

Cbat  Cost for the battery euros/kWh 

Ebat  Usable energy of the battery kWh 
P Grid connection power kW 
Δt Grid management time  h 
t Time step  1/4h 
Z Vector space (Δtm, Ebat) - 
Index     
a Demand-side management agent Є {0…A} - 

g Distribution grid agent Є {0…Ga} - 

n Device agent Є {0…Ng} - 
t Time steps Є {0…hours of the year} - 
r Renewable energy technology Є {0… R} - 
i Power plant Є of power plant database  - 

m Trip of agent n Є {0… Mn} - 

k Range class Є { 0…20} - 

l Location class Є { 0…2} - 
season Season Є {winter, spring, summer, autumn} - 
day Day Є {Sun, Sat, Mon, Fri, WD} - 
WD Weekday Є {Tue, Wed, Thur} - 

 
5.4.2 Multi-agent control approach 
 
Without central optimization, the question arises how to dispatch the grid-connected 
vehicles. In liberalized electricity systems – which are the guideline for agent-based 
simulations of the electricity market – the market or clearing prices determine the 
dispatch of power plants. In a single-firm optimization, vehicles would be dispatched 
according to an objective function with specific constraints from a central point 
collecting all the information. In practice, this means the vehicles would be controlled 
directly by a utility or service provider (see Chapter 2.3.3). 
 
Instead of direct control, distributed optimization of a multi-agent system is used here 
(see Chapter 5.2). The starting point is a single vehicle agent with the objective to 
reduce charging costs or make V2G profits. The goal of this single vehicle does not 
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account for integrating RES-E or the best strategy to manage a vehicle pool. Therefore, 
a framework or mechanism design80 is necessary. Mechanism design is discussed in 
relation to Game Theory and applied to different, very individual cases. The presented 
control mechanism is designed to control the PEVs in the simulation software.  
In the model, the DSM-agent and DG-agent are used to control the dispatch of device 
agents using two feedback loops (see Figure5-4). The objective of all DSM-agents is to 
minimize the overall electricity costs for PEVs. The objective of the DG-agent is to 
avoid simultaneous activities of vehicle agents in the distribution grid.  
For the DSM-agents, it is assumed that all agents interact and place bids in the 
PowerACE market that accounts for DSM-agents’ optimality. Therefore, an iteration 
over all DSM-agents is performed (i.e. first feedback loop). The number of iteration 
steps is defined by the number of DSM-agents (discretization). In the second iteration, a 
DSM-agent a determines the operation wa,t of all device agents n assigned to the DSM-
agent a.  
 
As a control signal, the DSM-agent generates a real time price signal pa,t (price forecast) 
knowing the operation wA,t of all the DSM-agent a who have already acted. To 
determine the operation of PEVs controlled by the DSM-agent, the DSM-agent a gives 
the price signal to the allocated DG-agents g. On the distribution grid level, a second 
iteration or feedback loop is conducted over all devices Ng (see Figure 5-4: feedback 
loop device-agents N). For every device, the operation wn,t is determined and known on 
the DG-level. The operation wn,t causes a change in the price signal which is considered 
by device-agent n+1. The change in the price signal Δpg,t accounts for the change in 
transformer utilization as variable grid fee.  
 

 
Figure 5-4: Multi-agent control mechanism 

Note: Abbreviations see Table 5-2. 
 
By adapting the price signal in the iteration process, an approximately optimal dispatch 
on system level is reached (e.g. see Weise, 2009) and distribution grid constraints are 
considered. The contribution to the grid integration of RES-E is considered using the 

                                                 
80 Mechanism design is used to ensure that the individual objective functions of agents result in solving 
 a given problem, the social optimal dispatch of PEVs. In this paper, mechanism design is realized by 
 DSM-agents (accounting for demand valley filling) and DG-agents (to limit transformer utilization).  



  SIMULATION MODEL  60 

price reducing effect of RES-E on the control signal, as the price forecast accounts for 
the merit-order effect. The control mechanism is a theoretical construct for the 
simulation. For feasible market implementations using PEVs’ aggregator agents, see 
(Bessa et al., 2011; Gómez et al., 2011). In practice, the developed mechanism is not 
applicable due to the different treatments of agents in iterations. The two-stage process 
concept can be applied to smart grid applications in general and reduces the 
communication effort. The developed demand agent is used in a field test with  
20 Volkswagen midsize sedan PHEVs (“TwinDrive”). For details see Appendix B. The 
introduced approach allows to combine a software agent embedded in a real vehicle 
with a power system model, facilitating the investigation of energy system scenarios.  
 
5.4.3 Demand-side management agent 
 
An agent is defined as a perception and action subsystem (Wooldridge, 2002, p.34). 
This is a similar function as a feedback loop in control theory. The perception function 
is used to observe the environment. For the DSM-agent a the perception includes the 
calculation of the residual load dRS,t and an estimation of the operation wA,t of the DSM 
agents A. 
 
It is assumed that the demand of the DSM-agents 0 to (a-1) is known when pool a 
performs the price forecast. To account for the demand of the pool agents (a+1) to A, 
wA,t is calculated using Equation 5-4. 
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The residual load dRS,t in GW is calculated as: 
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With dsystem,t as the total system load and sr,t as the supply time series of all renewable 
technologies R.  
 
The price forecast or control signal pa,t is calculated as a function of the residual load. In 
the heuristic approach, experiences with the clearing results of the PowerACE market 
are used for a polynomial function fitting between residual load and clearing price. The 
used function as well as the bit points (price / residual load) and the merit-order are 
given in Figure 5-5.   
The price pa,t in euros per MWh with dRS,t in GWh is calculated using Equation 5-6.81  

 
3 2

, , , , ,( ) 0.0008 0.0922 5.0624 27.415a t RS t RS t RS t RS tp d d d d        (5-6) 

for dRS,t values greater than zero. For dRS,t equalling zero or below, a linear correlation is 
used.  

 , , ,( )  27.415a t RS t RS tp d d 
 (5-7) 

This is necessary to detect the time intervals with the lowest residual load. A price 
forecast based on the marginal costs does not allow negative prices. All time steps with 
negative residual load would result in a price of zero making it impossible to estimate 
the best charging time period.  

                                                 
81 For pa,t in ct/kWh divide by 10.  
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Figure 5-5: Merit-order in the GER 2030 scenario and price forecast function of the pool agent 
Simulated using the PowerACE model; fuel CO2 prices according to [19] Scenario A “deutlich”; installed convention 
generation capacities based on own estimations. Installed capacity: oil 0.7 GW; gas turbines 16.4 GW; combined gas 
and steam 10.2 (η = 45-59) and 25.6 GW (η = 60-65); coal 8.7 GW, lignite 9.2 GW; waste 0.9 GW. 

 
The price forecast is forwarded to the group and device level, where the operation of the 
devices is determined for one day as described in Chapter 5.4.5. Perfect foresight of the 
device operation is assumed for the bid placed by the DSM-agents.  
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The assumptions that the generation of intermittent RES-E and the demand are known is 
obviously not realistic for a real electricity market. Deterministic data are used here to 
reduce complexity and account for a theoretically optimal dispatch. Nonetheless the 
agent-based approach enables to include stochastic values in future work.  
 
5.4.4 Distribution grid agent 
 
The action carried out by the DG-agent is to modify the control signal pa,t such that the 
transformer utilization is not violated at distribution grid level. The individual price 
signal pn,t for a device-agent is calculated by Equation 5-9. 

 , , , , ( )n t g t a t g tp p p p n     (5-9)

 
The variable grid fee Δpg,t is specific to each device n and depends on the expected 
situation in the local network. To calculate this price component, two concepts have 
been developed which both assume that supply and demand in a local network are 
perfectly known in advance.  
 
The first concept includes a simulation of a detailed distribution grid. The approach 
introduced in (Rudion et al., 2006; Rost et al., 2006; Venkatesh, 2003) with algorithms 
to calculate the voltage for each bus of the network is implemented in the PowerACE 
model. The voltage variation due to PEVs’ demand and V2G operation is used as an 
indicator to generate a variable price component. This allows a very detailed analysis 
considering a specific position (indicated by a network bus) of the device in the network 
structure. The approach requires data on the distribution grid structure as well as on the 
local demand and supply situation. The second concept is a simplification of the first. It 
is assumed that a specific transformer capacity is available at the distribution grid level. 
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In this case the value of the grid fee is correlated with the utilization. For the standard 
simulation, the second concept is used because this requires much lower computing 
resources and data. The results at the level of the German power system – which is the 
main focus of this research – are not affected by the concept used.  
 
The perception functionality of the DG-agents includes calculation of the transformer 
utilization with residential demand and the operation of device agents. The normalized 
transformer utilization wW without load and generation from PEVs is calculated 
according to Equation 5-10. 
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dg,t(season)(day) is an exogenously given load profile of a household (BTU Cottbus, 
2002) distinguished for different seasons and days (see Appendix A4). To calculate the 
individual price for a device n, Δpg,t is added to the pool price pa,t. The quadratic relation  
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depending on transformer utilization determines the grid fee (see Figure 5-6).  
 

 
Figure 5-6: Function between transformer utilization and variable grid fee 

Note: PEVs: Plug-in elevtric vehicles; Abbreviations see Table 5-2. 
 
The constant parameter cg is assumed to be 0.5 ct/ kWh and ag is calculated by setting 
the sum of the variable grid fee to be equal to a constant grid fee of 1.38 ct/ kWh.82 
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For the next device, it is assumed that the operation of the devices 0 to (n-1) within the 
same group is known. The transformer utilization n >1 is calculated by Equation 5-13. 
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The price minimum of pn,t changes if Δpg,t is higher than the delta of pa,t between pa,min 
and the second cheapest price in the time series pa,t. This mechanism ensures an equal 
distribution of the PEVs’ demand in low price periods and accounts for the transformer 
utilization in a distribution network dominated by residential electricity demand (see 
Chapter 5.5.1). 
 
  

                                                 
82 This equals the share of costs for the RES and combined heat and power feed-in tariff in 2009. 
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5.4.5 Device agent 
 
The device agent represents one vehicle with an individual driving behavior which  
performs a price-based optimization. Perception functions are detecting trips, real time 
prices and battery discharging costs. Actions are creating an optimized planned 
schedule wplan,t (see 5.4.6) and perform the charging and discharging operation wn,t. The 
devices in a group are called successively to simulate the quarter-hourly operation for  
t = 0-95 (see Figure 5-7). The simulation cycles through all the time steps for each 
device. The mobility behavior based on deterministic data or stochastic simulation is 
available for each device in advance. If a trip occurs (t=tm), the soc83 is reduced and the 
vehicle is not available for the duration tdrive,m. In terms of DSM and V2G, the 
optimization is started after a trip. The resulting charging schedule is the basis for the 
charging strategies DSM (wn,t=dn,t) and V2G (wn,t=dn,t+sn,t). Besides “smart” charging, 
“dumb” charging is also permitted after the last trip or instantly after the trip. After the 
loop over a one day time period, the operation wn,t and, in the case of smart charging 
additionally the planned operation wplan,t, is communicated to the DG-level. 
 

 
 

Figure 5-7: Overview of the device agent 

Note: Abbreviations see Table 4-6 and Table 5-2. 
 
5.4.6 Graph search optimization  
 
To find the optimal charging dn,t and discharging sn,t schedule of a PEV within the grid 
management time Δtm,84 the shortest path algorithm approach of (Dijkstras, 1959) is 
used. Compared to a standard solver, this method allows a significant reduction in 
simulation time and high flexibility to integrate different battery degradation costs  
(Link et al., 2010 and Link, 2011). The implementation of the algorithm is explained 
below. 
                                                 
83 Here, the state of charge (soc) describes the usable battery capacity. The depth of discharge (DoD) is 
 used to describe the total battery capacity. Hence, if the total battery capacity equals the usable battery  
  capacity DoD equals the soc.  
84  Δtm as calculated for the optimization does not include the charging time; see Equation 4-7. 
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Define graph: For the specific problem, a graph Z is defined. Z (Δtm, Ebat) consists of a 
set of finite vertices, in this case Δtm with time steps t, and a set of finite edges given by 
the usable energy of the battery. Δtm is quarter-hourly resolved. The maximal 
optimization time period is two days or 192 time steps t, respectively. The state of 
charge is resolved in quarter kWh as an element of Ebat.  
Weight edges: For all points in the graph Z (Δtm, Ebat), the path to reach these points is 
assigned to the cost function:     

 10 : 0t tif soc c c      (5-14) (a) 

 , -10 : t n t n tif soc c p d t c        (b) 

 , -10 : ( )t n t n dis tif soc c p s t c soc c        
 

(c) 

 
The path with non-negative minimum costs to reach a point in Z (Δtm, Ebat) is 
memorized.  
 
Find shortest paths: After all the minimized costs for the graph have been calculated, 
the path or charging and discharging schedule with the lowest costs to reach a certain 
state of charge can be selected from the memorized values.  
The optimization algorithm is called after each trip. Starting values are the actual socn,t 
after the trip, the socn,Δt to achieve and the time Δtm to achieve the soc. For details on 
graph theory and shortest-path algorithms, see (Gibbons, 1985).  
 
5.4.7 Stochastic simulation of mobility behavior 
 
Mobility behavior is modeled using the probabilities introduced in Chapter 4.2.3 and 
given in the Appendix A3. The flow diagram in Figure 5-8 shows the stochastic process 
to generate trips. The driving behavior simulation starts before the energy-related 
simulation and the next trip is already known when returning from the current trip (i.e. 
perfect foresight).  
 
At the beginning of the simulation process for a single device n a first random value is 
used to determine if the vehicle starts a trip on the specific day (Probtravel) (step 2 in 
Figure 5-8). If this is not the case, the simulation continues with the next vehicle. If the 
vehicle starts a trip m, the probability to start a trip (Prostart * avtrip) over all time steps is 
verified (step 4 in Figure 5-8). The value of rendomt (see Figure 5-8) is renewed after 
each time step t. For the start of a trip, probabilities for the range (Probrange) and location 
(Probloc) are called and assigned to the trip (steps 5 and 6 in Figure 5-8). To distinguish 
the distance km to be driven within the fix range classification k, a random value is 
subtracted by k. The duration is calculated according to Equation 4-5 in Chapter 4.2.3 
and added to the time steps of the counting variable (step 7 in Figure 5-8) of the loop 
over all time steps. If no start time is assigned within T, the number of the trips is 1 and 
the start probability is called until a start time is determined.  
 



SIMULATION MODEL  

 

65

 
Figure 5-8: Stochastic simulation process of mobility behavior for one day 

Note: Abbreviations see Table 4-2; Random: Random number generated for time step t. 
 
 
5.5 Evaluation of multi-agent control mechanism 
 
To explain how the load management mechanism of distribution grid and system level 
affect the simulation, two evaluation cases are conducted. In both cases one day of 
simulation is observed. It is assumed that vehicles do not drive and that the battery state 
of charge for all vehicles is zero at the beginning of the simulation. The German system 
load of a winter’s day is taken as the basis. Power and vehicle penetration correspond to 
the scenario GER defined in Chapter 6. The control mechanism is observed at the 
distribution grid level and then at the system level separately. Finally, the combined 
two-level control is discussed.  
 
5.5.1 Distribution grid level 
 
To evaluate the DG-agent, the prices of DSM-agents pa,t are set to zero. Only the 
variable grid fee pg,t is used to control the devices. The transformer utilization with and 
without the demand of the device-agents is given in Figure 5-9. For the assumptions in 
Chapter 6.4, the increment of the increase in transformer utilization (see Chapter 5.4.4) 
per device agent is between 0.24 and 0.48 percent points with 4 kW and 8 kW grid 
connection power, respectively. With 401 vehicles assigned to a DG-agent – accounting 
for 401 iterations – the utilization is balanced at about 16 %. Hence, without any 
external influence, the DG-agent accounts for a distribution close to the optimum (see 
Figure 5-9).  
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Figure 5-9: Evaluation of the DG-agent  

Note: PEVs: Plug-in electric vehicles.  

 
5.5.2 System level 
 
For the evaluation at system level, only the price signals of the DSM-agents account for 
the operation of the devices. Three cases are distinguished to show the effect of an 
increasing number of iterations and control signals. In the first case, one price is used to 
control all devices. In the second case, two different price signals are used, whereas 30 
prices are applied in the third case. The results of the simulation are given in  
Figure 5-10. 
 

 
Figure 5-10: Evaluation of DSM-agent control 

Note: DSM: Demand-side management. 

 
As expected, using only one price signal to control all devices results in a strong 
simultaneous reaction. Since no mobility behavior is taken into account and the storage 
is assumed to be empty at the beginning of the simulation, every device-agent has the 
same degree of operation freedom. Only the differences in total storage volume and grid 
connection power result in slightly different charging periods. Using two prices reduces 
the simultaneous peak but still does not allow the overnight load valley to be filled. 
With 30 iterations and control signals, a nearly optimal valley filling is reached. The 
mechanism provides similar results to a single-firm optimization or the algorithm 
introduced by (Ma et al., 2010) taking a Nash equilibrium into account. For all DSM-
agents, the reaction to different prices is sufficient for load valley filling. The load of a 
single DSM-agent can still be simultaneous and therefore result in peaks in the 
distribution grid.  
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5.5.3 Two-level control  
 
The two control mechanisms on the system level for all DSM-agents and on distribution 
grid level for DG-agents accomplish the goals of load valley filling – which equals low 
charging costs (social optimum for all PEVs) – and limiting the maximal power in the 
distribution grid, respectively. The goals of both agents are equal in a typical load 
situation with a load valley during the night and an increased load during the day. 
Assuming a strong fluctuation of the residual load can also result in contrary aims, for 
instance, if a high solar peak on the system level results in incentives for the DSM-agent 
to charge during the day. On DG level (in a case without any solar power installed), this 
incentive increases the transformer utilization in a time period when the utilization is 
expected to be high. In this case the variable grid fee would work against the price 
signal of the DSM-agent and restrict the transformer utilization.  
 
Including RES generation and using the combined load shifting mechanism of DSM-
agent and DG-agent results in the load shifting given in Figure 5-11. The charging load 
inversely follows the residual load and therefore contributes to integrate fluctuating 
RES-E. The energy available depends on the driving behavior and is restricted by the 
grid connection power as well as the availability of vehicles. The mechanism considers 
the next trip using only the positive grid management time. If the time period between 
one trip and the next does not allow for load shifting (negative grid management time), 
charging starts instantly.  
 

 
Figure 5-11: Load of plug-in electric vehicles charging applying demand-side management  

Note: DSM: Demand-side management; PEVs: Plug-in electric vehicles. 
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5.6 Summary  
 
Chapter 5 introduced a simulation approach for PEVs in a power system. The approach 
allows software agents to be included – in real life applications or smart grid field trials 
using price-based control – in a power system model. This is able to consider a much 
greater level of detail and more individual restrictions than common single-firm 
optimization models. Furthermore, the classical structure of smart grids as a multi-agent 
system is taken into account by the model, making a more realistic description of future 
power systems possible. The following issues were addressed: 

 The context of the research problem was outlined and related research fields 
discussed.  

 The PowerACE model serves as the simulation environment for this research. 
Main PowerACE functionalities and the equation framework were provided. 

 The detailed approach was formulated and explained. This represents the main 
scientific value of this thesis. This includes the description of the simulation 
agents, the optimization algorithm applied and the stochastic simulation of 
mobility behavior.  

 Two case studies were provided to evaluate and test the functionality of the 
developed simulation model.  

 
Critical remarks: In order to consider a dispatch close to the optimum – in this first 
version of the model – agent behavior is reduced to clear technical requirements without 
strategic behavior or gaming and learning functionalities. Perfect foresight of the trips 
and the exclusion of consumer price sensitivity result in idealized dispatch behavior 
which best matches fluctuating generation. Power ACE can be applied to model 
different regions and transmission limitations between these regions but these are not 
considered in this thesis.  
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6 Scenario definition 
 
 
6.1 Introduction 
 
The scenarios include certain assumptions about the future. These are necessary because 
the framework conditions with regard to the market penetration of PEVs or the installed 
capacity of RES are not sufficient to answer the research question. In order to analyze 
the effect of fluctuating renewable energy generation from wind power and 
photovoltaics, as well as the contribution of PEVs towards balancing these RES-E, the 
author had to construct a scenario for 2030. In the following scenario, assumptions for 
Germany are presented which distinguish between the electricity sector and the vehicle 
sector. In addition, a sub-scenario for California is constructed to take the different 
fluctuation of RES-E there into account. This chapter is divided into sub-chapters which 
describe the assumptions about the electricity sector, the vehicle sector, and the 
distributed grid.   
 
 
6.2 Electricity sector  
 
In order to investigate the contribution of PEVs to integrating RES-E into the grid, 
scenarios are defined based on surveys available in the literature. These scenarios are 
used to create an environment with very high RES penetration (necessary to reach the 
CO2 reduction goal of the German government). The main scenario used “GER 2030” 
refers to the “Lead Scenario 2010”, which was part of a survey investigating high RES 
penetration in Germany carried out on behalf of the German Federal Ministry for the 
Environment, Nature Conservation and Nuclear Safety (Nitsch et al., 2010). Other 
surveys of the German energy sector (dena-Netzstudie II 2010 in DENA, 2010) do not 
account for the time period until 2030 or provide a similar penetration scenario of RES 
(Energieszenarien 2011 in Schlesinger et al., 2011).85 The “Lead Scenario 2010” was 
selected because this study is best suited to investigating the effects of fluctuating 
generation. However, in order to enable scenario-independent general findings and 
conclusions to be drawn, a detailed analysis of the input parameters is made so that the 
effects of the scenario estimations are transparent. A sub-scenario for California “CA 
2030” is used based on data from a 2020 CAISO study (CAISO, 2011) in order to 
consider the different load curve, RES technology composition and fluctuation 
characteristics in CA (see Chapter 3). The CA 2030 scenario is scaled to the same 
energy generation share of fluctuating RES-E as the GER 2030 scenario to enable 
comparability (see Table 6-1).  
 

  

  

                                                 
85 To some extent these studies are influenced by stakeholders. The “Lead Scenario 2010” is supported 
 by policymakers and companies interested in high RES penetration and strong reduction of CO2 
 emissions. 
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Table 6-1: Intermittent generation and electricity demand for GER 2030 and CA 2030 

Scenario   
Wind 

onshore 
Wind 

offshore 
Photo-
voltaics

Solar 
thermal 

Share of fluctuating 
RES-E (peak load; 

generation)  

Total electricity 
demand (peak 

load; generation)  
Unit 

GER* 
Capacity  37.8 25 63 - 162.0% 77.8 GW 

Generation 87 95 57 - 47.6% 502.1** TWh 

CA***  
Capacity 28.2 - 19.9 13.3 96.7% 63.5 GW 

Generation 71.4 - 43.1 30.2 47.6% 303.8 TWh 

 
Source: * Lead Scenario 2010 (Nitsch et al., 2010); ** Energiereport IV (Schulz et al., 2005); *** Proportion of 
technologies and fluctuation from (CAISO, 2011); The generation share of intermittent RES is scaled to 47.6 % and 
the same value of the Lead Scenario, 2010, respectively.  

 
The hourly characteristics of RES generation and the load curve were already discussed 
in Chapter 3. 2008 is used as the reference year for the GER 2030 time series because 
the wind availability in this year is close to the 10 year average. Electricity imports and 
exports and storage technologies such as hydro pumped storage are not taken into 
account. 
 
To indicate the dispatchable supply side, the merit-order of power plants is generated 
using primary energy and CO2 prices from (Nitsch et al., 2010) as shown in  
Table 6-2. Assumptions about the power plant park are given in Chapter 7.4.1. 
 

Table 6-2: Fuel and CO2 prices for the GER 2030 scenario 

  Oil Gas Coal Lignite CO2 

Unit euros/MWhtherm euros/t 

Price 58.68 49.68 23.4 3.8 52 
 
Source: Lead Scenario 2010 (Nitsch et al., 2010); 

 
 
6.3 Vehicle sector 
 
The penetration scenario for PEVs follows (METI, 2006), a study investigating a 100 % 
penetration of alternative vehicles (HEVs, PHEVs, BEVs and fuel cell vehicles) for 
Japan in 2050. The penetration of PHEVs and BEVs was adapted to the German market 
by specifying two electric vehicle concepts: PHEVs with 4.5 kWh or 12 kWh and BEVs 
with 15 kWh or 30 kWh usable battery storage (see Table 6-3 and Chapter 2). The 
assumptions with regard to the energy use of PEVs imply a reduction in weight as well 
as in air and rolling resistance compared to today’s vehicles (Moawad et al., 2009; 
Gonder et al., 2007; Santini et al., 2002).86 The values in Table 6-3 include the 
efficiency. For V2G, an efficiency of 94 % is assumed. The battery charging power is 
assumed to be constant over time.87 Total PHEV penetration in 2030 is 12 million or  
24 % of the total passenger vehicle fleet, with a PEV share of over 80 %. This scenario 
is classified as optimistic (for further estimations, see Hadley et al., 2009; McCarthy et 
al., 2010; Becker, 2009; IEA, 2010). The political goal in Germany is to have at least  
1 million PEVs in 2020 and 6 million PEVs in 2030 (BMBF, 2009). For the CA 2030 

                                                 
86  Values in the range of: weight 800 - 1400 kg, drag coefficient 0.2 - 0.26 and rolling resistance  
  0.0045 - 0.006.  
87 For real batteries charging power is not linear see (Appendix A1). 
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scenario (California Department of Transportation , 2005),88 the PEV’s share of the total 
fleet equals the GER scenario and results in a total PEV penetration of 6.8 million.89  

 

Table 6-3: Passenger vehicle types 

Device  
Type 
(km)*  

Usable storage 
[kWh]  

Grid 
connection 

power [kW] 

Equivalent energy use 
[kWhel/km] ** 

CA 2030  
(6.7 million 

PEVs) 

GER 2030   
(12 million 

PEVs) 
1 PHEV (25)  4.5 4 0.18 31.6% 31.6% 
2 PHEV (57)  12 4 0.21 50.4% 50.4% 
3 BEV (100)  15 8 0.15 13.9% 13.9% 
4 BEV (167)  30 8 0.18 4.0% 4.0% 

 
Comments: * In brackets: hypothetical driving range in km; ** at grid connection including: charging η = 98.5 %, 
lithium-based battery: η = 97 % and electric motor η = 95 % 
 
The allocation of the different vehicle types is given in Table 6-3. In total, 12 thousand 
PEVs are modeled for GER 2030, representing 12 million PEVs. Thus, the operation of 
one vehicle is scaled-up by a factor of 1,000. 
 
Table 6-4 summarizes the power and storage capacity of the resulting vehicle fleet for 
the two scenarios. A fleet of PEVs provides high power with a relatively low usable 
amount of battery storage. The power/energy ratio of the total fleet for CA 2030 and 
GER 2030 is 0.44. By comparison, German pumped storage plants provide 7.76 GW 
with a rated volume of 224.31 GWh (ratio: 0.035). 
 

Table 6-4: Resulting power and energy values of the vehicle fleet scenarios 

 CA 2030 GER 2030 

Type  
Vehicles 

[thousand] 
Connection 
power [GW] 

Storage capacity 
[GWh] 

Vehicles 
[thousand] 

Connection 
power [GW] 

Storage capacity 
[GWh] 

PHEV (25)               2,150  8.60 9.68              3,885 15.54 17.48
PHEV (57)               3,430  13.72 41.16              6,585 26.34 79.02
BEV (100)  945 7.56 14.18              1,230 9.84 18.45
BEV (167)  275 2.20 8.25 300 2.40 9.00

Sum 6,800 32.08 73.26 12,000 54.12 123.95

 
In this thesis, it is assumed that the necessary infrastructure is always available. The 
sensitivity of this assumption is analyzed in Chapter 7.7.5. PEVs are plugged-in after 
each trip. The battery degradation parameters used are summarized in Table 6-5. For 
V2G, the two scenarios, the energy processed and the depth of discharge are 
distinguished. Both scenarios have optimistic assumptions on battery ageing and cost 
reduction.  
  

                                                 
88  Total passenger vehicles 28,320,000.  
89  This assumption is similar to (Hadley et al., 2009) who suppose a penetration of 6.63 million PEVs. 
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Table 6-5: Battery degradation parameter 

  Energy processed (Ah) Depth of discharge (DoD) 

Type  a b Cbat [euros/kWh] a b Cbat [euros/kWh] 

PHEV (25)  7000 -1 281 4000 -1.632 281 

PHEV (57)  7000 -1 247 4000 -1.632 247 

BEV (100)  7000 -1 247 4000 -1.632 247 

BEV (167)  7000 -1 233 4000 -1.632 233 

 
 
6.4 Distribution grid  
 
A standard load profile of the residential sector is used to account for the distribution 
grid (see Appendix A4). The profile represents 100 households and is normalized 
assuming a 400 kVA transformer. This results in a relatively low utilized transformer 
with a minimum of 4.8 % and a maximum of 27.8 %. The vehicle demand is added 
depending on the vehicles assigned to the DG-agent and the transformer capacity per 
device-agent. For the standard scenario, with 401 vehicles assigned to a DG-agent and 
4.52 kVA transformer capacity per vehicle, the normalized demand per vehicle (4 kW) 
is added by  

 

, , ,, 4
.

4.52 401
g t g t g tn t

g g a g g

w d dw kW

W W W N W kW
   

 
 (6-1) 

Hence, the demand of one vehicle with a 4 kW grid connection accounts for a 
utilization increase of 0.24 percent points and all vehicles account for an increase of  
100 %. The parameters ag and cg to calculate the variable grid fee are assumed to be 
30.1390 and 0.5 ct/ kWh. Transmission limitations are not considered.   
 

                                                 
90  The value results from Equation 5-12. 
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7 Results  
 
 
7.1 Introduction 
 
This chapter describes the results from the PowerACE DSM simulation model. First, 
the driving behavior generated using a stochastic simulation approach is discussed 
(Chapter 7.2). Next, the resulting residual load is presented for the scenarios CA and 
GER as well as the effects of last trip, TOU and DSM charging (Chapter 7.3). The 
power plant park and the effects of the V2G charging strategy are then discussed for the 
GER scenario (Chapter 7.4) followed by further power plant park utilization  
(Chapter 7.5) and smart charging revenues (Chapter 7.6). Finally, the sensitivities are 
analyzed for the main assumptions (Chapter 7.7). Each sub-chapter concludes with the 
main findings for that section.   
 
 
7.2 Driving behavior 
 
Compared to stationary storage devices, the availability of PEVs as a grid resource is 
affected by the behavior of the vehicle user. This makes it harder to assess storage and 
load shifting. To analyze PEVs’ grid availability first, the average yearly driving 
behavior and the resulting PEVs’ electricity demand are discussed. Then the time period 
during which vehicles are available for smart grid services (DSM and V2G) and the 
energy demand of the vehicles when plugged back into the grid are described. Finally, 
the stochastic simulation of driving data is evaluated using deterministic data to validate 
the stochastic simulation approach.  
 
7.2.1 Average driving data 
 
Average driving data only permit a rough characterization of the vehicle fleet. The 
values given in Table 7-1 represent an average of 10 simulations with probabilities from 
the MID 2008 mobility survey (see Chapter 4.2). Values can vary by up to percent 
points because of the stochastic method used. The yearly driving distance amounted to 
15,298 km with 3.9 trips per day and 249 days of driving on average. 
 

Table 7-1: Average yearly driving data 

Days driving Total trips Total driving distance Trips per day Average km per trip 

MID 2008 249 days 960 trips/a 15,298 km 3.9 trips 15.9 km 

Source: Data basis (MID, 2010). Note: Average out of 12,000 vehicles. 

 
The yearly electric driving pattern is affected by the charging strategy and the 
assumptions about infrastructure availability. For last trip charging, mainly 
infrastructure at home is available. In the case of smart charging, it is possible to charge 
when the vehicles are parked. The driving location is determined by the probabilities 
defined in Chapter 4.2.3 and available in the Appendix A3. Parking at home and at 
work occurs most often and the parking location is relatively easy to predict. Public 
parking for shopping or leisure activities is characterized by a high degree of diversity.  
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It is therefore more complex and cost-intensive to connect vehicles parking at these 
spots to the grid and the average parking time here is shorter, which reduces the grid 
management time. Consequently, from a smart grid perspective, home and work 
charging seem to be of primary interest. The PEV location results are presented in 
Figure 7-1.  
 

 
Figure 7-1: Location of vehicles  

Source: Data basis (MID, 2010). 

 
The average electric driving share of last trip charging of the PEV fleet is 54 %, 
resulting in an average electricity consumption of 1594 kWh per year and PEV. In total, 
the PEV fleet’s demand is 19.1 TWh for GER 2030 and 10.8 TWh for CA 2030. For 
smart charging (TOU, DSM and V2G), the average electricity consumption here 
increases to 2061 kWh per vehicle with an electric driving share of 70 %. This increase 
is caused by the assumed greater availability of infrastructure. In total, the PEV fleet 
consumes 24.9 TWh for GER 2030 and 14.0 TWh for CA 2030, accounting for 
approximately 5 % of the total electricity demand.  
 
7.2.2 Grid management time 
 
The resulting grid management time of the stochastic simulation using the probabilities 
of the MID 2008 mobility survey is described here. The grid management time ∆t 
depends on the return time of a trip (see Chapter 4.2.4). Figure 7-2 gives the energy 
returning to the grid and the ∆t for the quarter-hourly resolved simulation of a weekday. 
The average ∆t depending on arrival time decreases until noon and then starts to rise 
until midnight. The average ∆t for a weekday is 7.4 hours (see Table 7-2). Evaluating 
the grid management time separately for days and nights shows that ∆t day is much 
shorter than ∆t night. The average of ∆t day on a weekday is 1.8 hours per trip whereas 
∆t night is 23.6 hours. The ∆t night value is strongly influenced by vehicles that do not 
drive on the next day(s). ∆t day can be negative if the time for recharging in a parking 
period is too low.91  
  

                                                 
91 Note: To a minor extent, the ∆t values depend on the grid connection power as defined in Chapter 6.2. 
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Figure 7-2: Hourly average grid management time and energy demand of returning vehicles 

Source: Data basis (MID, 2010); Note: ∆t: Grid management time for the total average; ∆t day: trips during the day; 
∆t night: the last trip of a day; Results for a weekday. 

 
On Fridays and Saturdays, ∆t night increases because the probability to drive on the 
weekend is lower. ∆t day at weekends is in the same order of magnitude as weekdays 
(see Table 7-2). See Appendix A5 for the hourly shares for Saturdays and Sundays.  
 

Table 7-2: Average grid management time for days of the week 

 Unit [h] Mon WD Fri Sat Sun 

∆t 6.7 7.4 8.9 9.6 7.9 

∆t day 1.8 1.8 1.8 1.7 1.9 

∆t night 21.6 23.6 29.6 31.5 22.1 

Source: Data basis (MID, 2010). 

 
The wide diversity of mobility behavior causes a high standard deviation for all average 
values. The hourly standard deviation for ∆t can also be found in the Appendix A5. 
 
7.2.3 Evaluation of the stochastic simulation 
 
In order to validate the concept of modeling mobility behavior, the stochastic simulation 
results are evaluated using deterministic data from the MOP survey. The weekly MOP 
driving profiles are randomly linked to a 365-day driving profile for 12,000 vehicles. 
The stochastic data result from a simulation as explained in Chapter 5.4.7 with 
probabilities drawn from the MOP data set rather than the MID survey.  
 
The average values from a simulation of 12,000 vehicles are summarized in Table 7-3 
for total trips per year, days with a trip, average trips per day, total driving range and 
average range per trip of the fleet.  

Table 7-3: Average yearly driving data for one vehicle of a fleet of 1200 vehicles based on MOP  

Total trips per year 
and vehicle 

Days with 
a trip 

Average trips per 
day driving 

Driving range per 
year [km] 

Average range per 
trip [km] 

Deterministic 
data  816.0 268.7 3.0 11,044.9 13.6 

Stochastic data 823.6 268.0 3.1 11,113.8 13.5 
 
Source: Data Basis: (MOP, 2002-2008). 
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The differences between the stochastic simulation and deterministic data were very low. 
This proves the high consistency in terms of yearly parameters. Besides the yearly 
driving data, the grid management time and the related energy demand of returning 
vehicles are used to compare the stochastic data with the deterministic data (see  
Figure 7-3). The data is evaluated over quarter hours of one day. For the energy demand 
of returning PEVs, the correlation between the two data sets is 96.69 %. 
 
The correlation is lower in terms of the average grid management time of a time step 
(49.41 %). During nighttime hours, values vary strongly because of the low frequency 
of trips. In the evening, differences of up to 8 hours occur. Vehicles not being driven the 
next day(s) strongly affect the average value. Excluding time steps with a low sample 
size (t < 20) results in a correlation of 83.71 % between the stochastic and deterministic 
approaches.  
 

Figure 7-3: Energy demand of returning vehicles and grid management time on weekdays  

Sorce: Data Basis: (MOP, 2002-2008); Note: Sample size 800,000 trips; correlation between grid management time  
t0-95 = 49.41 %, t20-95= 83.71 %; correlation between energy demand t0-95 = 96.69 %. 
 
Comparing the stochastic and deterministic data reveals that driving behavior is 
complex and very diverse. The simple modeling approach does not account for 
combinatorial probabilities (e.g. longer standing time after long trips). Especially for 
time-resolved values such as the grid management time, the approach does not 
necessarily provide realistic results for a single vehicle. But, as shown in Figure 7-3, 
results are very accurate for the total fleet. This proves that the probability-based 
approach is sufficient to model driving behavior for the research application of this 
thesis.   
 
7.2.4 Conclusions 
 
The main findings from modeling driving behavior are: 
 

 Primary parking locations are at work and at home.  
 The grid management time is highest after the last trip. But average grid 

management time indicates load shifting and V2G potential even during the day. 
 Compared to last trip charging, the electric driving share increases if several 

charging processes are possible. Under the assumptions made, there was an 
increase from 54 % for last trip charging to 70 % for permanent infrastructure 
availability – which is assumed for TOU, DSM and V2G charging.  

 Comparing the stochastic simulation with the deterministic data set of the MOP 
survey shows that the method used is suitable.    
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7.3 Effect on the power system 
 
This chapter shows how the PEV load affects the power system in the CA 2030 and 
GER 2030 scenarios.92 First, the residual load is examined as a benchmark. Next, the 
effects on the residual load of different charging strategies are analyzed for the two 
scenarios. The main results are then summarized and discussed. Chapter 7.3 is partly 
published in (Dallinger et al., 2013). 
 
7.3.1 Residual load  
 
In order to evaluate how PEVs can help to integrate RES-E into the grid, the remaining 
residual93 load is used as a benchmark. The assessment applies the parameters defined 
in Chapter 3.3. The most important parameters for the scenarios CA 2030 and GER 
2030 are summarized in Table 7.4.  
 

Table 7-4: Evaluation parameters, residual load for California versus Germany  

RS GER 2030 RS CA 2030 

cfpos 38.8 % rrfpos 2.03 % cfpos 28.9 % rrfpos 1.99 % 

cfneg -0.285 % μ pos 4.39 % cfneg -0.278 % μ pos 4.38 % 

cfy=0  3.2 % μ neg -3.76 % cfy=0  4.4 % μ neg -3.63 % 

rcf0.8   0.51 xy=0  53.88 % rcf0.8   0.50 xy=0  54.70 % 

Pmin -43.52 % CorRES-load  34.22 % Pmin -26.46 % CorRES-load  46.81 % 

Pmax 90.36 % Pmax 71.69 %

 
In both scenarios, the very high RES penetration of 47.6 % has a strong effect on the 
remaining residual load duration curve (see Figures 7.7 and 7.8). The reduction of both 
the area under the curve and the capacity factor cfpos compared to the load duration 
curve indicate RES generation. Zero crossing of the residual duration curve is 3.2 % for 
GER and 4.4 % for CA. This means that RES generation exceeds electricity demand in 
3.2 % and 4.4 % of the 8760 simulated hours for GER and CA, respectively. In total, 
the negative residual load (cfneg) for GER 2030 is -0.285 % and -0.278 % for CA 2030, 
or 1.95 TWh and 1.55 TWh in absolute values, respectively.94 During these time periods 
it is necessary to either distribute more electricity, or store it, or limit RES power or 
introduce DSM to keep the system balanced. The reduction in the maximal power value 
Pmax in CA 2030 to 72 % and in GER 2030 to 90 % shows that RES’s contribution to 
reducing the peak residual load is much higher in CA 2030 than in GER 2030 (see 
Table 7-4). This is due to the closer correlation between photovoltaic and solar thermal 
generation and the CA 2030 load curve. The higher negative peak Pmin for GER is 
caused by the high level of installed RES capacity, in total 162 % of the peak load (see 
Chapter 6.2). For CA 2030 and GER 2030, Pmin is in the middle of the day when wind 
and solar output occur simultaneously. Compared to GER, the lower installed RES 
capacity in CA results in fewer extreme RES power supply situations. There is a greater 
influence of solar generation in CA, and wind and solar strongly affect traditional peak 
load hours, particularly during the spring months when high cooling loads are not 
online.  
 
For high penetration of fluctuating RES, it will no longer be possible to make a clear 
distinction between base load during nighttime hours and peak load periods during the 
                                                 
92 The main findings of the chapter are published in (Dallinger et al., 2012c). 
93 The residual load is defined as the total system load minus fluctuating RES generation. 
94 Absolute value = relative value * 8760 * Pmax, absolute  
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day. This result is illustrated in Figure 7-4, which cumulates the frequency of different 
availability sections (see Chapter 3.3.3) over the hours of one day for the simulation 
period of one year. Peak hours (Sec. 3) during the night are likely for both scenarios. A 
peak residual load is most likely during the early evening. For CA 2030, a morning peak 
is also observed between 6 and 8 am caused by the characteristics of wind generation 
here. In CA, high generation from wind during morning hours is unlikely. Peak wind 
output occurs early evening (see Appendix A2). Very high peak hours (see Sec. 4 in 
Figure 7-4) accumulate between 5 and 9 pm. Noon is characterized by a high frequency 
of off-peak periods (see Sec. 1 in Figure 7-4). Obviously, a lack of solar generation still 
results in a peak load during the day, but the residual load is likely to be low. From a 
RES fluctuation point of view, it is easier to integrate RES-E into the grid in CA 2030 
because of the higher load, RES-E correlation as well as lower RES capacity with equal 
energy output (installed capacity is 96.7 % of the peak load versus 162 % for GER 
2030).  
 

 
Figure 7-4: Cumulated frequency of residual load variation for different hours of the day 

Note: CA 2030: Pmax,load = 63.55 GW, Pmax,RS = 45.55 GW, Pmin,RS = -16.81 GW, ΔPRS= 62.37 GW; 
GER 2030: Pmax,load = 77.95 GW, Pmax,RS = 70.44 GW,  Pmin,RS = -33.92, ΔPRS= 104.36 GW. 
 

Ramping is in the same range for both scenarios with a rrf around 2 %. Compared to the 
system load, an increase in total ramping is observed for the residual load (compare 
Table 7-4 and 3-6; GER 2030: rrf change from 1.19 % to 2.03 %; CA 2030: rrf change 
from 1.05 % to 1.99 %). Further, the intensity of the ramp rates indicated by μ increases 
due to the higher penetration of fluctuating RES generation.  
 
7.3.2 Last trip charging  
 
Charging EVs immediately after returning from the last trip of the day affects the peak 
load. The simultaneousness of PEV charging is influenced by driving behavior and the 
grid connection power. The peak load increase resulting from uncontrolled charging is 
determined by the correlation of the initial load curve and PEV charging. For the CA 
2030 scenario, this correlation is smaller than for GER 2030. For CA, the hourly mean 
load Pmax increases by about 7.7 percent points whereas, for GER 2030, the increase is 
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10.2 percent points (compare Pmax in Table 7-4 and Table 7-5). It should be noted that 
GER driving data is used here for CA. This could be one reason for the higher 
correlation of vehicle electricity demand and load curve in GER. For both scenarios 
there are only minor reductions in the time period with negative residual load (cfx=0), the 
negative peak (Pmin) and the amount of negative residual load (cfneg). The negative 
residual load consumed by PEV charging is 11.3 % for GER 2030 and 17.1 % for  
CA 2030.  
 

 
Figure 7-5: Ramp rates for the CA 2030 scenario 

Note: Pmax,load = 63.55 GW = 100 %; CA: California; PEVs: Plug-in electric vehicles 

 
The effect of last trip charging on the ramp rates for CA 2030 is shown in Figure 7-5. 
The ramping increases largely due to the fluctuating generation (see system load versus 
residual load in Figure 7-5 and compare Table 7-4 with Table 7-5). The additional 
increase caused by charging PEVs is small. In conclusion, fluctuating RES-E have a 
much greater effect on the ramp rates than charging PEVs.  
 

Table 7-5: Evaluation parameter, last trip charging, California versus Germany 

RS + PEVs last trip charging GER 2030 RS + PEVs last trip charging CA 2030 

cfpos 41.6% rrfpos 2.32% cfpos 30.8% rrfpos 2.20% 

cfneg -0.253% μ pos 5.06% cfneg -0.230% μ pos 4.87% 

cfy=0  3.00% μ neg -4.25% cfy=0 4.00% μ neg -4.00% 

rcf0.8   0.52 xy=0  54.34% rcf0.8  0.52 xy=0  54.91% 

Pmin -42.59% CorRES-load+PEV  27.63% Pmin -25.57% CorRES-load+PEV  40.20% 

Pmax 100.59% Pmax 79.18%

 
7.3.1 Time-of-use tariff 
 
To evaluate the load management with time-of-use tariffs, a tariff of the utility  
(Pacific Gas and Electric, 2011) is implemented in the simulation as a control signal. 
The tariff structure follows the classical expectations about base and peak load in 
California and does not account for a high share of RES-E. Other TOU tariffs would 
provide similar results in terms of simultaneous PEV demand if analyzed with regard to 
automated control.  
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Table 7-6: Electric vehicle time-of-use tariff of Pacific Gas and Electric 

  Super Off Peak Off Peak Peak Off Peak 

Time period Midnight – 5 am 5 am – 12 pm 12 pm – 6 pm 6 pm – Midnight 

Rate 14.4 ct/kWh 16.7 ct/kWh 25.7 ct/kWh 16.7 ct/kWh 
 
Source: (Pacific Gas and Electric, 2011). 

 
The tariff is divided into four time periods and three price levels (see Table 7-6). The 
Californian load curve and PEV penetration as defined in Chapter 6 serve as an 
example. The result of a one week simulation using the TOU tariff indicates two main 
price peaks (see Figure 7-6). After the first trip in the morning, PEVs’ agents manage to 
reload the battery in the off-peak period 5 am – 12 pm to avoid the peak rate starting at 
12 pm. The recharge after the first trip is necessary to realize a high electric driving 
share. The second peak is observed before 5 am. This results from the applied 
optimization algorithm that selects the last possible time step to charge if the cost of 
several time steps is the same.95  
 

 
Figure 7-6: Electric vehicle load with time-of-use tariff control 

Source: time-of-use (TOU) tariff (Pacific Gas and Electric, 2011); load curve (CAISO, 2011); Note: Summer week in 
scenario CA 2030 (see Chapter 6). 

 
Analyzing the evaluation parameter (see Table 7-7) shows that TOU rates do not 
significantly improve the contribution of PEVs as a grid resource compared to last trip 
charging. For CA 2030, a peak load reduction is observed (Pmax is reduced from 79 % to 
74 %) and a possible consumption of 39 % of negative residual load versus 17 % in the 
case of last trip charging (compare cfneg in Tables 7-4, 7-5 and 7-7). Improvements are 
smaller with regard to Pmin and ramping.96 For GER 2030, parameter changes compared 
to last trip charging are in the same range as for CA values. Only the peak reduction is 
lower because the GER peak load occurs in the evening. The TOU rate used is designed 
to reduce peak load during the day.  
 
  

                                                 
95 In terms of battery ageing, using the last possible time step for recharging is not groundless because a 
 high state of charge can reduce the calendar life. 
96 Note: In CA, Pmin occurs during the day when the TOU rate is high and PEVs therefore avoid 
 charging. 
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Table 7-7: Evaluation parameters, time-of-use, charging California versus Germany  

RS + PEVs TOU charging GER 2030 RS + PEVs TOU charging CA 2030 

cfpos 42.4 % rrfpos 2.35 % cfpos 31.3 % rrfpos 2.20 % 

cfneg -0.191 % μ pos 4.49 % cfneg -0.170 % μ pos 4.37 % 

cfy=0  2.20 % μ neg -4.88 % cfy=0 3.20 % μ neg -4.42 % 

rcf0.8   0.49 xy=0  47.87 % rcf0.8  0.47 xy=0  49.72 % 

Pmin -42.15 % CorRES-load+PEV  35.36 % Pmin -24.57 % CorRES-load+PEV  49.65 % 

Pmax 98.50 % Pmax 74.40 %

 
The simultaneous reaction of automated agents and the changing requirements in terms 
of peak and off-peak hours due to RES-E (see Figure 7-4) indicate that smart grid 
control must provide more sophisticated solutions to reduce demand peaks and integrate 
fluctuating generation.  
 
7.3.2 Demand-side management 
 
Simulating dynamic pricing with a distributed vehicle-based optimization (Chapter 5.4) 
illustrates the contribution of PEVs to balancing fluctuating RES-E using demand-side 
management. The evaluation parameters quantifying the effect of DSM smart charging 
are summarized in Table 7-8. 

Table 7-8: Evaluation parameters, demand-side management, charging California versus 
Germany  

RS + PEVs DSM charging GER 2030 RS + PEVs DSM charging CA 2030 

cfpos 42.3% rrfpos 1.52% cfpos 31.2% rrfpos 1.70% 

cfneg -0.102% μ pos 2.88% cfneg -0.076% μ pos 3.43% 

cfy=0  1.40% μ neg -3.20% cfy=0 1.60% μ neg -3.33% 

rcf0.8   0.48 xy=0  47.35% rcf0.8  0.46 xy=0  50.71% 

Pmin -34.02% CorRES-load+PEV  44.50% Pmin -18.52% CorRES-load+PEV  56.56% 

Pmax 91.93% Pmax 72.09%

 
The effect of controlled PEV charging on the residual load duration curve is shown for 
Germany and California in Figures 7-7 and 7-8, respectively.97 In both cases, it is 
possible to limit peak load and to increase consumption of the negative residual load. 
For GER 2030 about 64.0 % and for CA 2030 about 72.6 % of the negative residual 
load can be consumed (see Table 7-9, relative values cfneg). The time period with 
negative residual load is reduced by 158 hours (GER 2030) and 245 hours (CA 2030). 
The negative residual peak reduction is 7.4 GW for GER and 5.1 GW for CA (see  
Table 7-9 absolute change).  
 

                                                 
97  Additionally in the Appendix, Figure A-11 to A-15 show the probability of the residual load for the  
  scenarios CA and GER. 
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Figure 7-7: Change in the residual load duration curve due to DSM for Germany 

Note: DSM: Demand-side management; RES: Renewable energy sources; PEVs: Plug-in electric vehicles. 
 
In terms of ramping, a significant ramp rate factor reduction of 34.3 % is achieved for 
GER and 22.5 % for CA. In addition, the ramping mean and the standard deviation 
values are significantly lower.  
 

 
Figure 7-8: Change in the residual load duration curve due to DSM for California 

Note: DSM: Demand-side management; RES: Renewable energy sources; PEVs: Plug-in electric vehicles. 
 
PEVs make a greater contribution in CA 2030 than in GER to integrating RES-E in 
terms of negative residual load consumption and reducing peak load. This indicates that 
these two parameters are influenced by the RES generation characteristics and the 
resulting residual load, respectively. For GER 2030, RES generation and some hours 
with negative residual load are dominated by wind. The GER wind generation output is 
characterized by longer high production periods whereas generation tends to follow a 
rhythmic daily pattern for CA, especially during the spring and summer (see  
Appendix A2). A daily rhythm is preferable for RES-E grid integration using PEVs, 
because driving behavior also follows a daily pattern and does not permit long load 
shifting periods. Recharging the PEV’s battery is only possible if electricity has been 
consumed for driving. This effect is enhanced by the higher RES capacity required in 
GER 2030 to produce the same RES electricity output.  
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Figure 7-9: Cumulated hourly reduction of negative residual energy for California and Germany 

Note: The values for photovoltaic, wind onshore and offshore describe the remaining negative residual load;  
DSM: Demans side management. 

 
Figure 7-9 shows that negative residual energy occurs only during the day for CA 2030. 
The scenario is dominated by solar generation98 and RES-E output follows a daily 
pattern. Comparing the relative and the absolute change between the residual load 
without PEVs and the residual load with PEVs for GER 2030 and CA 2030 shows that 
there is a greater reduction of cfneg and cfy=0 for CA 2030 (see Table 7-9). This indicates 
that it is easier to integrate solar power. The correlation increase is higher for GER 2030 
(see Cor values in Table 7-9). This also reflects a better integration of solar because the 
correlation of load and solar generation is lower for GER 2030 than for CA 2030. 
 

Table 7-9: Change of evaluation parameters for California and Germany  

 Relative values Absolute values 

Factor GER 2030 CA 2030 GER 2030 CA 2030 Unit 

cfpos 8.96% 8.04% 23.75 12.92 TWh 

cfneg -64.02% -72.58% 1.24 1.12 TWh 

cfy=0  -56.25% -63.64% -158 -245 hour 

Pmin -21.83% -30.02% 7.41 5.05 GW 

Pmax 1.73% 0.56% 1.22 0.26 GW 

rrfpos -24.98% -14.37% -3.47 -1.59 TWh 

μ pos -34.38% -21.83% -1.18 -0.61 GW 

μ neg -14.83% -8.31% 0.43 0.19 GW 

Cor 30.03% 20.81% 10.28% 9.74% % 
 
Note: Comparison of the electricity system including PEVs with demand-side management charging versus no 
electric vehicles. 
  

                                                 
98 Solar sources provide about 24 % and 11 % of the total electricity demand for CA 2030 and  
 GER 2030, respectively. 
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7.3.3 Conclusions 
 
Country-specific time series and installed capacities for solar and wind power were 
considered for the two case studies of Germany and California. Comparing these two 
shows that the resulting residual load is strongly affected by the assumptions concerning 
the installed capacity of renewable energy sources and by the time series used. The 
findings for Germany and California under the scenario assumptions made for 2030 
with high shares of RES-E and PEVs are: 
 

 The capacity factors of wind and photovoltaics are lower in GER than in CA. 
Hence, a higher installed capacity is needed to generate the same amount of 
energy in Germany. For both countries, the energy produced from fluctuating 
RES represents 47 % of the total system load. The installed RES capacity as a 
percentage of the system peak load is 162 % for GER and 97 % for CA. The 
higher installed capacity results in more RES surplus generation or in more 
negative residual load situations in the GER scenario.   

 
 The ramping of the residual load is strongly influenced by RES generation. 

Compared to the load curve without considering RES generation, ramping 
nearly doubles if fluctuating generation is included. This is true for both CA and 
GER. In terms of single time series, especially PV in CA has very high ramp 
rates. Possible reasons are the higher direct radiation in CA and the resulting 
system specifications (trekking systems, solar thermal power using storage, and 
concentration of installations to a specific region). In addition, the method of 
calculating the time series can influence the results. For GER, offshore wind 
shows higher ramp rates compared to onshore wind (see Chapter 3).   

 
 Besides the energy actually produced by a renewable energy technology, its 

fluctuation plays an important role when evaluating the contribution of storage 
technologies to integrating RES-E into the grid. In terms of photovoltaics, the 
characteristics on sunny days are obviously very similar in both GER and CA. 
Taking the entire year into account, however, reveals an on/off characteristic for 
GER. In other words, days with almost no generation occur more often in GER, 
particularly during the winter, but also during the summer, albeit with reduced 
probability. Solar generation is much more reliable in CA and even for wind, 
generation here is characterized by a regular daily pattern for large periods of the 
year. In GER, there is a greater dependence on specific weather fronts for wind 
generation. To sum up, periods with very high wind velocities lasting several 
days and periods with almost no wind are more likely in GER than in CA.  

 
 In this context, besides the characteristics of the individual generation 

technology, it is also very important to account for the overall outcome of the 
technology mix and the resulting residual load. The correlation between load 
and the expected output of total RES generation strongly affects the situation in 
a power system. A higher correlation is found between the expected RES 
generation and the load for CA than for GER. This is due to the daily pattern of 
generation in CA being a better match for the load curve, which also follows a 
daily pattern. In addition, the air conditioning load and solar generation, which 
dominate Californian summers, evidently have a high correlation.  
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 The residual load in both simulation scenarios indicates a drastic change taking 

place in the power system if renewable energies became a dominant generation 
source. In this case, peak hours at noon and during the early afternoon are 
unlikely. This time of the day is dominated by a low residual load. A high peak 
probability is observed during early evening and nighttime hours. For CA, the 
morning hours are also expected to have high residual loads. This does not mean 
that typical peak load events which follow the load curve are no longer possible. 
However, they are less likely and it will no longer be possible to describe the 
residual load for the entire year based on a few characteristic days.  

 
 
 
 
 
To investigate the effect of grid-connected vehicles on the power system, three charging 
strategies were distinguished: charging after the last trip, TOU tariff based charging and 
demand-side management. In terms of last trip charging, the results presented here are 
similar to other published studies. Main findings are:   
 

 Last trip charging results in an increased peak demand of 9 percent points for 
Germany and 7 percent points for California.  

 
 Last trip charging increases the ramp rates in the power system. With the used 

time increment of one hour, however, the increase is low compared to the effect 
of fluctuating generation. The ramp rate factor increases by 10 to 15 %. 

 
 Overall, PEVs only make a small contribution to balancing RES-E and only a 

small proportion of surplus energy from RES or negative residual load can be 
consumed in the case of last trip charging. 

 
TOU charging can be a first approach to reducing peak loads and promoting off-peak 
charging. If there is a regular residual load pattern, TOU rates can also help to integrate 
fluctuating RES-E. For non-recurring RES generation, TOU rates are not flexible 
enough and cannot effectively integrate fluctuating RES-E. 
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Previous studies have also analyzed DSM using grid-connected vehicle loads (e.g. 
Sioshansiet al., 2011; Wang et al., 2011). The PowerACE DSM model includes a 
detailed simulation of individual driving behavior and a control mechanism based on 
real-time pricing and distributed optimization from the perspective of vehicles acting as 
independent agents. In addition, a power systems with a high share of fluctuating  
RES-E is analysed. The results in detail are:  
 

 DSM is restricted by mobility behavior. If consumers maximize the electric 
range of their vehicles to recoup their initial investment, the peak load increases 
even with load management.  

 
 DSM reduces ramp rates by 25 % for GER and 14 % for CA. The surplus 

electricity consumption from RES is 64 % of the total negative residual load for 
GER and 73 % for CA. The negative residual load peak is reduced by 22 % for 
GER and 30 % for CA.  

 
 Comparing CA and GER reveals that more effective use can be made of plug-in 

electric vehicles as a grid resource in CA due to the characteristics of RES-E and 
the resulting residual load here. This is because grid-connected vehicle load 
shifting is only possible within a time period of several hours to one or two days. 
The daily pattern characterizing RES power generation in CA means it is easier 
to integrate.  

 
 The same argument applies when comparing photovoltaics and wind power with 

each other. The daily pattern of photovoltaic generation favors the storage 
capabilities of plug-in electric vehicles if charging infrastructure is available 
where the vehicles are parked during the day.  

 
This chapter highlights the importance of carefully considering load and renewable 
energy generation output when analyzing future power systems. A detailed description 
of RES-E time series, system load and residual load is recommended for a better 
understanding of research results.  
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7.4 Vehicle-to-grid  
 
The analysis of battery ageing in Chapter 4.3 indicated the price spreads necessary for 
V2G. Based on these findings, V2G contribution as a grid resource is discussed in the 
following. The chapter starts with the definition of the power plant park for GER 2030. 
Next, a price mark-up is introduced to account for the costs of underutilized power 
plants. Finally, the effects on the residual load are discussed. Chapter 7.4 is partly 
published in (Dallinger et al., 2012d). 
 
7.4.1 Optimal power plant park 
 
Analyzing the charging strategies of last trip and DSM charging does not necessarily 
require information on the exact power plant park, if the price sensitivity of consumers 
is not considered. For V2G charging, the power plant park is essential regarding the 
decision to provide V2G. The arbitrage of energy is only economically valuable if the 
price spread within a defined time period is high enough.  
 
An approach focusing on Germany was used to account for the power plant park. 
Perfect foresight in the GER 2030 scenario is assumed and the time frame between 
2010 and 2030 is not considered. Parameters which heavily influence the power plant 
park are fuel prices, the RES capacity and the total electricity demand and are defined 
by the scenario GER 2030 (see Chapter 6.2). The analysis focuses on three power plant 
options: gas turbines (GT), combined cycle gas turbines (CCGT) and coal power plants. 
Nuclear and carbon capture and storage are not considered.99 Figure 7-10 gives the total 
electricity generation costs of the power plant options depending on the utilization and 
the residual load for different charging scenarios.   
 

 
Figure 7-10: Total costs of different power plant options 2030 and residual load  

Assumptions: Gas turbine (GT): specific investment: 333 euros/kW, efficiency: 39 %; combined cycle gas turbine 
(CCGT): specific investment: 733 euros/kW efficiency: 60 %; gas price 49.68 euros/MWhtherm; coal power plant: 
specific investment: 1650 euros/kW efficiency: 50 %; coal price 23.4 euros/MWhtherm; CO2 price 52 euros/t;  
interest rate 10 %; Note: LT: Last trip; DSM: Demand-side management; V2G: Vehicle-to-grid. 

 
Coal has the lowest total electricity generation costs for a utilization greater than 3363 
hours. Between 1012 and 3363 hours, CCGT has the lowest costs. For utilization lower 
than 1012, GT is the optimal option to produce electricity in terms of costs. Switching 
between generation technologies producing at lowest costs yields the optimal generation 

                                                 
99 Neither technology is cost competitive with coal under the assumptions about investments as well as 
 CO2 and fuel prices. 
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capacity. The lowest total cost switch between coal power plants and CCGT at 3363 
hours of operation gives the base load or coal capacity needed of 24.3 GW. Changing 
from CCGT to GT takes place at 1012 hours of operation. The optimal CCGT capacity 
is 13.9 GW. The remaining GT capacity required to reach peak residual load  
(64.3 GW)100 is 26 GW. To account for system security, 10 % of overcapacity provided 
by GT are included.101 Power plants still available in 2030 and currently under 
construction are considered (BDEW, 2011). New installations and the total installed 
capacity in 2030 are given in Table 7-10. 
 

Table 7-10: Capacity for the 2030 GER scenario 

Power plant 
type 

Min. 
utilization  

[h] 

Optimal 
capacity 
[MW] 

Old capacity 
available in 
2030 [MW] 

Under 
construction 
2010 [MW] 

New 
installations 

[MW] 

Installed 
capacity 2030 

[MW] 

Oil 749 749 

GT 0 26,03 4,023 28,438 32,461 

CCGT 1010 13,942 9,54 1,038 3,364 13,942 

Coal 3,368 24,314 3,081 6,933 4,361 14,375 

Lignite 6,244 2,875 9,119 

Waste       820       820 

Total 64,28611 Total 71,46622 
 
Note: 1 Equals peak load by PEVs last trip charging including dispatchable biomass generation; 2 Includes 10 % 
reserve provided by gas turbines; Available capacity from lignite and waste is assumed to reduce the necessary 
capacity of coal because of the lower marginal generation costs. 

 
The different PEV charging strategies affect the residual load curve and therefore the 
resulting optimal power plant capacity. The sensitivity of the charging strategy 
(difference in the residual load between last trip and V2G charging) to optimal capacity 
is relatively low for the switching point between coal and CCGT (434 MW capacity 
delta).102 The switching point between GT and CCGT is affected more strongly by the 
charging strategy (2034 MW capacity delta). For both cases, the means of 217 and  
1017 MW are used to calculate the optimal capacity. Furthermore, the efficiency of the 
power plant options affects the optimum. In this case, switching between CCGT and 
coal shows a higher sensitivity.103 
 
The presented approach applies simplifications but provides a possible scenario for the 
power plant mix in 2030. In general, investment planning is associated with uncertainty 
and has high sensitivity to residual load and price development. The decision making is 
reduced to the total generation costs and does not account for strategic decisions in 
terms of the capacity planning of countries and utility firms.  
 
7.4.2 Price mark-up  
 
The utilization of fossil power plants is reduced with a higher share of RES-E, which 
feed-in electricity with priority over fossil generation (see Chapter 7.3.1 and  
Figure 7-4). In this case, profit contributions are not high enough if bids are placed 
                                                 
100 This includes capacity from biomass (9.88 GW), geothermal (0.75 GW) and hydro (2.68 GW). 
101 The availability of the different power plant options is 0.97 for lignite, 0.93 for coal and 0.99 for gas.  
102 Note, that the base load capacity from lignite and coal exceeds this point. 
103 The gradient is 4.31 MW/h at h = 3361 and 8.00 MW/h at h = 1012. A 1 % efficiency increase of 
 CCGT compared to coal and GT changes the switching points h = 3361 to 3697 and h = 1012 to 983; 
 the effect on the optimal capacity is +1400 MW and + 232 MW, respectively.  
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based solely on marginal generation costs. Therefore, a price mark-up is used that 
accounts for the lower utilization and includes depreciation on power plant investments. 
The mark-up calculation used has been developed by Fabio Genoese104 and proceeds as 
follows:  
 

 Forecast the expected utilization of a power plant and calculate the expected 
income in one year of operation. 

 If the power plant is not fully depreciated, a yearly annuity is calculated. The 
annuity includes fixed costs, the specific investment and capital costs.  

 Subtract the income from the annuity and allocate the result to the operating 
hours of the power plant.   

 
The method accounts for the total electricity generation costs. The depreciation time 
period is 15 years for GT and 20 years for all other plants. An interest rate of 10 % and 
specific investments of 333 euros/kW for GT, 733 euros/kW CCGT and 1650 euros/kW 
for coal power plants are used.  
 
The supply clearing price for last trip charging including and excluding the mark-up for 
one year of operation is shown in Figure 7-11 in comparison to the merit-order and the 
bid points without mark-up.  
 

 
Figure 7-11: PowerACE market clearing price depending on the residual load 

 
To account for the mark-up of supply bids in the price forecast, the heuristic functions 
of DSM-agents are adapted to 

4 3 2
, , , , , ,p ( ) = 0.00001 0.001 +0.0024 4.6204 6.7877MarkUP

a t RS t RS t RS t RS t RS td d d d d        

 (7-1) 

for dRS,t values greater than zero. For a dRS,t equal to zero or negative, a linear correlation 
is used.  

, , ,p ( ) =  6.7877
a t

MarkUP
RS t RS td d   (7-2) 

For the calculation of V2G operation, both price forecast functions including and 
excluding the mark-up are considered using different scenarios.  
 
  

                                                 
104 Fabio Genoese is a member of the PowerACE work group at Fraunhofer ISI. 
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7.4.3 Effect on the power system 
 
Besides the price function and availability of vehicles, the method used to calculate the 
V2G costs also affects V2G operation. In Chapter 4.3, two methods were introduced to 
consider battery degradation: the energy processed (Ah) and the depth of discharge 
(DoD). Each method results in different V2G charging strategies. To illustrate the 
differences, Figure 7-12 shows the V2G operation of a stationary battery device 
(Storage: 30 kWh; grid connection 8 kW).  
 

 
Figure 7-12: V2G operation: depth of discharge versus energy throughput  

Assumptions: Storage size: 30 kWh; grid connection 8 kW; Note: V2G: Vehicle-to-grid. 
 

The DoD-based method results in shallow cycles using smaller price spreads for energy 
arbitrage. Deep cycles are only conducted for very high price spreads (see upper panel 
of Figure 7-12). Full cycles are more likely for the method based on the energy 
processed (see lower panel of Figure 7-12). Compared to the DoD-based V2G, the total 
amount of energy shifted is larger, but the number of V2G operations is lower.  
Compared to the stationary storage operation shown in Figure 7-12, driving further 
increases the complexity of V2G operation. The optimization time frame in this case is 
only the grid management time between two trips. For V2G feeding back electricity, it 
is necessary to have high and low prices within the grid management time. For example, 
a vehicle arriving with an empty battery in the evening can be cheaply recharged 
overnight if prices are low. But the next period with high prices – based on today’s 
typical conditions – is most likely to occur around noon the next day. There is no high 
price period within the grid management time at night and vehicles will not use V2G. 
This effect is enhanced even more for the DoD-method because the soc is low when 
vehicles return from a trip. In this case, V2G comes at higher costs compared to a soc of 
100 % and even higher price spreads are required.  
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The effect of V2G on the total power system is analyzed using the same parameters as 
for DSM and last trip charging but focuses on the GER 2030 scenario.105 Besides the 
charging strategies Ah and DoD, the simulation results with and without the price mark-
up (Mup) are distinguished. The feed-back energy is higher with Ah V2G charging. 
Compared to the total electricity demand of 502 TWh, the feed-back energy varies 
between 0.8 % and 1.5 %. The V2G energy demand increases proportionately to the 
energy feedback to the grid (see Table 7-11). The higher price spread due to the mark-
up nearly doubles the energy fed-back within the simulation time frame of one year. 
 

Table 7-11: Energy and demand in case of vehicle-to-grid for Germany 

Feed-back Demand 

  V2G [GWh] V2G relative EV2G/EGER V2G [GWh] V2G relative EV2G/EGER 

V2G Ah -5,384 -0.788% -1.072% 29,730 4.354% 5.921% 
V2G DoD -4,152 -0.608% -0.827% 28,758 4.211% 5.728% 
V2G Mup Ah -9,927 -1.454% -1.977% 33,728 4.939% 6.717% 

V2G Mup DoD -7,649 -1.120% -1.523% 31,879 4.669% 6.349% 
 
Note: Mup: Clearing prices include price mark-up; EV2G: Energy vehicle-to-grid; EGER: Energy demand Germany. 

 
The peak system load Pmax is reduced by 1.2 percent points for DoD battery ageing 
compared to DSM charging. For V2G-based on Ah ageing, the reduction is about 0.6 
percent points. With mark-up, the reduction is 1 to 2 percent points compared to DSM 
(compare Table 7-11 value Pmax). The increase of the minimal residual load is much 
greater (see Table 7-11 value Pmin). Compared to DSM charging (-33.96 %), V2G 
results in a Pmin value of -26.1 % and -28.2 % for Ah and DoD, respectively. The battery 
degradation for Ah and DoD is given by the specific battery chemistry so it is not 
possible to compare them exactly, but Ah shows the tendency to process more energy 
which results in a greater increase in the negative residual load to be consumed. For 
DoD-based ageing, a higher peak load reduction without mark-up is observed. 
 

 
Figure 7-13: Change in the residual load duration curve due to V2G for Germany 

Note: RES: Renewable energy sources; PEVs: Plug-in electric vehicles; V2G Ah: Vehicle-to-grid energy with 
weighted energy throughput based battery aging. 
 
Figure 7-13 shows the effect of V2G with DoD battery ageing on the cumulated 
negative residual load for one year of simulation. Compared to DSM (64.3 %), between 
12.7 (V2G DoD) and 17.4 (V2G mark-up Ah) percent points negative residual energy 
                                                 
105 The CA 2030 scenario is not considered because of a lack of information on the power plant park. 
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can be used additionally (compare Table 7-12 value cfneg(RS)/cfneg(X)). There is a large 
reduction in the hours during which the residual load is negative (see value cfy=0 in 
Table 7-12). During nighttime hours the negative residual load is consumed almost 
completely. The remaining negative residual load occurs during the day between 10 am 
and 3 pm (see Figure 7-14).  
 

 
Figure 7-14: Cumulated hourly reduction of negative residual energy due to V2G for Germany 

Note: Simulation including mark-up prices and DoD based battery aging. The values for photovoltaic, wind onshore 
and offshore describe the remaining negative residual load; DSM: Demand-side management; V2G: Vehicle-to-grid. 

 
V2G also enables a further reduction of the total ramping and mean ramp rates. In terms 
of ramping, Ah and DoD-based battery ageing are similar. All the values discussed are 
summarized in Table 7-12. 
 

Table 7-12: V2G evaluation parameter GER 2008 

Time series cfneg 
1-(cfneg(PEVs) 

/ cfneg) 
cfy=0 Pmin Pmax rrfpos μ pos μ neg xy=0 

CorRES-

load+PEV 

RS GER -0.285% 3.20% -43.52% 90.36% 2.03% 4.39% -3.76% 53.88% 34.22%
LT  -0.253% 11.60% 3.00% -42.59% 100.59% 2.32% 5.06% -4.25% 54.34% 27.63%

TOU -0.191% 23.95% 2.20% -42.15% 98.50% 2.35% 4.49% -4.88% 47.87% 35.36%
DSM -0.102% 64.32% 1.40% -34.02% 91.93% 1.52% 2.88% -3.20% 47.35% 44.50%

V2G Ah -0.052% 81.75% 0.60% -26.11% 91.34% 1.34% 2.63% -2.70% 49.34% 52.37%
V2G DoD -0.065% 77.03% 0.80% -28.23% 90.75% 1.36% 2.63% -2.77% 48.64% 49.89%
V2G Ah Mup -0.051% 81.98% 0.60% -26.18% 89.93% 1.15% 2.28% -2.32% 49.49% 52.37%
V2G DoD Mup -0.060% 78.75% 0.60% -27.48% 90.18% 1.20% 2.35% -2.41% 49.29% 49.89%

 
7.4.4 Conclusions  
 
Compared to DSM, additional assumptions were necessary for V2G about the power 
plant park, clearing prices and battery ageing. These increase the uncertainty of the 
results. For the German power plant park, the strong reduction of the residual load for 
the 2030 scenario favors the installation of GT for peak capacity as the most cost-
efficient option in an underutilized power plant park. The higher share of underutilized 
standing capacity can result in clearing prices that are not sufficient to recoup power 
plant investment if marginal bid prices are assumed. Including a price mark-up to 
account for the total generation costs of power plants results in an increase of clearing 
prices of approximately 40 euros/MWh in peak hours. The mark-up increases price 
spreads. Hence, V2G energy arbitrage increases and leads to a better integration of 
RES-E. Compared to DSM, V2G provides a better integration of RES-E for all 
discussed evaluation parameters.  
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The two battery ageing models, energy processed Ah and depth of discharge, result in 
different V2G operation characteristics. For the DoD-based strategy, more shallow 
cycles are observed. More deep cycles result with Ah ageing and higher total feed-back 
energy over one year. For peak power reduction with low price spreads, V2G with Ah 
ageing performs better, whereas DoD-ageing gives better results with regard to negative 
peak load reduction. Compared to DSM, between 12.7 and 17.4 percent points of the 
negative residual load can be additionally consumed. Peak load reduction compared to 
DSM is between 0.6 and 2 percent points, or, in absolute values, between 0.5 GW and 
1.6 GW. 
 
 
7.5 Power plant utilization  
 
This chapter addresses the question of using power plants to produce the electricity for 
plug-in electric vehicles and the resulting CO2 emissions (Dallinger et al., 2012b).106 
The method used accounts for the marginal electricity generation. CO2 emissions are 
calculated using the emission factors for fossil generation introduced in Chapter 2.2.4. 
The chapter is structured in two parts. The first part presents the results for the GER 
2030 scenario and power plant park defined in Chapter 6 and 7.4.1. The second part 
defines an additional scenario where the energy from fluctuating RES is increased to 
equal the amount of energy consumed by the PEV fleet. This scenario is constructed to 
account for the argument that the electricity required to meet PEVs’ demand should be 
generated by additionally installed RES capacity in order to keep marginal emissions as 
low as possible. 
  
7.5.1 GER 2030 scenario 
 
The following results are based on previously presented findings with the difference 
that they also include dispatchable generation from biomass as well as run-of-the-river 
and geothermal generation. The PEV’s marginal energy source is given by the 
differences in power plant generation between the simulations excluding und including 
PEVs. Table 7-13 shows the energy balance for the simulation excluding PEVs as well 
as last trip, DSM and V2G charging. In terms of generation, fossil and RES are 
distinguished as is the negative residual load. The reduction of the negative residual 
load between the scenarios including and excluding PEVs is due to the marginal 
electricity consumed by PEVs from RES. For last trip charging, this fraction is  
0.36 TWh of 19.14 TWh total demand, and 2.03 TWh of 25.06 TWh total demand for 
demand-side management. In V2G, the negative residual load decreases still further due 
to PEVs’ consumption of 2.63 TWh. Compared to DSM, the total load increases 
because of energy losses due to V2G.107 PEVs’ marginal generation is dominated by 
fossil fuels with 18.79 TWh, 23.04 TWh and 22.76 TWh in the three charging cases.  
 
  

                                                 
106 The main findings of the chapter are published in (Dallinger et al., 2012b). 
107 Note: An efficiency of 94 % is assumed for V2G, charging η = 98.5 %,  
  Lithium-based battery: η = 97 % and discharging η = 98.5 % 
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Table 7-13: Energy balance for last trip and smart charging 

   Generation Load PEVs’ energy source 

Unit [TWh] Fossil RES-E Neg. residual load1 Total PEVs Fossil RES-E 

Excluding PEVs 179.33 325.15 -3.20 502.10 

Last trip 198.24 325.15 -2.84 521.24 19.14 18.79 0.36 

DSM 202.45 325.15 -1.17 527.16 25.06 23.04 2.03 

V2G (DoD Mup) 202.17 325.15 -0.56 527.50 25.40 22.76 2.63 
 
Note: 1 In addition to the wind and photovoltaic generation used in Chapter 7.3 and 7.4 to calculate the negative 
residual load, run-of-river power plants and geothermal are also included as non-dispatchable RES. 

 
Fossil generation for last trip charging is dominated by gas as the primary energy source 
(see Figure 7-15). Smart charging (DSM and V2G) shifts demand to hours with lower 
marginal costs. In Germany, these hours typically feature marginal power plants with 
higher CO2 emissions such as coal or lignite. The fossil generation mix of PEVs using 
DSM and V2G is therefore dominated by coal (see Figure 7-15). DSM and V2G 
increase the share of RES-E (8.06 % and 10.35 % versus 1.85 % for last trip charging), 
reduce the peak load and balance the intermittency in the grid (see Chapter 7.3 and 7.4). 
Despite this, with the given power plant park, DSM and V2G also increase total CO2 
emissions.  
 
The specific CO2 emissions for last trip charging are 495.32 g/kWh, 562.31 g/kWh for 
DSM and 575.50 g/kWh for V2G. The fraction of marginal RES generation is not large 
enough to compensate for the increase in the share of CO2-intensive base load power 
plants. Assuming an energy use of 0.2 kWh/km, the emissions per kilometer amount to 
99.84 g/km for last trip, 113.49 g/km for DSM and 116.25 g/km for V2G charging. 
These values are only slightly better than today’s most efficient passenger cars with 
combustion engines.  

 

 

Figure 7-15: Source of electricity for plug-in electric vehicles in percent 

Note: DSM: Demand-side management; V2G: Vehicle-to-grid; DoD: Depth of Dischage based battery aging. 

 
Taking the average instead of the marginal emissions results in CO2 emissions between 
53.13 g/km for last trip and 54.44 g/km for V2G charging.108  
 
  

                                                 
108 The average CO2 emissions of the total power plant park are 265.56 g/kWh, 271.76 g/kWh and  
 271.55 g/kWh for last trip, DSM and V2G charging, respectively. 
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7.5.2 Additional renewable energy  
 
In order to reduce PEV emissions, the electricity needed could be provided by 
additionally installed RES.109 To account for this scenario, 19.12 TWh, 25.01 TWh and 
25.34 of additional energy from fluctuating RES are assumed in the simulation for last 
trip charging and smart charging (DSM and V2G), respectively.110 However, even with 
additional RES-E, it is not possible to provide 100 percent of the power needed to drive 
renewably because the intermittent RES-E supply does not always match the residual 
load including PEVs’ demand.111 For last trip charging, 2.23 TWh or about 12 % of the 
electricity still have to be provided by conventional power plants. For DSM, only 0.35 
TWh or less than 1 % of controllable power is needed. For V2G, the energy from 
fluctuating generation can be more than the amount needed for PEVs (see Table 7-14).  
For the scenario with additional RES-E it is not possible to unequivocally analyze the 
mix of electricity needed from controllable power plants because of two overlapping 
effects. First, the additional RES-E replaces controllable generation, and second, a small 
fraction of electricity from controllable power plants is still consumed by PEVs. The 
approach used does not allow these two effects to be analyzed separately. The change in 
electricity produced compared to the simulation without PEVs (see Figure 7-16) 
indicates that the additional RES-E mainly replaces coal (η 40-49) and lignite (η 40-49) 
with generation from gas-fired power plants. For DSM and V2G, a smaller amount of 
coal generation is replaced and additional electricity from lignite is consumed in the 
case of V2G.  
 

 
Figure 7-16: Change in electricity production while installing additional renewable energy sources  

Note: DSM: Demand-side management; V2G: Vehicle-to-grid; DoD: Depth of Dischage based battery aging. 

 
The average emissions of the thermal power plants are 703.37 g/kWh for last trip 
charging, 714.46 g/kWh for DSM and 720.88 g/kWh for V2G. Emissions are lower for 
last trip and DSM charging compared to the simulation without PEVs (718.87 g/kWh). 
Assuming average emissions for fossil generation and zero emissions for RES-E results 
in CO2 emissions of 81.93 g/kWh for last trip charging and 10.10 g/kWh for DSM. For 
V2G, emissions for this specific case are negative (-22.14 g/kWh). Note that upstream 
emissions are not included, e.g. due to production and transport of wind turbines, 

                                                 
109 The German government has announced that the electricity for electric vehicles should come from 
 additional RES (German Government, 2010). 
110 Note, that RES-E values vary because of rounding errors (< 0.1TWh) and PEVs’ electricity demand 
 varies because of the stochastic driving behavior simulation.   
111 Note: The system is limited to Germany and exchange flows over the system’s borders are not taken 
 into account. 
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photovoltaic modules or fossil fuels and power plants.112 The resulting CO2 emissions 
per kilometer driving distance for last trip charging and DSM are 16.39 and 2.02 g 
CO2/km, respectively.  

Table 7-14: Energy and emission values for the scenario with additional renewable energy  

Generation [TWh] 
PEVs energy source  

[TWh] 
CO2 emissions 

[g/kWh] 

  Fossil    RES-E   Neg. residual load Fossil RES-E Thermal Total average
Excluding 
PEVs 179.33 325.15 -3.20 718.87 256.76 

Last trip 181.56 344.27 -5.23 2.23 16.91 703.37 245.00 

DSM 179.69 350.15 -3.28 0.35 24.71 714.46 243.48 

V2G 178.57 350.48 -2.08 -0.77 26.17 720.88 244.02 
 
 
7.5.3 Conclusions 
 
This study investigates the utilization of thermal power plants and renewable energy 
sources including and excluding the electricity demand of plug-in electric vehicles in 
Germany. Compared to approaches which use the average CO2 emissions of the power 
plant park, the methods used here allow the electricity consumption of plug-in electric 
vehicles to be directly assigned to individual power plants and therefore provide much 
more accurate results. The European CO2 emission trading system is not considered by 
the simulation approach and, theoretically, would result in additional CO2 emissions of 
zero (see Chapter 2.2.4). The conclusions in detail are:  

 
 For the case study made, but also for other electricity systems, the CO2 

emissions from the marginal power plants are higher than the average of the 
total power plant mix (McCarthy et al., 2010). More RES-E magnifies this effect 
because RES only very rarely function as marginal power plants.  

 On the one hand, smart charging or demand-side management can increase the 
share of RES acting as marginal power plants compared to “dumb or last trip 
charging. In the case study, it was possible to increase the share of RES-E from 
1.85 % to 8.06 % for DSM and to 10.35 % for V2G. On the other hand, smart 
charging also results in a higher utilization of power plants with low marginal 
costs. In the case study this resulted in a higher utilization of coal and lignite 
which generate electricity with high CO2 emissions. 

 A higher utilization of base load power plants can be positive in terms of CO2 
emissions if combined cycle gas turbines or combined heat and power are used 
(Sioshansi et al., 2011). However, the expected price spread between coal and 
gas as well as the installation of new power plants in the past (IEA, 2011) 
indicate that coal is more likely to be dispatched as the marginal power plant for 
smart charging PEVs in many power systems of the world.  

 For the case study, the positive effect in terms of higher RES utilization is not 
high enough to compensate for the higher utilization of CO2-intensive power 
plants and leads to an increase in emissions. In detail, electric driving results in 
100 g CO2 equivalent per kilometer for last trip charging and 113 and 116 g CO2 
equivalent per kilometer for DSM and V2G, respectively. This is only a minor 
emission reduction compared to conventional vehicles.  

                                                 
112 Including the RES mix of wind and photovoltaic generation results in CO2 emissions of 115.25 g/kWh 
 for last trip charging and 53.80 g/kWh for DSM. Assumptions: wind 21 g CO2/kWh and 76.2 % share 
 of fluctuating RES;  PV 106 g CO2/kWh and 23.8 % share of fluctuating RES. 
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 To improve the life cycle emissions of electric vehicles, governments, 
automotive companies and drivers are considering the installation of additional 
RES-E. This strategy would result in a significant reduction of CO2 emissions. 
In the case study, smart charging achieved a higher reduction than last trip 
charging (2 g for DSM versus 16 g CO2 equivalent per kilometer) if additional 
RES-E are installed because less controllable power is required for DSM 
charging. For V2G, emissions from energy production are negative because a 
small fraction of additional RES-E are included.   

 
This chapter confirmed the importance of the electricity source for the life cycle 
emissions from plug-in electric vehicles and showed that, even in an environment with a 
very high share of RES-E, the marginal CO2 emissions for electric driving can still be 
very high. Significant emission reductions are possible if RES-E are used to power the 
electric vehicles.  
 
 
7.6 Revenues  
 
The possible profits due to smart charging are mainly affected by the costs for 
infrastructure, the operation of a smart charging control system and battery ageing as 
well as revenues from system services, energy arbitrage or load shifting. As 
summarized in Chapter 2.3.5, at today’s costs and revenues, profits are only small or 
even negative. Future perspectives are characterized by high uncertainty about revenues 
and costs. Nevertheless, the following chapter reveals potential revenues on day-ahead 
energy markets which could act as consumer incentives. The chapter is structured as 
follows. First the PowerACE clearing prices and daily price spreads are discussed. Next, 
electricity costs are analyzed with respect to the electric driving share, yearly driving 
distance and charging strategy. Finally, a summary of the results is provided. 
 
7.6.1 Electricity price 
 
The PowerACE clearing price is used to calculate the fleet average electricity price for a 
specific charging strategy. The clearing prices are multiplied by the fleet operation and 
average fleet prices are calculated.  
 
The marginal cost base peak spread between GT (152 euros/MWh) and a coal power 
plant (81.2 euros/MWh) is 71.6 euros/MWh for the GER 2030 scenario. Including RES 
with marginal costs of zero theoretically increases the spread to 152 euros/MWh.113 In 
contrast, the differences between the average prices of the charging strategies resulting 
from the simulation conducted here are much lower. Without mark-up, DSM and V2G 
are only 2.3 ct/kWh and 3.3 – 3.5 ct/kWh better, respectively, than last trip charging. 
Using the mark-up for power plant bid calculation increases the average spread to 4.5 
and 7.0 – 7.5 ct/kWh (see Figure 7-17).  
 

                                                 
113 For the assumptions, see Figure 7-10. 
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Figure 7-17: Average electricity price for different charging strategies 

Note: The PowerACE clearing price does not include taxes and other costs or profits that are not reflected in the day-
ahead market as introduced in the PowerACE model. DSM: Demand-side management; V2G: vehicle-to-grid; Depth 
of discharge (DoD) and energy throughput (Ah) are used to account for battery ageing.  

 
Comparing the theoretical spread with the price spread realized reveals that actually 
reachable spreads are much lower. There are two main reasons: First, last trip charging 
is not necessarily conducted in the time period with the highest price. Considering the 
frequency of the residual load quantile sections shown in Figure 7-4 indicates that early 
evening is the period with the highest residual load and therefore the highest prices. 
Despite this, residual load is low about 20 % of the evening period. Hence, the 
probability of high prices in the early evening is high but low prices are also possible. 
Second, the residual load fluctuation on most days does not result in a situation with a 
high and low residual load, which is necessary for a short-time storage to realize profits. 
The base and peak residual load depend on the RES-E fluctuation. For Germany – 
dominated by wind with event-based characteristics – longer periods with high or low 
residual load are typical. Photovoltaic generation correlates with the load, which buffers 
the base peak residual load spread.  
 
The frequency of the maximum obtainable price spreads over one day calculated by the 
PowerACE simulation is given in Figure 7-18. The average spread is 57 euros/MWh 
and 81 euros/MWh with and without mark-up price, respectively. Spreads over  
100 euros/MWh are infrequent in the simulation without mark-up. Most daily spreads 
are within the range of 40 – 60 euros/MWh. The spread between DSM and last trip 
charging (see Figure 7-17) therefore seems reasonable considering that last trip charging 
is not exclusively realized in the hour with the highest prices and DSM with the lowest 
prices of one day. In the simulation including the mark-up price, maximal daily price 
spreads over 100 euros/MWh become more frequent. In particular, price spreads vary 
more compared to the simulation without mark-up and compared to values observed in 
the 2008 and 2009 EEX market (see Appendix A.5, Figure A 18).  
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Figure 7-18: Frequency of maximum daily electricity price spread 

Note: PowerACE simulation results with charging strategy: Demand-side management (DSM); GER: Germany. 

 
7.6.2 Electricity costs 
 
Beside the price spread, driving behavior, battery size and electric driving share all 
influence the savings due to smart charging. A higher yearly electricity demand 
increases the possible revenues of smart charging.  
 
For last trip charging, the electric driving share is lower compared to smart charging 
(include DSM and V2G). This is due to different infrastructure assumptions (see 
Chapter 7.2). Furthermore, battery size and yearly driving distance affect the yearly 
electricity consumption. Figure 7-19 shows the electric driving share over the yearly 
driving distance for the two assumptions made about charging opportunities. The 
variation at constant driving distance and charging strategy indicates the different 
electric driving share due to the different battery size in the various PEVs. The gain in 
driving share is clearly visible for a battery size of 4.5 kWh and 12 kWh, whereas this 
starts to decline again for larger batteries. Naturally, more frequent charging also 
increases the electric driving share. Because of more frequent longer trips, a higher 
yearly driving distance reduces the electric driving share. Hence, using average driving 
shares for the cost calculation results in overestimating the savings in operation 
expenditures for higher driving distances. 114  
  

                                                 
114 Note: A higher driving distance still reduces the total costs of ownership compared to gasoline 
 vehicles. Therefore, the effects on the results (section 4.1.2) with criteria defined in  
 (Biere et al., 2009) using average assumptions are small.   
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Figure 7-19: Electric driving share for last trip and smart charging 

Note: Sample size 1203 vehicles; stochastic driving simulation and vehicles with different battery size (see section 6) 
cause variations even at constant yearly driving distances; Charging opportunities: Smart charging permanent 
available; Last trip charging (LT) only after the last trip. 
 
Electricity costs are a linear function of the electricity demand for DSM and last trip 
charging (for DSM see Figure 7-20). This is intuitive for last trip charging because no 
dispatch decision is possible. For DSM, a larger battery could facilitate a longer grid 
management time and therefore the opportunity for additional savings. However, 
additional DSM savings with a larger battery are not obtained with the batteries 
implemented and savings remain a function of the demand (see Appendix A5,  
Figure A-17). For V2G, savings are affected by battery size and electricity demand. A 
larger battery allows higher energy arbitrage which results in a higher income and 
reduces the average price paid per kWh. Figure 7-20 shows the savings for smart 
charging compared to the costs for last trip charging with the same electricity demand.   
 

 
Figure 7-20: Savings for smart charging compared to instant charging after each trip.  

Note: Electricity prices and driving behavior result from a PowerACE simulation with price mark-up and battery 
ageing based on depth of discharge; DSM: Demand-side management; V2G: Vehicle-to-grid; Numbers depict battery 
size in kWh. 
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For DSM, yearly savings are between 50 and 100 euros for PHEVs (25) with a 4.5 kWh 
battery. The PHEVs with a 12 kWh battery achieve savings between 100 and 120 euros. 
For the BEV, a higher efficiency is assumed. Therefore, the demand and savings of the 
BEV with a 15 kWh battery are lower than PHEVs’ (12 kWh) savings and demand. For 
V2G, savings are between 100 and 250 euros depending on battery size and yearly 
electricity demand. The costs for battery degradation are considered in this estimation, 
but additional costs – e.g. for smart charging equipment and the operation of PEVs pools 
– are not included and are expected to be disproportionately higher for V2G. 
 
7.6.3 Conclusions 
 
This chapter indicated that PEVs can realize savings due to smart charging. Price 
spreads and savings due to demand response increase compared to today’s wholesale 
markets. However, revenues are still relatively low and do not encourage the high 
investments needed for the smart charging technology. Therefore – as pointed out in 
Chapter 2.3 – components available in the vehicles should be used to implement smart 
charging. The extra savings made by switching from DSM to V2G charging are lower 
than 50 euros/a for small batteries. Taking additional V2G investment for power 
electronics and uncertainty about the battery ageing into account indicates that DSM 
could be more attractive. 
 
Comparing the savings in operating costs due to electric driving with a gasoline vehicle 
and considering different battery sizes (influences the electric driving share) and 
charging strategies reveals that major savings can be achieved with electric driving (see 
Figure 7-21).  
 

 
Figure 7-21: Operational expenditures for different charging strategies.   

Assumptions: Electricity prices include PowerACE clearing prices plus a fixed price component of 15 ct/kWh. 
Gasoline vehicle: efficiency 5.8 l/100 km; gasoline price 1.8 euros/l; DSM: Demand-side management;  
V2G: vehicle-to-grid. 
 
The significance of the charging strategy used is small compared to the switch from 
gasoline to electricity. Hence, to maximize savings, consumers should first increase 
their electric driving share. In terms of revenues, smart charging only seems to be 
attractive if it does not restrict driving and additional investments are low. 
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The price calculation used implies a specific scenario. A different development of fuel 
or CO2 prices could affect the results and increase price spreads. The used mark-up 
takes costs from underutilized power plants into account, but strategic bidding behavior, 
which could also increase price spreads, is not included in the simulation. Further, 
wholesale prices only account for a fraction of about 25 % of today’s retail electricity 
prices in Germany. Hence, to enhance consumer incentives, fixed price components 
such as grid fees and taxes could also be changed to variable price components. Note: 
This also results in a price risk for consumers and could reduce the acceptance for RTP-
based electricity rates.  
 
 
7.7 Sensitivity analysis  
 
The results are associated with a high degree of uncertainty because the generation time 
series of fluctuating RES has such a large impact as do the assumptions on the 
development of the vehicle fleet and the electricity system. Therefore, a sensitivity 
analysis is key to ensure a broader basis of the results. First, RES generation time series 
are analyzed for additional weather years. Then, the grid connection power as well as 
battery size and costs are investigated. After this, mobility behavior and infrastructure 
aspects are examined to account for possible uncertainties. Finally, the share of each 
fluctuating generation technology in total fluctuating generation is varied to investigate 
the storage capability for specific RES technologies.  
 
7.7.1 Time series  
 
The generation time series of fluctuating RES-E are affected by the specific weather 
conditions in a simulation reference year in terms of fluctuation and yearly generation. 
In the following, the analysis focuses on the fluctuation of RES-E. Therefore, the yearly 
energy generation and load are kept constant as defined in the GER 2030 scenario. This 
enables an exclusive analysis of the effect of the fluctuation characteristic. Data from 
two different sources is available for the offshore time series. The scenarios GER 2007 
and GER 2007 (IWES) are distinguished to account for the two methods  
(Schubert, 2011 and IWES, 2011) used to generate the data (see Chapter 3.2). 
 
The ratio of 1-(cfneg(PEV)/cfneg(RS))

115
 or the negative residual load consumed due to PEVs 

charging and the ramp rate factor are used as the main indicators to describe the 
sensitivity of the different time series. The results vary between 8 % and 12 % for the 
negative residual load consumed (see Figure 7-22). In the case of smart charging, there 
is greater variation in the results for different reference years. The highest consumption 
of the negative residual load of about 64 % is possible with 2008 data whereas only  
50 % of the negative residual load can be consumed by PEVs for the 2009 time series. 
For V2G, surplus RES-E consumption is between 63 % in 2009 and 82 % in 2008. For 
all smart charging cases the year 2008 results in the highest and 2009 in the lowest 
consumption of negative residual load. Comparing the GER 2007 and GER 2007 
(IWES) results reveals that the method used to generate the offshore time series affects 
the negative residual load that can be consumed. The values range from 0.8 percent 
points for DSM to 2.7 and 3.7 percent points for V2G.   
 

                                                 
115 Here, PEV describes one of the charging strategies: last trip, DSM or V2G.  



RESULTS 

 

103

 
Figure 7-22:  Consumption of negative residual load and ramp rate factor for different time series 

Note: V2G includes the price mark-up; DSM: Demand-side management; V2G: Vehicle-to-grid; Depth of discharge 
(DoD) and energy throughput (Ah) are used to account for battery ageing; IWES: Fraunhofer Institute for Wind 
Energy and Energy System Technology; GER:Germany; RES-E: Electricity from renewable energy 
sources. 
 

For the ramp rate factor the 2007 and 2009 values are 2 % to 10 % higher than the 
reference values of 2008. Comparing GER 2007 and GER 2007 (IWES) shows that for 
smart charging, GER 2007 (IWES) values are about 5 % lower than for GER 2007. 
Details on all the evaluation parameters introduced in Chapter 3.3 are available in the 
Appendix A6. 
 
7.7.2 Grid connection power 
 
The grid connection power determines the time needed to discharge and recharge PEVs’ 
batteries. Comparing the time necessary for completely recharging a typical PEV 
battery and for filling a gasoline fuel tank shows that this takes longer for PEVs at 
standard residential grid connections. Even though the majority of trips are short and 
higher power would therefore only slightly reduce the charging time (Wietschel, 2009), 
high power grid connections are still being discussed as an important aspect for PEVs. 
Apart from reducing the required charging time, this is also being considered to extend 
the range of BEVs. BEVs using high power charging compete with PHEVs and BEVs 
using battery swapping. The first cost estimations comparing PHEVs with smaller 
batteries and BEVs with extended high power or battery swapping infrastructure 
indicated cost advantages for the PHEVs (Kley, 2011). From the perspective of the 
distribution grid operator, high power charging results in a greater workload on the grid 
and higher grid infrastructure costs. Further, high load peaks at system level require 
additional peak capacity. The effects of different grid connection power values are 
therefore very relevant when analyzing PEVs as part of the electricity system.  
 
The simulation model used is hourly resolved. This implies restrictions when analyzing 
high power values because only hourly mean values can be used. To take this aspect 
into account, the hourly and quarter-hourly time resolution results are compared with 
each other for last trip charging (Appendix A6. In the GER 2030 reference scenario – 
where the grid connection power is 4 kW for PHEVs and 8 kW for BEVs – the increase 
of the PEV peak load is about 1 %. For a grid connection of 44 kW, differences are in 
the range of 20 %. For high power values therefore the quality of the results is restricted 
and real values are expected to be higher. 
 
To analyze the effect of different grid connections, power values of 2 kW, 12 kW,  
22 kW and 44 kW are applied for all PEVs in the GER 2030 scenario simulation. The 
reference scenario is the one defined in Chapter 6. Evaluating the result parameters (see 
Figure 7-23 and Appendix A6 shows that the consumption of the negative residual load 
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is only slightly affected by different power values. For DSM charging with 2 kW grid 
connection, the ratio of cfneg (PEV)116 to cfneg (RS)117 is reduced by 2 percent points 
compared to the reference case. For V2G, the reduction of the negative load 
consumption is 3.7 percent points for V2G with DoD battery ageing and 3 percent 
points for V2G Ah. If the grid connection power is changed stepwise from the reference 
case to 44 kW, the consumption of negative residual load remains the same or is only 
slightly increased. Considering that smart charging with a lower grid connection power 
of 2 kW reduces the electric driving share by about 1 percent points compared to the 
reference case118 means grid connection power can be rated as a parameter which only 
has a small influence on negative residual load consumption.  
 

 
Figure 7-23: Comparing results for varying grid connection power 

Note: V2G includes the price mark-up; DSM: Demand-side management; V2G: Vehicle-to-grid; Depth of discharge 
(DoD) and energy throughput (Ah) are used to account for battery ageing; The reference scenario uses a grid 
connection power of 4 kW for plug-in hybrid electric vehicles (PHEVs) and 8 kW for battery electric vehilces 
(BEVs) in average the grid connection power is 4.5 kW. 

 
As a consequence of the method used, smart charging shows very low variations in peak 
load due to the changed grid connection power. For last trip charging, increasing power 
values also increases the peak load up to a charging power of 22 kW. For the 44 kW 
simulation, the maximum peak load declines compared to 22 kW. Note, the model is 
hourly resolved and uses hourly mean values. One reason for this reduction in peak load 
between 22 kW and 44 kW is that, besides the amplitude, power also affects the time 
course of the PEVs’ last trip charging curve. For last trip charging, a higher connection 
power directs the demand to shift to the return time of the trip as indicated in  
Figure 7-24. A low grid connection power widens the PEVs’ load curve. Hence, adding 
the PEVs’ load curve to the residual load can result in a lower peak load, even if 
charging power is increased.  
  

                                                 
116 Negative capacity factor including PEV demand. 
117 Negative capacity factor for the residual load (RS) excluding PEV demand.  
118 Detailed driving shares for the simulation are given in the Appendix A5. 
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Figure 7-24: Effect of grid connection power on the PEVs’ load curve for last trip charging  

Note: The reference scenario uses a average grid connection power of 4.5 kW. 

 
To sum up, a higher grid connection power (> 12 kW) does not increase the 
contribution PEVs can make to integrating RES-E in the GER 2030 scenario. This can 
be explained by the power to energy ratio of storage in the analyzed scenario and for 
PEVs in general. The high power does not allow the load management time or load 
shifting period to be significantly increased. The load shifting potential is not restricted 
by the power but by the energy available for load shifting and the battery size as shown 
in the following sections.  
 
7.7.3 Battery costs and size 
 
The costs for mass-produced automotive lithium batteries are one of the most sensitive 
parameters for the total costs of ownership calculation (e.g. see Kley, 2011). Because of 
the relatively low production volume today and uncertainty about the precise 
technology in the future, there is a large bandwidth of cost development assumptions. 
Therefore, the assumed specific investments in batteries is adopted by plus and minus 
20 % and 40 % in the GER 2030 reference case. The cost variation only affects the V2G 
charging case. Results on the electric driving share, the grid management time as well 
as last trip and DSM charging remain unchanged despite varying battery costs.  
 
Reducing the battery costs increases the share of negative residual load that can be 
consumed and reduces the ramp rate factor (see Figure 7-25). In terms of the negative 
residual load consumed, DoD ageing is more sensitive to both cost increases and 
decreases. The sensitivity to a cost increase is higher for DoD ageing than for Ah ageing 
with regard to ramping. On the contrary Ah battery ageing is more sensitive than DoD 
ageing to a cost decrease. 
 

 
Figure 7-25: Comparing results for varying battery costs 

Note: V2G includes the price mark-up (Mup); V2G: Vehicle-to-grid; Depth of discharge (DoD) and energy 
throughput (Ah) are used to account for battery ageing. The reference scenario uses a average battery price of  
258 euros/kWh. 
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For DoD-based battery ageing, the energy fed back into the grid increases from  
4.4 TWh in the reference case to 5.6 TWh and 7.1 TWh with a 20 % and 40 % cost 
reduction, respectively. For Ah with 6 TWh in the reference case, the same cost 
reduction results in 7.3 TWh and 8.7 TWh of electricity fed back to the grid. The 
sensitivity regarding the integration of RES-E is not very high but detectable and differs 
depending on the ageing method used to model PEVs’ batteries.  
 
The assumptions about battery size in the GER 2030 scenario are restrictive and small 
batteries in combination with PHEVs are favored. Nevertheless, vehicle concepts with 
bigger batteries are also part of the research discussion on PEVs. Consumer surveys 
indicate that the electric driving range and therefore the battery size are of great interest 
(Peters al., 2011). Varying the battery size therefore provides valuable results for this 
analysis compared to other research. To analyze the battery size variation, the total fleet 
is modeled with 15 kWh and additionally with 30 kWh of usable battery storage for all 
vehicles. In the reference case GER 2030, mainly 4.5 kWh (PHEV 25) and 12.5 kWh 
(PHEV 57) of usable storages are assumed. 
 
Battery size affects the electric driving share of PEVs. Especially for last trip charging, 
an increase in battery size increases the electric driving share. Compared to the 
reference case, the electric driving share of 53.7 % increases to 69.6 % with 15 kWh 
batteries and to 85.6 % with 30 kWh batteries. For smart charging or a full availability 
of infrastructure, the share increases from 70.3 % to 79.8 % and to 89.3 %, respectively. 
This affects the electricity demand of the PEV fleet and, in the case of smart charging, 
the electricity available for load shifting.119  
 
As explained, bigger batteries can increase the negative residual load consumption for 
all charging strategies. Compared to DSM, V2G DoD charging results in a 
disproportionately large and V2G Ah in a disproportionately low increase (see  
Figure 7-26). In terms of DoD ageing, not only the battery size but also the battery cost 
function is affected by a change in battery size. The negative residual load consumption 
increases even more for V2G DoD due to the energy available at lower costs.  
 
The same tendency is observed for the smart charging ramp rate factor. The highest 
reduction with 17 % is observed for V2G DoD with 30 kWh batteries. For last trip 
charging, the ramp rate factor rises for both simulated cases. The reduction of the ramp 
rate factor for a 30 kWh battery compared to a 15 kWh battery could be caused by a 
higher diversity in the state of charge after the last trip. For a battery of 15 kWh, most 
batteries are empty after the last trip. Hence, the charging time is the same for many 
PEV agents. This causes high simultaneity in stopping the charging process. Overall, 
differences in the ramp rate factor for last trip charging are only in the range of 2 % 
compared to the reference values.   
 

                                                 
119 The PEVs’ demand for last trip charging is 19.2 TWh (reference), 24.8 TWh (15 kWh) and 30.5 TWh 
 (30 kWh) and 25.0 TWh (reference), 28.8 TWh (15 kWh) and 32.3 TWh (30kWh) for smart charging.  
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Figure 7-26: Comparing results for different battery sizes 

Note: V2G includes the price mark-up; DSM: Demand-side management; V2G: Vehicle-to-grid; Depth of discharge 
(DoD) and energy throughput (Ah) are used to account for battery ageing. Numbers depict battery size in kWh. The 
reference scenario uses a average battery sitze of 10.3 kWh. 

 
The sensitivity of the battery size to the integration of RES-E is very high. Nevertheless, 
from an economic point of view, PEV types with smaller batteries are more likely  
(Plötz et al., 2012). Therefore, varying the battery size is considered to be less relevant 
compared to parameters such as RES-E time series.  
 
7.7.4 Mobility behavior  
 
Drivers’ mobility behavior influences the availability of PEVs in the electricity grid. 
The typical mobility behavior of current vehicles was discussed in Chapter 4.2 and 
possible PEV users selected. This selection is based on economic and infrastructure 
aspects but only represents one possible scenario for the future. Therefore, the 
sensitivity of mobility behavior is also investigated using the following variations.  
 
As well as the reference scenario using filtered data of the MID survey, driving data is 
used from the MOP survey. For MOP data, deterministic and stochastic driving are 
distinguished. The stochastic data is implemented using probabilities as presented for 
the MID survey in Chapter 4.2.3 and Chapter 5.4.7. The MOP data used is unfiltered 
and therefore the electricity demand and yearly driving distance are smaller than for the 
MID data used. Additionally, a commuter and a stationary storage scenario are 
analyzed. For the commuter scenario on weekdays, a first trip starting in the morning at 
7:30 am and a second trip in the late afternoon at 5:00 pm are assumed for all PEVs 
defined in the GER 2030 scenario. The driving distance is uniformly 30 km for each of 
the two trips. No PEV trips are assumed at weekends. No driving is assumed to occur in 
the stationary storage scenario. Here, only V2G charging is conducted. The number of 
PEVs equals the number of stationary storage devices with the battery size and grid 
connection power defined in the GER 2030 reference scenario. 
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Figure 7-27: Comparing results for different mobility behavior 

Note: V2G and stationary storage includes the price mark-up; V2G: Vehicle-to-grid; Depth of discharge (DoD) and 
energy throughput (Ah) are used to account for battery ageing; MOP: German Mobility Panel;The reference 
scenario uses mobility behavior according to Mobility in Germany 2008 (MID, 2010). 
 
Analyzing the results reveals that the deterministic and stochastic MOP data are roughly 
the same for smart charging (see Figure 7-27). For last trip charging, the deviation is 
higher in electricity demand – 15.78 TWh for the deterministic and 16.43 TWh for the 
stochastic data – and the negative residual load consumed – 17.0 % for the deterministic 
and 15.4 % for the stochastic data. This indicates that the last trip for the stochastic data 
does not perfectly equal the last trip for the deterministic data. This is because the 
stochastic method used does not account for combinatorial probabilities in order to 
simplify the mobility simulation. Results for smart charging are not significantly 
affected.  
 
For the commuter scenario, last trip charging deviates significantly from the reference 
case. The electric driving share increases to 78.2 %. With a yearly driving distance of 
15,180 km per vehicle, the total PEV fleet’s electricity demand amounts to 27.6 TWh. 
The negative residual load consumed is only 0.5 % and the ramp rate factor increases 
noticeably from 2.3 % to 3.7 %. Further, the simultaneous arrival time after the last trip 
results in a peak load of 151.65 % compared to the GER 2030 total system load. For 
smart charging, the electric driving share is 92.2 % and the electricity demand is about 
32.6 TWh. For all smart charging strategies analyzed, the consumption of the negative 
residual load is slightly lower than in the reference case. The ramp rate factor remains in 
the same range as for the reference scenario. This shows the smart charging mechanism 
applied is efficient to avoid simultaneous actions of the vehicle fleet.  
 
The results for the stationary storage simulation are unexpected. One would expect that 
driving restricts the capability of PEVs to provide storage capacity for the electricity 
system. In contrast, the results indicate a lower consumption of negative residual load 
and higher ramp rates for stationary storage. For both V2G ageing assumptions, the 
restrictions due to mobility behavior are lower than the gains due to the demand 
available for load shifting. The energy fed back to the grid is 7.4 TWh and 7.3 TWh for 
V2G DoD and Ah, respectively. In the reference case, the energy fed back is 4.4 TWh 
for V2G DoD and 6.0 TWh for V2G Ah. This indicates that restrictions due to mobility 
behavior are higher for DoD-based battery ageing. 
 
The mobility behavior affects the contribution of PEVs to balancing fluctuating RES-E. 
Variations are not very high for smart charging and are mainly caused by the changing 
energy demand due to different mobility behavior. The commuter scenario is found to 
be highly sensitive for last trip charging because of the strong simultaneousness. 
Comparing stationary storage with PEV storage indicates that the value of the demand 
available for load shifting due to driving is higher than the V2G restrictions caused by 
mobility behavior.   
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7.7.5 Infrastructure  
 
Infrastructure is a very important aspect, especially in the case of BEVs. Public 
infrastructure is necessary for acceptance reasons, to convince consumers that running 
out of fuel is very unlikely (Peters et al., 2010) even though (Kley, 2011) shows that 
public infrastructure usually does not recoup its investment and that charging at home is 
favorable from an economic point of view. Constantly available infrastructure is 
assumed in the reference scenario GER 2030. Additional simulations with a charging 
opportunity at home and at work as well as only at home are conducted to account for 
the sensitivity of available infrastructure. 
 
Infrastructure is assumed to be available for last trip charging and plays no other role in 
this case. For smart charging, infrastructure availability affects the electric driving 
share.120 Because of the assumption that DSM and V2G are only possible if the parking 
time is greater than the charging time, the electric driving share is the same for DSM 
and V2G (see right side of Figure 7-28). The driving share varies slightly in general and 
for smart charging because of the simulation method. The electric driving share is about 
70 % in the case of overall infrastructure availability and 66 % if only home charging is 
possible. One would expect that the reduced availability of infrastructure reduces 
electricity demand and that therefore the consumption of negative residual load is lower 
as well. But the opposite is true for DSM in the conducted simulation (see DSM values 
on the left side of Figure 7-28). The reason for the increase in the negative residual load 
consumed is the energy available in a load management period. Refilling the vehicle 
after each trip during the day reduces the energy demand after the last trip of the day. 
Because of the much higher grid management time after the last trip (see Chapter 7.2.2), 
a lower state of charge after the last trip can be of value for the grid integration of RES. 
Obviously, this would also result in higher gasoline use and higher operation 
expenditures. 
 
The reference case allows a better integration of the negative residual load for V2G. The 
higher availability of infrastructure increases the flexibility in managing PEV storage 
capabilities. If high price spreads are available, energy can be fed back to the grid and 
the electricity demand available to consume the negative residual load is higher.  
 

 
Figure 7-28: Sensitivity of infrastructure to negative load consumption and electric driving share 

Note: V2G includes the price mark-up; V2G: Vehicle-to-grid; Depth of discharge (DoD) and energy throughput (Ah) 
are used to account for battery ageing; The reference scenario uses permanent available charching infrastructure. 
 

                                                 
120 Note: It is assumed that vehicles plug-in after each trip to maximize the electric driving share and to 
 therefore minimize operating expenditure. 
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In conclusion, infrastructure availability has a small effect on the negative residual load. 
The negative residual load that can be consumed varies between 64.2 % and 64.7 % for 
DSM and between 78.6 % and 76.8 % for V2G.   
 
7.7.6 Share of fluctuating generation technology   
 
The fluctuation of RES-E is crucial for analyzing the contribution of storage devices in 
electricity systems with high shares of RES. The previously conducted analyses on the 
CA 2030 scenario and the GER 2030 scenario with different generation and load time 
series underline the importance of the resulting residual load for the dispatch of storage 
and PEVs. Besides the time series, the energy produced from different fluctuating 
generation technologies or the capacity installed also strongly affect the residual load 
curve. To account for this issue and to further investigate the effects of photovoltaic 
versus wind generation, the share of photovoltaic power in total fluctuating energy 
generation is varied. The energy produced from wind and photovoltaic is 239 TWh in 
the GER 2030 scenario. Keeping the total energy generation of fluctuating RES-E 
constant, the share of photovoltaics is varied between 0 % and 45 %.  
 
The results shown in Figure 7-29 indicate that the negative residual load is strongly 
affected by the composition of fluctuating generation technologies. Starting with a zero 
percent share of photovoltaic generation – here 239 TWh total fluctuating generation 
are provided by wind onshore and offshore – the negative residual load declines from 
4.8 TWh to 1.9 TWh in the reference scenario GER 2030. For the reference scenario the 
share of PV is 24 % of the fluctuating electricity generation. Increasing this share to  
45 % makes the negative residual load increase to 10.2 TWh. This indicates the limited 
capacity credit of photovoltaic generation.  
 

 
Figure 7-29: Negative residual load for different photovoltaic shares 

Note: RES-E PV 0.0 %: wind onshore 47.8 % offshore 52.2 %; RES-E PV 15.0 % : wind onshore 40.6 % offshore 
44.4 %; Reference: PV 23.8 % wind onshore 36.4 % offshore 39.7 %; RES-E PV 30.0 %: wind onshore 33.5 % 
offshore 36.5 %; RES-E PV 45.0 %: wind onshore 26.3 % offshore 28.7 %. V2G includes the price mark-up;  
PV: Photovoltaic; RES: Renewable energy sources; V2G: Vehicle-to-grid; Depth of discharge (DoD) is used to 
account for battery ageing: PEVs: Plug-in electric vehilces. 
 
The remaining negative residual load and the percentages of negative residual load that 
can be consumed are presented in Figure 7-30. The highest percentage of negative 
residual load can be used for DSM in the reference scenario GER 2008. For V2G, the 
scenario with 30 % fluctuating PV generation enables the biggest integration of 
negative residual load with 82 %. In absolute values, the RES-E PV 45 % scenario with 
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the highest negative residual load allows the largest amount of fluctuating energy to be 
integrated. In this case more than 20 % of the PEV demand can be covered by RES-E.   
 

 
Figure 7-30: Comparing results varying the share of fluctuating generation technologies 

Note: RES-E PV 0.0 %: wind onshore 47.8 % offshore 52.2 %; RES-E PV 15.0 % : wind onshore 40.6 % offshore 
44.4 %; Reference: PV 23.8 % wind onshore 36.4 % offshore 39.7 %; RES-E PV 30.0 %: wind onshore 33.5 % 
offshore 36.5 %; RES-E PV 45.0 %: wind onshore 26.3 % offshore 28.7 %. V2G includes the price mark-up;  
PV: Photovoltaic; RES: Renewable energy sources; V2G: Vehicle-to-grid; Depth of discharge (DoD) is used to 
account for battery ageing: PEVs: Plug-in electric vehilces. 
 
Scenarios with a higher share of photovoltaic generation result in a higher ramp rate 
factor of the residual load. For smart charging, ramp rate reduction increases with 
higher photovoltaic generation shares. This indicates a good capability of PEVs to 
reduce ramping caused by photovoltaic generation.  
 
From the perspective of the total electricity system, it is preferable to have a RES 
generation share which results in a low negative residual load. The reference scenario 
results in the lowest residual load under the time series and the total amount of RES-E 
assumed here.   
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7.7.7 Conclusions 
 
The analysis reveals that especially the RES generation time series and technology 
shares are highly sensitive. Battery size also has a strong influence on the contribution 
of PEVs to balancing fluctuating generation. The conclusions in detail are: 

 
 The consumption of the negative residual load varies strongly between different 

weather years, by 14 % between 2008 and 2009.  
 The grid connection power has a stronger effect on system load in the case of 

last trip charging. Besides the increase in peak power, a shift of the load profile 
to the arrival time of the last trip can be observed. The sensitivity to grid 
connection power is of low relevance for smart charging.  

 Battery costs and size are most sensitive in DoD-based battery ageing. A 40 % 
cost increase reduces the negative residual load consumed by about 5 %, 
whereas a 40 % cost reduction increases the negative residual load consumption 
by 4 %. For the same cost variation, the ramp rate factor varies between minus 
15 % and plus 10 %.  

 Increasing the battery size to 30 kWh for all PEVs in the vehicle fleet results in 
an increase in the negative residual load consumed, especially for V2G. V2G 
DoD allows for the maximum 12 % increase of negative residual load 
consumption. However, bigger batteries seem relatively unlikely from a cost 
perspective.  

 The sensitivity of mobility behavior is lower for smart charging. For last trip 
charging, uniform driving behavior as is expected for work commutes strongly 
increases ramp rates and the peak load of the PEV fleet.  

 Comparing stationary and mobile storage reveals that mobility behavior 
restricts V2G performance. But the gain in load shifting capability due to the 
electricity demand of electric driving is higher than these restrictions. 

 Comparing pervasive charging infrastructure with home charging only reduces 
the electric driving share by 4 percent points, from 70 % to 66 %. The 
infrastructure sensitivity to the negative residual load is low.  

 The negative residual load consumed varies between 40 % and 64 % for DSM 
and between 50 % and 82 % for V2G DoD depending on the generation 
technology mix. Together with the RES generation time series, the technology 
mix of fluctuating generation therefore has the highest influence on the negative 
residual load consumed.  
 

The sensitivity analysis underlines the high importance of the RES technology mix and 
the weather years for the contribution PEVs’ batteries can make to balancing fluctuating 
generation. 
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7.8 Model limitations  
 
The PowerACE simulation model can only approximate the electricity market and 
power system. Assumptions have to be made to answer the research question, especially 
regarding the specifications and market penetration of plug-in electric vehicles as well 
as the installed capacity of fluctuating generation from solar and wind. Besides the 
scenario assumptions (Chapter 6), the simulation model faces the following main 
method-related limitations: 

 
 Perfect transmission is assumed within the investigated system. A detailed 

simulation of the German electricity grid is beyond the scope of this thesis due 
to the high complexity and large amounts of data needed. In many cases, grid 
extensions or generation curtailments seem economically favorable compared 
to the installation of storage devices (DENA, 2010). The distribution grid is 
modeled by applying a simplified approach (Chapter 5.4) which is not able to 
account for the complexity and diversity of the German grid, but which can 
serve as a basis for further research. 

 The management mechanism for distributed devices applied in the simulation 
model does not account for the complexity and communication structure of 
smart grids. The approach further would involve retail electricity consumers 
being treated individually and receiving individual price signals.  

 The time resolution of the main model is hourly. Therefore, all presented results 
indicate hourly mean values. Especially in the case of peak power, this 
methodological restriction can lead to power values being underestimated.  

 The research focus here is on operation scheduling. Perfect foresight is assumed 
for mobility behavior, fluctuating generation and system load. In practice, this 
is obviously not the case and system balancing mechanisms are needed to 
continuously balance supply and demand. System balancing and forecast 
deviations are not considered.  

 For plug-in electric vehicles, it is assumed that vehicles are connected to the 
grid while parked. Furthermore the time between trips is known and used for 
demand-side management. Consumer acceptance of making the vehicle 
available and reacting to price incentives is not considered. Therefore, the 
results represent an idealized case.  
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8 Conclusions and outlook 
 
The analysis conducted describes how fluctuating generation from renewable energy 
sources affects the load curve and how plug-in electric vehicles can be used to balance 
the resulting residual load. Further, marginal CO2 emissions and monetary benefit due 
to smart charging are discussed. 
 
An agent-based method was developed on the basis of the electricity market model 
PowerACE (Sensfuß, 2007) and applied to investigate a 2030 scenario for Germany and 
California. The PowerACE model provides a price signal as a basis to control the 
operation of plug-in electric vehicles. Automated demand response using one price as a 
control signal result in a high simultaneousness of operation because the objective 
function of all players is to minimize costs. This interrelation is observed in the 
simulation model while using time-of-use rates and in California where time-of-use 
prices are applied to control plug-in electric vehicles at present (Schey et al., 2012). 
Therefore, individual price perspectives and variable grid fees were used to overcome 
the problem of simultaneous reaction in the simulation. In current practice different 
treatment of retail customers is not possible. However, the applied control mechanism 
considers the overall electricity market and distribution grid aspects and allows to 
achieve an operation of flexible demand close to the social optimum. 121  
 
Vehicles are simulated as agents considering individual driving behavior and battery 
discharging costs. Driving behavior defines the main smart charging optimization 
parameters, the time period between trips and the energy taken from the storage. To 
model driving behavior, trips are generated using probabilities drawn from a mobility 
survey (MID 2010) and adjusted to account for particularities of electric vehicle users 
(Biere et al., 2009). This allows to assign an individual driving behavior data set to each 
vehicle agent participating in the simulation. Small deterministic data sets or average 
driving behavior applied for a large fleet of vehicles can result in simultaneous charging 
operation and is therefore not suited to model the operation of electric vehicle fleets.  
Considering battery degradation is of high relevance to model vehicle-to-grid but faces 
uncertainties caused by the high complexity of battery aging processes. To calculate the 
discharging costs, two different simplified approaches, considering energy throughput-
based aging (Peterson et al., 2009) and depth of discharge-based aging (Rosenkranz, 
2003) are applied. Depth of discharge-based aging results in swallow cycling and a 
lower amount of energy fed back to the grid compared to the energy throughput method. 
Further depth of discharge-based aging increases the complexity of the optimization 
algorithms because the state of charge affects discharging costs. To account for depth of 
discharge-based battery aging therefore a graph search optimization algorithm 
scheduling the charging and discharging behavior is applied.  
 
Within the framework of a research project the algorithm to schedule the charging 
operation of vehicle agents within the simulation is also implemented in a Volkswagen 
Golf Variant “TwinDrive” plug-in hybrid electric vehicle. This enables to test smart 
grid software applications in a simulation environment and to investigate how smart 
grid applications affect the power system and the electricity market. Vice versa, the 
value of a specific smart grid application and the interrelation with other applications 
can be analyzed with the introduced simulation model. This proves a main advantage of 
agent-based simulation, which permits a customized approach and allows to solve a 
complex problem while including control algorithms implemented in real smart grid 
applications.  
                                                 
121 The multi-agent simulation do not allow for a mathematical provable optimum. 
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Investigating the contribution of plug-in vehicles integrating fluctuating generation 
requires measures to describe the initial and the resulting situation of the power system. 
The high diversity of time-resolved generation requires parameters which go beyond the 
energy production per year or the base and peak power. A novel set of parameters– 
defined in this thesis – enables a more precise description of the load duration curve, 
ramp rates and fluctuation. Analyzing scenarios for both the German and Californian 
power system indicated that it is still difficult to capture fluctuation with a few 
significant parameters. Nevertheless, the introduced method does allow a more detailed 
characterization and comparison of electricity system scenarios and provides a good 
basis for energy analyses of high levels of fluctuating generation. 
 
Three main evaluation parameters were observed to quantify plug-in electric vehicles’ 
contribution to balancing fluctuating generation: the change in the minimum residual 
load, the percentage of negative residual load that can be consumed, and the reduction 
of residual load ramp rates. For all three aspects, plug-in electric vehicles make a 
positive contribution to improving the grid integration of electricity from fluctuating 
renewable energy sources. For demand-side management in the 2030 scenario for 
Germany, the minimum residual load is reduced by 22 % or 7.4 GW; 64 % or 1.2 TWh 
of the negative residual load can be consumed and the ramp rate factor is reduced by  
25 %. Including vehicle-to-grid services allows better grid integration than demand 
response only. Here, for the same scenario with depth of discharge-based battery aging, 
the minimum negative residual load is reduced by 37 % or 12.6 GW; 79 % or 1.5 TWh 
of the negative residual load can be consumed and the ramp rate factor is reduced by  
41 %. However, because of disproportionately higher costs for vehicle-to-grid and high 
uncertainty regarding battery ageing, demand shifting is still expected to be the more 
promising mid-term charging strategy. 
 
The life cycle CO2 emissions from plug-in electric vehicles are mainly determined by 
the electricity source. Applying average CO2 emissions of the total power plant mix 
results in a significant CO2 reduction compared to vehicles using fossil fuels. This is 
caused by the high level of renewable generation assumed in the simulation scenario. 
Analyzing the precise emission increase due to the additional demand indicates that for 
Germany marginal CO2 emissions are higher than the total average. Fluctuating 
generation only acts as a marginal power plant, if supply exceeds regular demand and 
the residual load therefore is negative. This was the case in 3.2 % of the yearly 
simulation period for wind and solar generation in the analyzed scenario. Even if plug-
in electric vehicles consume more electricity during these hours, it is not enough to 
compensate for the marginal generation by fossil power plants during the rest of the 
year. Hence, due to methodology, marginal emissions are likely to be higher than 
average emissions. A higher level of renewable generation enhances this effect. The 
installation of additional renewable energy sources therefore is necessary to guarantee a 
significant reduction of CO2 emissions while using plug-in electric vehicles.  
 
A high level of non-dispatchable generation with very low marginal operation costs 
affects the functionality of electricity markets. The price-reducing effects caused by 
fluctuating generation and underutilized capacity of conventional power plants leads to 
a financing gap of controllable peak capacity. Therefore, market bids including price 
mark-ups to account for the total costs to operate a power plant are likely. This can 
increase the price spreads on future electricity markets and therefore provide incentives 
for demand response and storage. For the 2030 scenario, revenues from demand 
response and vehicle-to-grid for a single consumer are found to be between 50 and  
250 euros per year. It remains to be investigated, however, if these still relatively low 
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incentives will suffice to entice consumers into smart charging. To overcome this 
problem, making invariable electricity price components122 more flexible could be one 
way to boost smart grid revenues in the future.  
 
The presented results are highly sensitive to the fluctuation of solar and wind generation 
time series. For California, the solar capacity credit is much higher than for Germany 
because of the strong correlation with air conditioning loads. This effect reduces the 
necessary peak power capacity and also the need for demand response in California. In 
contrast, for Germany the need for peak power capacity is increasing in the applied 
scenario. Also, the contribution that plug-in electric vehicles can make as a grid 
resource is affected by the fluctuation of renewable electricity generation. The share of 
the negative residual load consumed varies between 40 % in Germany with 2009 
weather data and 73 % in California. The reliable daily pattern of solar and to a lesser 
extend of wind generation in California favors the grid integration with plug-in electric 
vehicles acting as a short-term storage. In contrast, high wind generation in Germany is 
likely to occur for several days in a row. Due to the daily driving pattern, the limited 
load shifting capacity of plug-in electric vehicle is less suited to balance longer periods 
of high wind generation output. Hence, for Germany, plug-in electric vehicles are better 
suited to balance the fluctuation of photovoltaic generation. 
 
Parameters such as the grid connection power or infrastructure availability are less 
relevant for the storage capabilities of plug-in electric vehicles. A higher grid 
connection power only marginally increases the ability to integrate fluctuating 
generation. In most cases, the standing time after a trip is sufficient to recharge the 
battery even with a standard power connection. The availability of infrastructure affects 
the electric driving share and consequently the electricity demand. Nevertheless, due to 
the low grid management and shorter parking times in public places, a better availability 
of infrastructure does not necessarily result in better load management capabilities. 
Comparing stationary and mobile storage reveals that mobility behavior restricts 
vehicle-to-grid performance. However, the gain in load shifting capability due to the 
electricity demand of electric driving is higher than these restrictions. This reveals that 
the dual use of the storage option is the key feature of smart grid devices.  
 
Plug-in electric vehicles are not suitable for long-term storage or to store high amounts 
of energy. To be able to manage very high levels of renewable electricity generation 
therefore will require a portfolio of flexible conventional generation, new transmission 
lines, long-term storage applications and additional demand-side options.   
 
Suggestions for further research mainly arise from limitations of the simulation model 
(see Chapter 7.8). Including more details in terms of transmission and distribution grids 
as well as expanding the observed system to the level of the European network would 
be valuable developments. Further research is needed in terms of distributed load 
management mechanisms for price-based automated demand response applicable to the 
mass market and including consumer acceptance. Distribution grid monitoring and the 
allocation of reactive power are possible services plug-in electric vehicles can provide 
to improve grid management. Besides plug-in electric vehicles, additional smart grid 
devices, transmission networks, flexible generation units and other short- and long-term 
storage options are required to guarantee a functional electricity system with a high 
share of fluctuating generation. It is therefore vital that future research considers the 
interaction, peculiarity and economic competitiveness of different instruments for 
integrating fluctuating renewable energy sources.  
                                                 
122 Invariable electricity price components of retail electricity prices are grid fees or cost subsidy shares 
 caused by renewable energy sources. 
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Appendix 
 

A. Figures and Tables 
 

A1. Vehicle charging behavior 
 

 
Figure A-1: Charging curve of Opel MERIVA battery electric test vehicle  

Source: Opel, 2010; Note: Battery size 16 kWh; soc: state-of-charge 
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A2. Characteristics of fluctuating generation  
 

Table A-1: Duration curve parameters system load 

Time series flh cf cfQ<0.8  cfQ>=0.8  rcf0.8   Ph,min Ph,max 
Load GER  2007 (ENTSO-E) 6336 72.33% 54.58% 17.81% 0.33 42.93% 100.00% 

Load GER 2008 (ENTSO-E) 6441 73.53% 55.54% 17.99% 0.32 44.70% 100.00% 

Load GER 2009 (ENTSO-E) 6300 71.92% 53.83% 18.08% 0.34 39.72% 100.00% 

Load CA 2005 (CAISO) 4781 54.58% 40.31% 14.27% 0.35 36.29% 100.00% 
 
Source: Own calculation data basis (ENTSO-E, 2011) and (CAISO, 2011) 
 

Table A-2: Duration curve parameters wind 

Time series flh cf cfQ<0.8  cfQ>=0.8  rcf0.8   Pmin Pmax 

Onshore GER 2007 (EEX) 1845 21.06% 95.58% 10.77% 0.10 0.59% 85.43% 
Onshore GER 2008 (EEX) 1751 19.99% 100.00% 10.00% 0.10 0.56% 82.51% 
Onshore GER 2009 (EEX) 1521 17.36% 91.93% 9.04% 0.08 0.32% 83.64% 
Onshore CA 2005 (CAISO) 2530 28.88% 18.30% 10.58% 0.58 2.02% 80.75% 
Onshore DK-West 2010 (energinet.dk) 2145 24.48% 12.82% 11.66% 0.91 0.01% 90.82% 
Onshore DK-East 2010 (energinet.dk) 2186 24.95% 11.83% 13.13% 1.11 0.00% 97.77% 

Offshore GER 2007 (ISI) 3620 41.33% 26.46% 14.87% 0.56 0.40% 86.71% 
Offshore GER 2008 (ISI) 3561 40.65% 25.65% 15.00% 0.58 0.13% 85.93% 

Offshore GER 2009 (ISI) 3484 39.77% 24.71% 15.06% 0.61 1.08% 88.04% 

Offshore GER 2007 (IWES) 4241 48.42% 30.22% 18.20% 0.60 0.18% 96.45% 

Onshore turbine 3568 CA 2006 (NREL) 3484 39.77% 20.16% 19.61% 97.26% 0.00% 100.00% 
Offshore turbine 1295  CA 2006 (NREL) 3472 39.64% 20.85% 12.29% 57.82% 0.00% 100.00% 
Onshore turbine 4161 GER 2008 (SWK) 1703 19.44% 7.14% 12.29% 172.06% 0.00% 100.00% 

 
Source: Own calculation data basis (EEX, 2011), (CAISO, 2011), (energinet.dk. 2011), (NREL, 2009), (SWK, 2010) 
and (IWES, 2011) 
 

Table A-3: Duration curve parameters solar 

Time series flh cf cfQ<0.8  cfQ>=0.8  rcf0.8   Ph,max 
Photovoltaics GER 2007 (ISI) 913 10.42% 2.31% 8.10% 3.50 67.08% 

Photovoltaics GER 2008 (ISI) 878 10.02% 2.44% 7.57% 3.10 64.62% 

Photovoltaics GER 2009 (ISI) 865 9.88% 2.08% 7.80% 3.75 70.87% 

Photovoltaics CA 2005 (CAISO) 2160 24.66% 9.21% 15.45% 1.68 98.42% 

Solar thermal CA 2005 (CAISO) 2261 25.81% 8.93% 16.88% 1.89 95.72% 

Photovoltaic single installation GER 2008 (SWK) 1097 12.52% 2.50% 10.01% 4.00 82.30% 
 
Source: Own calculation data basis (Schubert, 2011), (SWK, 2010) and (CAISO, 2011) 

 

Table A-4: Ramp rate parameters system load 

Time series rrfpos μ pos σpos μ neg σneg xy=0  

Load GER  2007 (ENTSO-E) 1.271% 2.96% 2.65% -2.23% 1.69% 57.00% 

Load GER 2008 (ENTSO-E) 1.19% 2.74% 2.51% -2.12% 1.59% 56.40% 

Load GER 2009 (ENTSO-E) 1.32% 3.04% 2.87% -2.32% 1.79% 56.72% 

Load CA 2005 (CAISO) 1.05% 2.12% 1.60% -2.07% 1.83% 50.59% 
 
Source: Own calculation data basis (ENTSO-E, 2011) and (CAISO, 2011) 
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Table A-5: Ramp rate parameters wind 

Time series rrfpos μ pos σpos μ neg σneg xy=0  

Onshore GER 2007 (EEX) 0.69% 1.39% 1.42% -1.36% 1.43% 50.67% 
Onshore GER 2008 (EEX) 0.66% 1.34% 1.38% -1.30% 1.37% 50.76% 
Onshore GER 2009 (EEX) 0.64% 1.30% 1.32% -1.25% 1.27% 50.84% 
Onshore CA 2005 (CAISO) 1.25% 2.35% 2.21% -2.63% 2.77% 47.14% 
Onshore DK-West 2010 (energinet.dk) 0.98% 1.98% 1.98% -1.92% 1.94% 50.43% 
Onshore DK-East 2010 (energinet.dk) 1.30% 2.69% 3.16% -2.51% 2.93% 51.17% 
Offshore GER 2007 (ISI) 2.04% 4.09% 3.87% -4.07% 3.60% 50.15% 
Offshore GER 2008 (ISI) 1.61% 3.21% 3.01% -3.19% 2.91% 50.75% 
Offshore GER 2009 (ISI) 1.59% 3.22% 3.01% -3.11% 2.89% 50.75% 
Offshore GER 2007 (IWES) 1.52% 3.17% 3.60% -2.95% 3.26% 49.80% 
Onshore turbine 3568 CA 2006 (NREL) 3.81% 8.70% 11.94% -8.22% 11.40% 46.2% 
Offshore turbine 1295  CA 2006 (NREL) 2.64% 5.74% 7.84% -5.67% 7.12% 46.7% 
Onshore turbine 4161 GER 2008 (SWK) 2.72% 6.74% 7.79% -6.36% 6.73% 40.8% 

 
Source: Own calculation data basis (EEX, 2011), (CAISO, 2011), (energinet.dk. 2011), (NREL, 2009), (SWK, 2010) 
and (IWES, 2011) 
 

Table A-6: Ramp rate parameters solar 

Time series rrfpos μ pos σpos μ neg σneg xy1=0  xy2=0  

Photovoltaics GER 2007 (ISI) 1.42% 5.22% 4.77% -5.01% 4.37% 72.63% 29.24%

Photovoltaics GER 2008 (ISI) 1.35% 4.98% 4.36% -4.72% 3.94% 72.76% 29.47%

Photovoltaics GER 2009 (ISI) 1.37% 5.10% 4.54% -4.83% 4.07% 73.14% 28.39%

Photovoltaics CA 2005 (CAISO) 3.18% 10.52% 7.60% -10.40% 7.72% 69.76% 30.61%

Solar thermal CA 2005 (CAISO) 3.20% 10.79% 12.98% -9.37% 12.92% 70.36% 34.14%

Photovoltaic single installation GER 2008 (SWK) 2.75% 9.35% 9.44% -9.10% 8.68% 70.7% 28.7%
 
Source: Own calculation data basis (ENTSO-E, 2011), (SWK, 2010) and (CAISO, 2011) 
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Table A-7: Interval availability parameters for GER 2008 and CA 

Sec 0 Sec 1 

Time series yQ-0.1  yQ-0.3  Counts tmean tσ tmax yQ-0.3 yQ-0.6 Counts tmean tσ tmax 
Wind onshore GER  0.6% 8.8% 173 20.5 16.5 134 8.8% 25.1% 173 34.1 61.0 620 

Wind offshore GER  0.1% 8.7% 103 7.7 8.4 35 8.7% 25.9% 103 77.2 138.8 982 

Photovoltaic GER  0.0% 6.3% 347 16.3 10.1 166 6.3% 18.9% 342 8.6 3.2 13 

RES GER 0.5% 11.3% 167 7.5 5.6 38 11.3% 32.9% 167 44.9 83.2 622 

Load GER 44.7% 50.2% 30 3.9 2.0 8 50.2% 61.3% 30 286.0 653.9 2900 

RS GER  
-

43.5% 
-30.1% 2 4.0 2.8 6 -30.1% -3.4% 50 4.0 2.3 10 

Wind onshore  CA 2.0% 9.9% 122 6.6 7.2 42 9.9% 25.6% 122 64.9 127.8 794 

Solar thermal CA 0.0% 9.6% 229 15.2 5.2 44 9.6% 28.7% 266 9.8 2.4 12 

Photovoltaic CA 0.0% 9.8% 365 13.3 1.5 17 9.8% 29.5% 325 10.7 1.6 13 

RES CA 1.2% 8.4% 170 6.4 5.0 17 8.4% 22.7% 170 45.0 106.2 886 

Load CA 36.3% 42.7% 240 4.5 2.0 11 42.7% 55.4% 240 31.9 118.1 1822 

RS CA 
-

26.5% 
-16.6% 5 2.6 1.9 6 -16.6% 3.0% 5 3.6 1.5 6 

Sec 2  Sec 3 

Time series yQ-0.3 yQ-0.6 Counts tmean tσ tmax yQ-0.6  yQ-0.9  Counts tmean tσ tmax 

Wind onshore GER  25.1% 49.7% 100 24.8 29.3 131 49.7% 74.3% 47 15.9 14.0 58 

Wind offshore GER  25.9% 51.6% 214 27.1 50.6 511 51.6% 77.3% 195 16.0 19.5 88 

Photovoltaic GER  18.9% 37.9% 266 7.3 2.7 11 37.9% 56.8% 149 5.0 2.0 8 

RES GER 32.9% 65.4% 271 16.0 21.4 144 65.4% 97.8% 134 6.0 4.8 33 

Load GER 61.3% 77.9% 283 24.6 35.0 162 77.9% 94.5% 280 13.1 4.7 19 

RS GER  -3.4% 36.8% 50 166.7 185.4 718 36.8% 77.0% 338 14.1 22.2 140 

Wind onshore  CA 25.6% 49.3% 267 16.7 19.3 132 49.3% 72.9% 168 6.7 6.1 41 

Solar thermal CA 28.7% 57.4% 131 7.1 2.8 11 57.4% 86.1% 194 6.3 2.2 9 

Photovoltaic CA 29.5% 59.1% 360 8.7 1.9 11 59.1% 88.6% 304 6.0 1.5 8 

RES CA 22.7% 44.2% 370 10.9 9.5 117 44.2% 72.9% 271 6.5 2.3 11 

Load CA 55.4% 74.5% 412 9.2 5.7 20 74.5% 93.6% 66 8.2 3.7 13 

RS CA 3.0% 32.4% 105 76.8 203.2 1651 32.4% 61.9% 480 8.1 9.8 117 
Sec 4  

Time series yQ-0.9  yQ-1  Counts tmean tσ tmax   
Wind onshore GER  74.3% 86% 16 6.1 3.8 17 

Wind offshore GER  77.3% 83% 131 4.5 4.7 26 

Photovoltaic GER  56.8% 63% 24 2.8 0.9 4 

RES GER 2008 97.8% 109% 7 3.0 1.2 4 

Load GER 2008 94.5% 100% 60 2.0 1.1 5 

RS GER 2008 77.0% 90% 62 3.1 2.6 14 

Wind onshore  CA 72.9% 81% 2 3.0 0.0 3 

Solar thermal CA 86.1% 96% 175 4.6 2.6 8 

Photovoltaic CA 88.6% 98% 80 2.2 1.0 4 

RES CA 72.9% 73% 21 3.2 1.8 6 

Load CA 93.6% 100% 13 2.8 1.2 5 

RS CA 61.9% 71.7% 19 2.5 1.0 4 

 
Note: CA: California base year of time series 2005; GER: Germany reference year of time series 2008; Source: Own 
calculation data basis (EEX, 2011), (CAISO, 2011), (Schubert, 2011) 
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Table A-8: Interval availability parameters for GER 2007 

Sec 0 Sec 1  

Time series yQ-0  yQ-0.1 Counts tmean tσ tmax yQ-0.1  yQ-0.3  Counts tmean tσ tmax 

Wind onshore  0.6% 9.1% 151 18.0 25.1 189 9.1% 26.0% 152 39.8 63.9 528

Wind offshore  0.4% 9.0% 158 4.8 4.4 23 9.0% 26.3% 160 49.9 85.4 519

Wind offshore  IWES 0.2% 9.8% 135 9.1 10.5 86 9.8% 29.1% 136 55.3 80.5 527

Photovoltaic  0.0% 6.7% 340 16.4 8.6 117 6.7% 20.1% 343 8.5 3.5 13

RES  0.8% 12.2% 193 7.6 7.3 70 12.2% 35.0% 194 37.6 67.0 528

Load  42.9% 48.6% 32 4.3 2.1 8 48.6% 60.1% 32 265.2 601.2 2738

RS  -43.3% -30.0% 7 3.0 1.8 6 -30.0% -3.3% 60 5.5 4.4 20
Sec 2  Sec 3 

Time series yQ-0.3 yQ-0.6 Counts tmean tσ tmax yQ-0.6  yQ-0.9  Counts tmean tσ tmax 

Wind onshore  26.0% 51.5% 109 23.7 33.1 197 51.5% 76.9% 54 14.4 17.6 109

Wind offshore  26.3% 52.2% 246 23.3 34.7 198 52.2% 78.1% 248 13.4 15.5 119

Wind offshore  IWES 29.1% 57.9% 161 34.5 48.1 315 57.9% 86.8% 166 22.3 25.9 140

Photovoltaic  20.1% 20.1% 239 7.7 2.6 11 20.1% 60.4% 157 5.4 1.9 8

RES  35.0% 69.2% 275 13.9 18.9 189 69.2% 103.4% 100 7.6 10.9 101

Load  60.1% 77.2% 293 23.6 34.8 166 77.2% 94.3% 289 12.5 5.0 19

RS  -3.3% 36.6% 59 141.1 263.5 1743 36.6% 76.6% 295 16.6 29.8 366
Sec 4  

Time series yQ-0.9  yQ-1  Counts tmean tσ tmax 

Wind onshore  76.9% 85.4% 14 4.9 3.8 12

Wind offshore  78.1% 86.7% 151 2.4 2.0 11

Wind offshore  IWES 86.8% 96.5% 126 12.5 14.0 79

Photovoltaic  60.4% 67.1% 42 2.5 0.9 4

RES  103.4% 114.8% 5 2.2 1.8 5

Load  94.3% 100.0% 45 2.2 1.8 12

RS  76.6% 89.9% 51 4.3 3.6 15
 
Source: Own calculation data basis (EEX, 2011) and (Schubert, 2011) 
 

Table A-9: Interval availability parameters for GER 2009 

Sec 0 Sec 1  

Time series yQ-0  yQ-0.1 Counts tmean tσ tmax yQ-0.1  yQ-0.3  Counts tmean tσ tmax 

Wind onshore  0.3% 8.7% 166 18.1 22.0 162 8.7% 25.3% 165 34.5 40.9 207

Wind offshore  1.1% 9.8% 123 7.0 8.4 46 9.8% 27.2% 123 63.7 80.5 344

Photovoltaic  0.0% 7.1% 329 17.7 14.3 165 7.1% 21.3% 335 8.4 3.3 13

RES  2.1% 13.2% 175 8.6 7.2 55 13.2% 35.5% 174 41.3 48.6 335

Load  39.7% 45.7% 30 3.8 2.1 8 45.7% 57.8% 30 183.6 428 2400

RS  -38.4% -24.8% 12 3.7 1.5 6 -24.8% 2.3% 78 4.5 3.5 25
Sec 2  Sec 3 

Time series yQ-0.3 yQ-0.6 Counts tmean tσ tmax yQ-0.6  yQ-0.9  Counts tmean tσ tmax 

Wind onshore  25.3% 50.3% 108 18.3 23.7 185 50.3% 75.3% 33 12.5 11.0 43

Wind offshore  27.2% 53.3% 206 25.8 31.3 182 53.3% 79.3% 182 15.5 19.0 124

Photovoltaic  21.3% 21.3% 233 7.4 2.5 11 21.3% 63.8% 122 5.0 1.8 7

RES  35.5% 68.9% 259 15.1 20.1 193 68.9% 102.4% 114 5.6 4.5 38

Load  57.8% 75.9% 267 26.6 40.9 314 75.9% 94.0% 307 12.2 5.6 20

RS  2.3% 43.1% 78 104.7 176.8 933 43.1% 83.8% 296 12.8 18.0 131
Sec 4  

Time series yQ-0.9  yQ-1  Counts tmean tσ tmax

Wind onshore  75.3% 83.6% 4 6.8 1.3 8

Wind offshore  79.3% 88.0% 120 3.3 2.6 12

Photovoltaic  63.8% 70.9% 32 2.2 0.8 4

RES  102.4% 113.5% 3 3.7 2.3 5

Load  94.0% 100.0% 110 2.8 2.0 12

RS  83.8% 97.3% 31 4.6 4.1 14
 
Source: Own calculation data basis (EEX, 2011) and (Schubert, 2011) 
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Figure A-2: Cumulated availability of onshore wind generation for different hours of the day 

Note: California 2030: Pmax,load = 28.23 GW, Pmax =22.79 GW, Pmin = 0.57 GW, ΔP= 22.22 GW 
Germany 2030: Pinstalled = 37.8 GW, Pmax = 31.19 GW, Pmin = 0.21, ΔP= 30.98 GW; Sec: Section: P: Power. 
 
 
 

 
Figure A-3: Clearing price at European Energy Exchange  

Source: (EEX, 2011). 
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A3. Mobility behavior 

 

Table A-10: Sample size after determining PEV user 

 

Source: Own calculation using data from German Mobility Panel (MOP, 2002-2008), Mobility in Germany (MID) 
2002 (MID, 2003) and Mobility in Germany 2008 (MID, 2010). Note: 1Assignment of persons to vehicles is not 
possible in a one-to-one way with MOP data sets. Therefore, only data sets are used where number of vehicles equals 
the number of persons and where the number of vehicles equals 1.This assumption allows an indirect assignment.  

 
  

MOP 2002-08 1 MID 2002 MID 2008 
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parking available and 
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Report period One week One day 

Persons 
participating 

12,235 3,550 61,729 6,451 60,713 8,289 

Households 
participating 

6,958 2,104 15,380 5,244 21,063 5,346 

Passenger car trips 298,008 87,939 66,114 20,132 94,151 22,138 

Passenger cars 
participating 

8,162 2,913 33,768 8,994 34,601 9,436 
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Table A-13: Probability for start time MID 2008 

Time t Mon WD Fri Sat Sun 
0 0.00116 0.00088 0.00237 0.00233 0.00258 
1 0.00116 0.00063 0.00164 0.00157 0.00248 
2 0.00104 0.00052 0.00138 0.00151 0.00258 
3 0.00073 0.00033 0.00099 0.00144 0.00220 
4 0.00055 0.00031 0.00092 0.00144 0.00220 
5 0.00043 0.00027 0.00059 0.00103 0.00248 
6 0.00037 0.00029 0.00066 0.00116 0.00258 
7 0.00043 0.00021 0.00079 0.00089 0.00239 
8 0.00049 0.00031 0.00079 0.00096 0.00229 
9 0.00055 0.00029 0.00059 0.00082 0.00229 

10 0.00073 0.00033 0.00072 0.00096 0.00201 
11 0.00067 0.00031 0.00066 0.00096 0.00191 
12 0.00067 0.00033 0.00053 0.00096 0.00201 
13 0.00073 0.00023 0.00059 0.00075 0.00210 
14 0.00073 0.00025 0.00059 0.00110 0.00220 
15 0.00073 0.00036 0.00059 0.00096 0.00220 
16 0.00073 0.00057 0.00072 0.00096 0.00220 
17 0.00104 0.00071 0.00092 0.00096 0.00229 
18 0.00184 0.00149 0.00138 0.00130 0.00239 
19 0.00263 0.00222 0.00204 0.00116 0.00277 
20 0.00386 0.00358 0.00289 0.00157 0.00325 
21 0.00484 0.00408 0.00361 0.00164 0.00325 
22 0.00643 0.00574 0.00473 0.00233 0.00344 
23 0.00692 0.00641 0.00565 0.00233 0.00344 
24 0.00870 0.00869 0.00776 0.00301 0.00325 
25 0.00980 0.00965 0.00887 0.00308 0.00287 
26 0.01298 0.01298 0.01222 0.00377 0.00344 
27 0.01464 0.01396 0.01314 0.00377 0.00334 
28 0.01862 0.01769 0.01623 0.00472 0.00411 
29 0.01904 0.01804 0.01630 0.00493 0.00430 
30 0.02015 0.01976 0.01768 0.00787 0.00535 
31 0.01800 0.01806 0.01525 0.00931 0.00516 
32 0.01721 0.01865 0.01591 0.01198 0.00707 
33 0.01359 0.01624 0.01354 0.01226 0.00745 
34 0.01415 0.01622 0.01413 0.01684 0.01079 
35 0.01225 0.01381 0.01275 0.01616 0.01203 
36 0.01347 0.01451 0.01413 0.01883 0.01500 
37 0.01304 0.01327 0.01288 0.01869 0.01576 
38 0.01415 0.01480 0.01564 0.02499 0.01910 
39 0.01243 0.01342 0.01466 0.02280 0.01719 
40 0.01341 0.01490 0.01610 0.02547 0.01891 
41 0.01182 0.01379 0.01525 0.02355 0.01843 
42 0.01286 0.01545 0.01709 0.02766 0.01977 
43 0.01219 0.01289 0.01393 0.02328 0.01748 
44 0.01396 0.01402 0.01551 0.02595 0.01987 
45 0.01353 0.01300 0.01413 0.02396 0.01824 
46 0.01647 0.01526 0.01597 0.02759 0.02044 
47 0.01543 0.01373 0.01545 0.02260 0.01815 
48 0.01739 0.01591 0.01735 0.02424 0.01891 
49 0.01666 0.01495 0.01617 0.02109 0.01643 
50 0.01898 0.01706 0.01952 0.02301 0.01939 
51 0.01653 0.01467 0.01748 0.01924 0.01566 
52 0.01690 0.01499 0.01781 0.02054 0.01834 
53 0.01574 0.01304 0.01591 0.01773 0.01710 
54 0.01727 0.01570 0.01788 0.02102 0.02168 
55 0.01433 0.01323 0.01485 0.01849 0.01834 
56 0.01611 0.01482 0.01794 0.01992 0.02178 
57 0.01519 0.01442 0.01663 0.01808 0.01920 
58 0.01715 0.01783 0.02116 0.02034 0.02340 
59 0.01464 0.01587 0.01873 0.01602 0.01891 
60 0.01647 0.01792 0.02070 0.01684 0.02101 
61 0.01574 0.01700 0.01840 0.01390 0.01786 
62 0.01966 0.02137 0.02241 0.01678 0.02073 
63 0.01733 0.01875 0.01853 0.01417 0.01624 
64 0.02051 0.02135 0.02057 0.01678 0.01777 
65 0.01972 0.02026 0.01821 0.01486 0.01576 
66 0.02358 0.02453 0.02116 0.01883 0.01929 
67 0.02119 0.02116 0.01781 0.01671 0.01662 
68 0.02321 0.02277 0.01906 0.01897 0.01824 
69 0.02070 0.02028 0.01669 0.01588 0.01652 
70 0.02333 0.02271 0.01899 0.01794 0.02025 
71 0.01868 0.01863 0.01538 0.01390 0.01662 
72 0.01972 0.01938 0.01623 0.01472 0.01834 
73 0.01739 0.01718 0.01453 0.01143 0.01614 
74 0.01813 0.01846 0.01689 0.01280 0.01786 
75 0.01476 0.01501 0.01387 0.01020 0.01328 
76 0.01445 0.01482 0.01374 0.01116 0.01442 
77 0.01157 0.01245 0.01124 0.00856 0.01165 
78 0.01115 0.01245 0.01209 0.00972 0.01337 
79 0.00857 0.00936 0.00854 0.00719 0.01079 
80 0.00784 0.00879 0.00868 0.00739 0.01117 
81 0.00643 0.00707 0.00730 0.00541 0.00917 
82 0.00637 0.00693 0.00703 0.00589 0.00917 
83 0.00545 0.00536 0.00480 0.00411 0.00697 
84 0.00545 0.00525 0.00453 0.00479 0.00697 
85 0.00508 0.00460 0.00342 0.00363 0.00573 
86 0.00533 0.00511 0.00414 0.00431 0.00630 
87 0.00441 0.00419 0.00375 0.00356 0.00525 
88 0.00398 0.00444 0.00434 0.00397 0.00535 
89 0.00343 0.00377 0.00414 0.00329 0.00468 
90 0.00325 0.00370 0.00473 0.00404 0.00468 
91 0.00245 0.00257 0.00355 0.00315 0.00353 
92 0.00202 0.00232 0.00388 0.00336 0.00344 
93 0.00159 0.00165 0.00302 0.00301 0.00287 
94 0.00165 0.00147 0.00302 0.00288 0.00315 
95 0.00116 0.00096 0.00230 0.00199 0.00267 

Sample size 3043 9555 3266 2921 2094 
 
Source: Data basis: (MID, 2010). 
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Table A-14: Probability for average trips per day MID 2008 

 
 
 
 

Source: Data basis: (MID, 2010). 

 

Table A-15: Probability for the range MID 2008 

Range classification range km k Mon WD Fri Sat Sun 

 < 2 km 2 km 0 0.2101 0.2099 0.2257 0.2386 0.1544 

2 to < 4 km  4 km 1 0.3839 0.3747 0.3929 0.4035 0.3234 

4 to < 6 km  6 km 2 0.4915 0.4981 0.5063 0.5278 0.4404 

6 to < 8 km  8 km 3 0.5735 0.5736 0.5772 0.6212 0.5316 

8 to < 10 km 10 km 4 0.6394 0.6375 0.6390 0.6857 0.5895 

10 to < 12.5 km 12.5 km 5 0.7054 0.7000 0.6848 0.7239 0.6573 

12.5 to < 15 km 15 km 6 0.7388 0.7444 0.7401 0.7667 0.7053 

15 to < 17.5 km 17.5 km 7 0.7675 0.7815 0.7771 0.7982 0.7368 

17.5 to < 20 km 20 km 8 0.8019 0.8203 0.8181 0.8227 0.7725 

20 to < 25 km 25 km 9 0.8502 0.8692 0.8565 0.8581 0.8193 

25 to < 30 km 30 km 10 0.8940 0.8934 0.8890 0.8881 0.8591 

30 to < 35 km 35 km 11 0.9180 0.9183 0.9114 0.9094 0.8749 

25 to < 40 km 40 km 12 0.9344 0.9391 0.9291 0.9253 0.8871 

40 to < 45 km 45 km 13 0.9479 0.9483 0.9403 0.9370 0.8988 

45 to < 50 km 50 km 14 0.9574 0.9572 0.9515 0.9480 0.9129 

50 to < 60 km 60 km 15 0.9662 0.9667 0.9613 0.9547 0.9246 

60 to < 70 km 70 km 16 0.9751 0.9753 0.9681 0.9628 0.9357 

70 to < 100 km 100 km 17 0.9845 0.9868 0.9803 0.9773 0.9550 

10 to  < 150 km 150 km 18 0.9890 0.9907 0.9885 0.9837 0.9702 

15 to  < 300 km 300km 19 0.9962 0.9958 0.9939 0.9933 0.9848 

< 300 km  1000 km 20 1 1 1 1 1 

Sample size 3266 9555 3043 2921 2094 
 

Source: Data basis: (MID, 2010); Note: Cumulative data. 
 
 
  

Day Sun Sat WD Fri Mon 

avtrip 3.41 3.83 3.95 4.01 4.11 
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Table A-16: Probability for the location MID 2008 

Weekday Weekend 

Time t Home l=0 Work l=1 Public l=2 Home l=0 Work l=1 Public l=2 

0 1 1 1 0.793103 0.793103 1
1 1 1 1 0.8 0.8444444 1 
2 1 1 1 0.916667 0.916667 1
3 1 1 1 0.869565 0.9130433 1
4 0.999162 0.999999521 1 0.794118 0.8529415 1
5 0.999162 0.999999521 1 1 1 1
6 0.999162 0.999999521 1 0.888889 0.888889 1
7 0.999162 0.999999521 1 0.916667 0.916667 1 
8 0.999162 0.999999521 1 0.846154 0.846154 1
9 0.999162 0.999999521 1 0.85 0.85 1
10 0.999162 0.999999521 1 0.625 0.6666667 1
11 0.999162 1.000000223 1 0.833333 0.833333 1
12 0.998325 1.00000004 1 0.727273 0.727273 1
13 0.998325 1.00000004 1 0.8 0.8 1 
14 0.998325 1.00000004 1 0.545455 0.545455 1
15 0.998325 1.00000004 1 0.714286 0.714286 1
16 0.998325 1.00000004 1 0.666667 0.666667 1
17 0.997483 0.99999978 1 0.545455 0.818182 1
18 0.996644 0.9999997 1 0.75 0.75 1
19 0.994971 1.00000034 1 0.214286 0.714286 1 
20 0.994966 0.99999956 1 0.4 0.9 1
21 0.992418 1.00000014 1 0.0909091 1.0000001 1
22 0.983939 0.9991546 1 0.368421 1 1
23 0.977966 0.9974575 1 0.102564 0.846154 1
24 0.966102 0.9966105 1 0.258065 0.83871 1
25 0.941831 0.9940124 1 0.425 0.825 1 
26 0.92381 0.9930741 1 0.277778 0.638889 1
27 0.899827 0.9930913 1 0.272727 0.659091 1
28 0.875755 0.987921 1 0.290323 0.419355 1
29 0.835366 0.981707 1 0.225 0.475 1
30 0.788879 0.97046 1 0.305263 0.442105 1
31 0.748686 0.965849 1 0.191304 0.408695 1 
32 0.703345 0.958627 1 0.22449 0.3129254 1
33 0.654545 0.942857 1 0.244681 0.3031916 1
34 0.626298 0.934256 1 0.256522 0.3434785 1
35 0.597403 0.917749 1 0.288066 0.3868314 1
36 0.570312 0.901041 1 0.222222 0.2516338 1
37 0.549479 0.887153 1 0.24058 0.266667 1 
38 0.529922 0.86817 1 0.261456 0.2884102 1
39 0.515935 0.855298 1 0.221918 0.2684933 1
40 0.507785 0.851211 1 0.228758 0.2418299 1
41 0.488851 0.830189 1 0.251244 0.2636818 1
42 0.486231 0.832186 1 0.298387 0.3252687 1
43 0.480587 0.828301 1 0.344304 0.3670888 1 
44 0.473322 0.818417 1 0.389362 0.4042556 1
45 0.475745 0.817022 1 0.388747 0.4015347 1
46 0.482553 0.822979 1 0.413395 0.4318708 1
47 0.497861 0.839178 1 0.453083 0.4638069 1
48 0.511548 0.850299 1 0.454965 0.4688218 1
49 0.517477 0.845695 1 0.489855 0.4927536 1 
50 0.53271 0.853016 1 0.478495 0.4973122 1
51 0.549743 0.858491 1 0.487365 0.5126358 1
52 0.560684 0.853846 1 0.436261 0.4730882 1
53 0.564516 0.854839 1 0.375427 0.4232086 1
54 0.568627 0.859335 1 0.465625 0.49375 1
55 0.575342 0.861301 1 0.392727 0.4218179 1 
56 0.575214 0.862393 1 0.378082 0.3863012 1
57 0.567869 0.85567 1 0.388732 0.3915489 1
58 0.555363 0.841695 1 0.371968 0.3854451 1
59 0.556314 0.826792 1 0.343558 0.3650304 1
60 0.548552 0.810903 1 0.351706 0.3569553 1
61 0.545611 0.797762 1 0.369427 0.3726117 1 
62 0.561102 0.801205 1 0.455658 0.4617742 1
63 0.566494 0.791019 1 0.465217 0.4695648 1
64 0.572294 0.793939 1 0.472973 0.4763514 1
65 0.578856 0.784229 1 0.474265 0.4963238 1
66 0.581315 0.774222 1 0.578571 0.5821424 1
67 0.610333 0.78021 1 0.532203 0.552542 1 
68 0.62511 0.769974 1 0.563686 0.5826562 1
69 0.638112 0.772727 1 0.619217 0.6298932 1
70 0.651264 0.77245 1 0.617363 0.6688099 1
71 0.679965 0.788378 1 0.516605 0.5535054 1
72 0.698344 0.7890153 1 0.602941 0.6088234 1
73 0.699656 0.7839933 1 0.577465 0.5950706 1 
74 0.718346 0.7932814 1 0.650735 0.6654409 1
75 0.74525 0.8074262 1 0.561644 0.5662102 1
76 0.766234 0.8216453 1 0.619048 0.626374 1
77 0.774385 0.8201865 1 0.60804 0.6130651 1
78 0.782423 0.8242319 1 0.60262 0.6157204 1
79 0.788136 0.8313563 1 0.532895 0.5394739 1 
80 0.787361 0.8257897 1 0.577381 0.5892858 1
81 0.786678 0.8237775 1 0.651852 0.6666668 1
82 0.809483 0.8425059 1 0.723214 0.7321426 1
83 0.824873 0.8510997 1 0.835821 0.8805971 1
84 0.841216 0.8665538 1 0.734177 0.7594935 1
85 0.85151 0.8733221 1 0.65 0.7333333 1 
86 0.867003 0.8863633 1 0.765625 0.796875 1
87 0.888889 0.9074075 1 0.701492 0.7611935 1
88 0.904882 0.91835 1 0.779221 0.779221 1
89 0.922045 0.9321037 1 0.83871 0.854839 1
90 0.940536 0.9505863 1 0.744444 0.7555551 1
91 0.962312 0.96733713 1 0.849057 0.8679249 1
92 0.973109 0.97563001 1 0.811594 0.811594 1 
93 0.975 0.97666667 1 0.818182 0.8363638 1
94 0.982485 0.982485 1 0.887097 0.887097 1
95 1 1 1 0.923077 0.923077 1

 

 
Source: Data basis: (MID, 2010). 
 
  



  APPENDIX A XXVI 

 
 

 
Figure A-4: Range probability MID 2008 

Source: Data basis: (MID, 2010); 
 
 
 

 

Figure A-5: Probability for location (MID 2008) 

Source: Data basis: (MID, 2010). 
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A4. Scenario definition 
 

 
Figure A-6: Transformer utilization winter season 

Source: Load profile (BTC Cottbus, 2007)  

 

 
Figure A-7: Transformer utilization spring and autumn  

Source: Load profile (BTC Cottbus, 2007)  

 

 
Figure A-8: Transformer utilization summer season 

Source: Load profile (BTC Cottbus, 2007) 
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Table A-17: Agent scenario 

DSM-
agent 

Distribution 
grid-agent 

Device-agent Sum 
devices 

Grid power 
[MW] 

Capacity 
[MWh] PHEV (25)  PHEV (57) BEV (100) BEV (167) 

1 1 129 220 41 11 401 1.812 4.1655
2 1 130 219 41 11 401 1.812 4.158
3 1 129 220 41 11 401 1.812 4.1655
4 1 130 219 41 11 401 1.812 4.158
5 1 129 220 41 11 401 1.812 4.1655
6 1 130 219 41 11 401 1.812 4.158
7 1 129 220 41 11 401 1.812 4.1655
8 1 130 219 41 11 401 1.812 4.158
9 1 129 220 41 11 401 1.812 4.1655

10 1 130 219 41 11 401 1.812 4.158
11 1 129 220 41 11 401 1.812 4.1655
12 1 130 219 41 11 401 1.812 4.158
13 1 129 220 41 11 401 1.812 4.1655
14 1 130 219 41 11 401 1.812 4.158
15 1 129 220 41 11 401 1.812 4.1655
16 1 130 219 41 11 401 1.812 4.158
17 1 129 220 41 11 401 1.812 4.1655
18 1 130 219 41 11 401 1.812 4.158
19 1 129 220 41 11 401 1.812 4.1655
20 1 130 219 41 11 401 1.812 4.158
21 1 129 220 41 11 401 1.812 4.1655
22 1 130 219 41 11 401 1.812 4.158
23 1 129 220 41 11 401 1.812 4.1655
24 1 130 219 41 11 401 1.812 4.158
25 1 129 220 41 11 401 1.812 4.1655
26 1 130 219 41 11 401 1.812 4.158
27 1 129 220 41 11 401 1.812 4.1655
28 1 130 219 41 11 401 1.812 4.158
29 1 129 220 41 11 401 1.812 4.1655
30 1 130 219 41 11 401 1.812 4.158
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A5. Results 
 

 
Figure A-9: Hourly average grid management time ∆t on a Saturday  

Note: Grid management time for trips during the day (∆t day) and the last trip of a day (∆t night)  
Source: Data basis of mobility survey (MID, 2010).   
 
 
 

 
Figure A-10: Hourly average grid management time ∆t on a Sunday  

Note: Grid management time for trips during the day (∆t day) and the last trip of a day (∆t night)  
Source: Data basis of mobility survey (MID, 2010).   

 
 
 

Table A-18: Standard deviation of grid management time for days of the week 

 Unit [h] Mon WD Fri Sat Sun 

σ ∆t 12.2 17.3 17.3 17.1 13.8

σ ∆t day 2.8 21.8 21.8 2.9 3.6

σ ∆t night 16.8 20.5 24.0 20.6 18.0

 
Source: Data basis of mobility survey (MID, 2010).   
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Figure A-11: Probability system load versus residual load Germany 2030 

 
 
 
 

 
Figure A-12: Probability last trip versus DSM charging Germany 2030 

PEVs: Plug-in electric vehicle; DSM: Demand-side management. 
 
 
 

 
Figure A-13: Probability last trip versus V2G charging Germany 2030 

PEVs: Plug-in electric vehicle; DSM: Demand-side management. V2G: Vehicel-to-grid; V2G includes the price 
mark-up; Depth of discharge (DoD) is used to account for battery ageing. 
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Figure A-14: Probability system load versus residual load California 2030 

 
 
 
 

 

Figure A-15: Probability last trip versus DSM charging California 2030 

Note: PEVs: Plug-in electric vehicle; DSM: Demand-side management. 
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Figure A-16: Sorted ramp rates for scenario GER 2030  

Note: RS: residual load; DSM: demand-side management, V2G: vehicle-to-grid; V2G includes the price mark-up; 
Eenergy throughput (Ah) is used to account for battery ageing. 
 
 

 
Figure A-17: Average electricity prices for different charging strategies 

Note: DSM: Demand-side management: V2G: Vehicle-to-grid; Depth of discharge (DoD) is used to account for 
battery ageing. 
 
 

 
Figure A-18: Frequency of maximum daily electricity price spread  

Source: (EEX, 2011) Note: EEX: European Energy Exchange market. 
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A6. Sensitivity analysis 
 
Time series 

Table A-19: Duration curve parameters GER 2007 

 
Time series cfpos cfneg 1-(cfneg(PEVs)/cfneg cfQ<0.8  cfQ>=0.8  rcf0.8   Ph,min Ph,max cfy=0  

Load  72.3% 54.6% 17.8% 32.7% 42.9% 100.0% 

RES  34.4% 21.6% 12.9% 0.60 1.12% 102.72% 

RS  38.2% -0.324% 25.0% 13.2% 0.53 -43.50% 89.61% 3.20% 

LT  40.9% -0.283% 12.53% 26.9% 14.1% 0.52 -42.55% 97.61% 2.80% 

DSM  41.6% -0.133% 58.88% 28.0% 13.7% 0.49 -33.04% 92.37% 1.20% 

V2G Ah Mup   41.6% -0.082% 74.64% 28.3% 13.3% 0.47 -28.98% 91.38% 0.80% 

V2G DoD Mup   41.6% -0.093% 71.25% 28.2% 13.4% 0.47 -30.98% 90.94% 1.00% 

 

Table A-20:  Ramp rate parameters GER 2007 

Time series rrfpos μ pos σpos μ neg σneg xy=0  rrmax rrmin 

Load GER 1.271% 2.96% 2.65% -2.23% 1.69% 57.00% 13.33% -8.91% 

RES GER 1.69% 3.42% 3.34% -3.34% 3.37% 50.68% 18.95% -20.49% 

RS GER 2.09% 4.49% 3.68% -3.91% 2.81% 53.43% 22.77% -18.92% 

LT GER 2.36% 5.12% 4.10% -4.37% 2.95% 53.88% 25.35% -18.83% 

DSM GER 1.55% 2.90% 3.58% -3.30% 2.81% 46.65% 21.69% -17.84% 

V2G Ah Mup  1.21% 2.40% 2.99% -2.38% 2.27% 50.10% 22.23% -14.63% 

V2G DoD Mup  1.24% 2.44% 3.12% -2.50% 2.37% 49.29% 26.62% -20.09% 

 

Table A-21:  Duration curve parameters GER 2007 IWES 

Time series cfpos cfneg 1-(cfneg(PEVs)/cfneg cfQ<0.8  cfQ>=0.8  rcf0.8   Ph,min Ph,max cfy=0  

Load  72.3% 54.6% 17.8% 32.7% 42.9% 100.0% 

RES 34.4% 21.4% 13.0% 0.61 0.76% 104.61% 

RS 38.3% -0.347% 25.0% 13.3% 0.53 -36.79% 91.64% 3.80%

LT 41.0% -0.309% 10.95% 26.8% 14.2% 0.53 -35.62% 100.29% 3.40%

DSM 41.7% -0.145% 58.07% 27.8% 13.8% 0.50 -25.30% 94.36% 1.80%

V2G Ah Mup   41.7% -0.101% 70.92% 28.2% 13.5% 0.48 -21.38% 93.66% 1.00%

V2G DoD Mup   41.7% -0.109% 68.55% 28.1% 13.6% 0.48 -22.60% 92.67% 1.20%

 

Table A-22:  Ramp rate parameters GER 2007 IWES 

Time series rrfpos μ pos σpos μ neg σneg xy=0  rrmax rrmin 

Load GER 1.271% 2.96% 2.65% -2.23% 1.69% 57.00% 13.33% -8.91% 

RES GER 1.51% 3.09% 3.16% -2.98% 3.02% 51.07% 17.14% -17.48% 

RS GER 1.96% 4.22% 3.48% -3.63% 2.60% 53.67% 20.17% -15.96% 

LT GER 2.23% 4.86% 3.89% -4.12% 2.78% 54.08% 22.72% -15.88% 

DSM GER 1.47% 2.77% 3.40% -3.10% 2.65% 47.04% 17.91% -14.18% 

V2G Ah Mup  1.13% 2.23% 2.84% -2.29% 2.16% 49.18% 18.71% -12.54% 

V2G DoD Mup  1.17% 2.28% 2.96% -2.39% 2.24% 48.61% 19.44% -12.70% 
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Table A-23: Duration curve parameters GER 2009 

Time series cfpos cfneg 1-(cfneg(PEVs)/cfneg cfQ<0.8  cfQ>=0.8  rcf0.8   Ph,min Ph,max cfy=0  

Load  71.9% 53.8% 18.1% 33.6% 39.7% 100.0% 

RES 34.2% 20.9% 13.3% 0.64 1.78% 109.94% 

RS 38.2% -0.508% 24.7% 13.5% 0.55 -39.62% 95.20% 4.60% 

LT 41.8% -0.460% 9.32% 27.1% 14.7% 0.54 -39.47% 105.16% 4.00% 

DSM 42.5% -0.247% 51.29% 28.1% 14.4% 0.51 -28.75% 99.97% 2.60% 

V2G Ah Mup   41.5% -0.177% 65.05% 27.8% 13.7% 0.49 -25.51% 95.62% 1.80% 

V2G DoD Mup   41.5% -0.190% 62.61% 27.8% 13.8% 0.50 -26.01% 95.55% 2.00% 

 

Table A-24: Ramp rate parameters GER 2009 

Time series rrfpos μ pos σpos μ neg σneg xy=0  rrmax rrmin 

Load GER 1.32% 3.04% 2.87% -2.32% 1.79% 56.72% 15.23% -8.33% 

RES GER 1.69% 3.40% 3.42% -3.37% 3.53% 50.22% 18.71% -21.82% 

RS GER 2.12% 4.58% 3.87% -3.94% 2.92% 53.77% 21.98% -18.55% 

LT GER 2.45% 5.36% 4.37% -4.53% 3.09% 54.24% 24.37% -19.01% 

DSM GER 1.65% 3.16% 3.87% -3.43% 2.99% 47.97% 20.88% -17.29% 

V2G Ah Mup  1.27% 2.58% 3.12% -2.51% 2.40% 50.63% 20.84% -17.18% 

V2G DoD Mup  1.32% 2.64% 3.25% -2.64% 2.48% 49.96% 21.32% -16.84% 
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Grid connection power 
 
 

 

Figure A-19:  PEVs load curve, hourly mean versus quarter hourly mean values. 

Source: Own calculation, probabilities obtained from the data basis (MID 2008, 2010); Note: The reference scenario 
uses a average grid connection power of 4.5 kW.  

 
 
 

 
Figure A-20: Sorted load curve for PEVs last trip charging  

Source: Own calculation, probabilities obtained from the data basis (MID 2008, 2010); Note: The reference scenario 
uses a average grid connection power of 4.5 kW.  
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Table A-25: Average electric driving share of vehicle fleet in dependence of connection power  

Last Trip DSM V2G DoD Mup V2G Ah Mup 

Power 
Electric 
driving 
share 

Energy use 
for driving 
[kWh/a] 

Electric 
driving 
share 

Energy use 
for driving 
[kWh/a] 

Electric 
driving 
share 

Energy use 
for driving 
[kWh/a] 

Electric 
driving 
share 

Energy use 
for driving 
[kWh/a] 

2 kW 53.66% 2963 69.02% 2973 69.05% 2970 69.08% 2961 

Reference 53.73% 2966 70.26% 2969 70.33% 2962 70.32% 2965 

12 kW 53.75% 2965 70.92% 2970 70.84% 2971 70.87% 2964 

22 kW 53.79% 2964 70.77% 2973 70.97% 2958 70.86% 2966 

44 kW 53.76% 2965 70.78% 2968 70.86% 2968 70.83% 2970 
 
Note: Reference: GER 2030 scenario as defined in chapter 6 with grid connection power between 4 kW and 8 kW. 
Sample size 12,000 vehicles.  

 
 

Table A-26: Duration curve parameters last trip charging 

Scenarios cfpos cfneg 1-(cfneg(PEVs)/cfneg cfQ<0.8  cfQ>=0.8  rcf0.8   Ph,min Ph,max cfy=0  

2 kW 41.34% -0.2544% 10.64% 27.56% 14.03% 50.90% 97.49% -42.83% 2.80% 

Reference 41.34% -0.2517% 11.60% 27.44% 14.15% 51.55% 100.44% -42.56% 3.00% 

12 kW 41.34% -0.2484% 12.75% 27.41% 14.17% 51.71% 102.66% -42.20% 2.80% 

22 kW 41.34% -0.2470% 13.23% 27.40% 14.18% 51.74% 104.24% -42.21% 2.80% 

44 kW 41.34% -0.2469% 13.27% 27.40% 14.18% 51.76% 102.74% -42.29% 2.80% 

 
 

Table A-27: Ramp rate parameters last trip charging 

Scenario rrfpos μ pos σpos μ neg σneg xy=0  rrmax rrmin 

2 kW 2.21% 4.87% 3.89% -4.01% 2.75% 54.84% 29.51% -19.15%

Reference 2.32% 5.04% 4.01% -4.27% 2.87% 54.12% 29.78% -19.17%

12 kW 2.36% 5.09% 4.09% -4.37% 2.98% 53.80% 31.68% -18.90%

22 kW 2.37% 5.09% 4.12% -4.39% 3.03% 53.68% 29.74% -19.00%

44 kW 2.37% 5.10% 4.13% -4.41% 3.04% 53.64% 30.10% -19.27%

 
 

Table A-28: Duration curve parameters demand-side management 

Scenario cfpos cfneg 1-(cfneg(PEVs)/cfneg cfQ<0.8  cfQ>=0.8  rcf0.8   Ph,min Ph,max cfy=0  

2 kW 42.20% -0.1024% 64.02% 28.57% 13.72% 48.02% 91.93% -34.02% 1.40% 

Reference 42.21% -0.0970% 65.94% 28.58% 13.72% 48.02% 91.91% -34.03% 1.20% 

12 kW 42.21% -0.0970% 65.91% 28.58% 13.72% 48.01% 91.84% -33.95% 1.20% 

22 kW 42.24% -0.0970% 65.93% 28.61% 13.72% 47.95% 91.55% -33.45% 1.20% 

44 kW 42.22% -0.0994% 65.08% 28.60% 13.72% 47.98% 91.53% -33.35% 1.40% 

 
 

Table A-29: Ramp rate parameters demand-side management 

Scenario rrfpos μ pos σpos μ neg σneg xy=0  rrmax rrmin 

2 kW 1.55% 2.96% 3.41% -3.24% 2.65% 47.72% 27.52% -17.51% 

Reference 1.52% 2.88% 3.43% -3.19% 2.64% 47.38% 27.44% -17.74% 

12 kW 1.50% 2.86% 3.42% -3.10% 2.62% 47.93% 27.72% -17.62% 

22 kW 1.49% 2.84% 3.40% -3.08% 2.61% 47.93% 27.42% -17.33% 

44 kW 1.48% 2.83% 3.39% -3.07% 2.60% 47.89% 27.66% -17.38% 
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Table A-30: Duration curve parameters vehicle-to-grid DoD battery aging and mark-up price 

Scenario cfpos cfneg 1-(cfneg(PEVs)/cfneg cfQ<0.8  cfQ>=0.8  rcf0.8   Ph,min Ph,max cfy=0  

2 kW 42.18% -0.0716% 74.87% 28.76% 13.49% 46.89% 90.13% -29.57% 0.80% 

Reference 42.25% -0.0611% 78.56% 28.85% 13.46% 46.65% 90.14% -27.42% 0.80% 

12 kW 42.29% -0.0585% 79.44% 28.90% 13.44% 46.51% 90.06% -27.06% 0.60% 

22 kW 42.28% -0.0590% 79.27% 28.89% 13.44% 46.50% 90.13% -27.06% 0.60% 

44 kW 42.28% -0.0583% 79.52% 28.90% 13.43% 46.47% 90.14% -26.96% 0.60% 

 
 

Table A-31: Ramp rate parameters vehicle-to-grid DoD battery aging and mark-up price 

Scenario rrfpos μ pos σpos μ neg σneg xy=0  rrmax rrmin 

2 kW 1.2514% 2.44% 3.08% -2.54% 2.35% 49.01% 22.79% -15.68% 

Reference 1.1966% 2.35% 3.00% -2.42% 2.27% 49.24% 22.90% -15.34% 

12 kW 1.1652% 2.31% 2.93% -2.33% 2.20% 49.74% 22.36% -14.62% 

22 kW 1.1624% 2.30% 2.93% -2.33% 2.19% 49.63% 22.19% -14.80% 

44 kW 1.1567% 2.29% 2.92% -2.31% 2.18% 49.72% 22.27% -15.14% 

 
 

Table A-32: Duration curve parameters vehicle-to-grid Ah battery aging and mark-up price 

Scenario cfpos cfneg 1-(cfneg(PEVs)/cfneg cfQ<0.8  cfQ>=0.8  rcf0.8   Ph,min Ph,max cfy=0  

2 kW 42.19% -0.0595% 79.10% 28.81% 13.42% 46.58% 90.05% -28.28% 0.80% 

Reference 42.27% -0.0509% 82.11% 28.93% 13.37% 46.22% 89.87% -26.20% 0.60% 

12 kW 42.30% -0.0488% 82.85% 28.98% 13.35% 46.07% 89.84% -25.61% 0.60% 

22 kW 42.30% -0.0478% 83.23% 28.99% 13.35% 46.03% 89.79% -25.51% 0.60% 

44 kW 42.31% -0.0475% 83.31% 29.01% 13.34% 45.99% 89.81% -25.53% 0.60% 

 
 

Table A-33: Ramp rate parameters vehicle-to-grid Ah battery aging and mark-up price 

Scenario rrfpos μ pos σpos μ neg σneg xy=0  rrmax rrmin 

2 kW 1.2291% 2.42% 2.97% -2.49% 2.27% 49.22% 19.31% -15.03% 

Reference 1.1527% 2.28% 2.86% -2.31% 2.18% 49.64% 19.79% -14.69% 

12 kW 1.1230% 2.23% 2.80% -2.25% 2.11% 49.78% 19.32% -13.48% 

22 kW 1.1114% 2.23% 2.77% -2.21% 2.09% 50.13% 19.14% -14.24% 

44 kW 1.1035% 2.22% 2.76% -2.19% 2.07% 50.29% 18.75% -14.58% 
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Battery costs  
 
 

Table A-34: Duration curve parameters vehicle-to-grid DoD battery aging and mark-up price 

Scenario cfpos cfneg 1-(cfneg(PEVs)/cfneg) cfQ<0.8  cfQ>=0.8  rcf0.8   Ph,max Ph,min cfy=0  

V2G DoD +20 42.24% -0.07% 76.90% 28.80% 13.50% 46.87% 90.40% -28.39% 0.80% 

V2G DoD +40 42.23% -0.07% 74.97% 28.76% 13.54% 47.06% 90.48% -29.28% 0.80% 

V2G DoD -20 42.26% -0.06% 80.13% 28.90% 13.41% 46.38% 89.91% -26.65% 0.60% 

V2G DoD -40 42.27% -0.05% 81.78% 28.98% 13.35% 46.06% 89.30% -26.18% 0.60% 

 
 
 

Table A-35: Ramp rate parameters vehicle-to-grid DoD battery aging and mark-up price 

Scenario rrfpos μ pos σpos μ neg σneg xy=0  rrmax rrmin 

V2G DoD +20 1.24% 2.44% 3.10% -2.51% 2.34% 49.25% 24.33% -15.95% 

V2G DoD +40 1.28% 2.51% 3.17% -2.59% 2.41% 49.12% 25.73% -16.04% 

V2G DoD -20 1.14% 2.23% 2.87% -2.30% 2.19% 49.21% 21.14% -14.35% 

V2G DoD -40 1.07% 2.09% 2.71% -2.16% 2.09% 49.06% 19.84% -14.00% 

 
 
 

Table A-36: Duration curve parameters vehicle-to-grid Ah battery aging and mark-up price 

Scenario cfpos cfneg 1-(cfneg(PEVs)/cfneg) cfQ<0.8  cfQ>=0.8  rcf0.8   Ph,max Ph,min cfy=0  

V2G Ah +20 42.25% -0.05% 28.89% 13.42% 46.46% 90.30% -26.11% 0.60% 81.32% 

V2G Ah +40 42.24% -0.06% 28.84% 13.46% 46.68% 91.19% -26.08% 0.60% 80.31% 

V2G Ah -20 42.27% -0.05% 28.99% 13.33% 45.99% 89.31% -25.91% 0.60% 83.28% 

V2G Ah -40 42.29% -0.04% 29.05% 13.28% 45.73% 88.50% -25.83% 0.60% 84.27% 

 
 
 

Table A-37: Ramp rate parameters vehicle-to-grid Ah battery aging and mark-up price 

Scenario rrfpos μ pos σpos μ neg σneg xy=0  rrmax rrmin 

V2G Ah +20 1.21% 2.39% 2.96% -2.43% 2.25% 49.51% 20.62% -13.91% 

V2G Ah +40 1.26% 2.47% 3.04% -2.54% 2.31% 49.23% 21.53% -14.22% 

V2G Ah -20 1.09% 2.16% 2.74% -2.19% 2.11% 49.56% 19.41% -15.84% 

V2G Ah -40 1.02% 2.01% 2.60% -2.07% 2.04% 49.31% 19.26% -16.06% 
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Battery size 
 
 

Table A-38: Duration curve parameters battery size 15 kWh 

Scenario cfpos cfneg 1-(cfneg(PEVs)/cfneg) cfQ<0.8  cfQ>=0.8  rcf0.8   Ph,max Ph,min cfy=0  

LT 42.18% -0.25% 13.35% 27.98% 14.44% 51.61% 102.32% -42.47% 2.80% 

DSM  42.70% -0.09% 68.92% 29.00% 13.79% 47.57% 92.21% -32.81% 1.00% 

V2G DoD Mup 42.76% -0.05% 83.15% 29.32% 13.48% 45.97% 90.50% -25.22% 0.60% 

V2G Ah Mup 42.76% -0.05% 83.15% 29.32% 13.48% 45.97% 90.50% -25.22% 0.60% 

 
 
 

Table A-39: Ramp rate parameters battery size 15 kWh 

Scenario rrfpos μ pos σpos μ neg σneg xy=0  rrmax rrmin 

LT 2.38% 5.21% 4.10% -4.36% 2.90% 54.42% 30.11% -19.08% 

DSM  1.46% 2.74% 3.42% -3.09% 2.67% 46.98% 27.46% -17.39% 

V2G DoD Mup 1.12% 2.18% 2.80% -2.29% 2.15% 48.72% 20.76% -14.09% 

V2G Ah Mup 1.12% 2.18% 2.80% -2.29% 2.15% 48.72% 20.76% -14.09% 

 
 
 

Table A-40: Duration curve parameters battery size 30 kWh 

Scenario cfpos cfneg 1-(cfneg(PEVs)/cfneg) cfQ<0.8  cfQ>=0.8  rcf0.8   Ph,max Ph,min cfy=0  

LT 43.00% -0.24% 15.63% 28.62% 14.61% 51.06% 102.52% -42.50% 2.80% 

DSM  43.20% -0.08% 72.89% 29.42% 13.85% 47.07% 92.45% -31.48% 0.80% 

V2G DoD Mup 43.27% -0.03% 88.98% 29.87% 13.43% 44.94% 90.02% -21.29% 0.20% 

V2G Ah Mup 43.27% -0.03% 88.98% 29.87% 13.43% 44.94% 90.02% -21.29% 0.20% 

 
 
 

Table A-41: Ramp rate parameters battery size 30 kWh 

Scenario rrfpos μ pos σpos μ neg σneg xy=0  rrmax rrmin 

LT 2.36% 5.26% 4.14% -4.26% 2.83% 55.19% 30.57% -19.14% 

DSM  1.42% 2.68% 3.34% -2.99% 2.62% 47.23% 27.65% -17.16% 

V2G DoD Mup 1.00% 1.95% 2.46% -2.03% 1.93% 48.90% 16.88% -12.21% 

V2G Ah Mup 1.00% 1.95% 2.46% -2.03% 1.93% 48.90% 16.88% -12.21% 
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Table A-42: Duration curve parameters deterministic MOP mobility behavior 

Scenario cfpos cfneg 
1-

(cfneg(PEVs)/cfneg) 
cfQ<0.8  cfQ>=0.8  rcf0.8   Ph,max Ph,min cfy=0  

LT 40.85% -0.24% 17.01% 27.19% 13.89% 51.06% 98.31% -41.95% 2.80% 

DSM 41.42% -0.11% 60.81% 27.98% 13.54% 48.40% 91.30% -34.29% 1.60% 

V2G DoD Mup 41.47% -0.07% 77.09% 28.27% 13.27% 46.93% 88.76% -27.72% 0.80% 

V2G Ah Mup 41.48% -0.05% 80.99% 28.34% 13.19% 46.55% 88.77% -26.18% 0.60% 

 

Table A-43: Ramp rate parameters deterministic MOP mobility behavior 

Scenario rrfpos μ pos σpos μ neg σneg xy=0  rrmax rrmin 

LT 2.20% 4.82% 3.83% -4.04% 2.81% 54.44% 28.46% -19.21% 

DSM 1.52% 2.96% 3.49% -3.09% 2.72% 48.85% 27.73% -18.39% 

V2G DoD 
Mup 

1.18% 2.37% 2.96% -2.35% 2.25% 50.17% 22.91% -15.80% 

V2G Ah Mup 1.15% 2.33% 2.84% -2.27% 2.16% 50.70% 19.87% -13.43% 

 

Table A-44: Duration curve parameters probability based MOP mobility behavior 

Scenario cfpos cfneg 1-(cfneg(PEVs)/cfneg) cfQ<0.8  cfQ>=0.8  rcf0.8   Ph,max Ph,min cfy=0  

LT 40.94% -0.24% 15.37% 27.22% 13.97% 51.32% 99.44% -42.13% 2.80% 

DSM 41.40% -0.12% 59.31% 27.96% 13.56% 48.49% 90.89% -34.76% 1.60% 

V2G DoD 41.45% -0.07% 75.45% 28.24% 13.28% 47.02% 88.96% -27.76% 0.80% 

V2G Ah 41.46% -0.06% 80.16% 28.31% 13.20% 46.64% 88.67% -26.31% 0.80% 

 

Table A-45: Ramp rate parameters probability based MOP mobility behavior 

Scenario rrfpos μ pos σpos μ neg σneg xy=0  rrmax rrmin 

LT 2.25% 4.91% 3.89% -4.14% 2.85% 54.25% 28.76% -18.98% 

DSM 1.55% 2.98% 3.50% -3.18% 2.69% 48.35% 27.76% -17.85% 

V2G DoD 1.18% 2.37% 2.96% -2.35% 2.25% 50.17% 22.91% -15.80% 

V2G Ah 1.15% 2.33% 2.84% -2.27% 2.16% 50.70% 19.87% -13.43% 

 

Table A-46: Duration curve parameters commuter scenario 

Scenario cfpos cfneg 1-(cfneg(PEVs)/cfneg) cfQ<0.8  cfQ>=0.8  rcf0.8   Ph,max Ph,min cfy=0  

LT 42.58% -0.2833% 0.48% 29.37% 14.05% 47.84% 95.88% -32.70% 1.40% 

DSM 43.31% -0.1118% 60.75% 29.43% 13.96% 47.44% 94.44% -29.21% 1.00% 

V2G DoD Mup 43.32% -0.0806% 71.69% 29.47% 13.92% 47.22% 94.02% -26.54% 0.80% 

V2G Ah Mup 43.33% -0.0633% 77.76% 26.65% 16.22% 60.86% 151.65% -43.52% 3.20% 

 

Table A-47: Ramp rate parameters commuter scenario 

Scenario rrfpos μ pos σpos μ neg σneg xy=0  rrmax rrmin 

LT 1.33% 2.67% 3.89% -2.64% 2.74% 50.21% 37.95% -25.37% 

DSM 1.18% 2.36% 3.66% -2.32% 2.60% 50.39% 37.25% -24.33% 

V2G DoD Mup 1.14% 2.31% 3.57% -2.21% 2.58% 51.04% 36.89% -24.54% 

V2G Ah Mup 3.66% 8.62% 13.32% -6.36% 7.57% 57.55% 63.01% -38.19% 
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Table A-48: Duration curve parameters vehicle-to-grid DoD without mobility behavior 

Scenario cfpos cfneg 
1-

(cfneg(PEVs)/cfneg) 
cfQ<0.8  cfQ>=0.8  rcf0.8   Ph,max Ph,min cfy=0  

V2G 2 kW 38.60% -0.1069% 62.46% 25.98% 12.73% 49.00% 84.91% -33.32% 1.40% 

V2G reference 38.60% -0.1037% 63.59% 25.98% 12.72% 48.97% 84.90% -32.45% 1.40% 

V2G 12 kW 38.60% -0.1029% 63.87% 25.98% 12.72% 48.95% 84.92% -32.42% 1.40% 

V2G 22 kW 38.60% -0.1036% 63.60% 25.98% 12.72% 48.95% 84.91% -32.43% 1.40% 

 
 
 

Table A-49: Ramp rate parameters vehicle-to-grid DoD without mobility behavior 

Scenario rrfpos μ pos σpos μ neg σneg xy=0  rrmax rrmin 

V2G 2 kW 1.42% 2.99% 3.14% -2.67% 2.42% 52.86% 24.87% -18.69% 

V2G reference 1.41% 2.98% 3.13% -2.65% 2.41% 52.92% 24.75% -18.33% 

V2G 12 kW 1.41% 2.98% 3.13% -2.64% 2.40% 52.97% 24.44% -18.42% 

V2G 22 kW 1.41% 2.99% 3.12% -2.64% 2.40% 53.10% 24.58% -18.31% 

 
 
 

Table A-50: Duration curve parameters vehicle-to-grid Ah without mobility behavior 

Scenario cfpos cfneg 
1-

(cfneg(PEVs)/cfneg) 
cfQ<0.8  cfQ>=0.8  rcf0.8   Ph,max Ph,min cfy=0  

V2G 2 kW 38.60% -0.0990% 65.24% 25.98% 12.72% 48.95% 87.43% -31.95% 1.20% 

V2G reference 38.60% -0.0987% 65.33% 25.98% 12.71% 48.93% 87.27% -31.81% 1.20% 

V2G 12 kW 38.60% -0.0987% 65.34% 25.99% 12.71% 48.89% 87.23% -31.85% 1.20% 

V2G 22 kW 38.61% -0.0979% 65.60% 25.99% 12.70% 48.88% 87.18% -31.75% 1.20% 

 

 
 

Table A-51: Ramp rate parameters vehicle-to-grid Ah without mobility behavior 

Scenario rrfpos μ pos σpos μ neg σneg xy=0  rrmax rrmin 

V2G 2 kW 1.49% 3.20% 3.08% -2.78% 2.34% 53.56% 20.72% -15.56% 

V2G reference 1.48% 3.19% 3.07% -2.76% 2.34% 53.54% 21.51% -15.30% 

V2G 12 kW 1.48% 3.18% 3.05% -2.75% 2.33% 53.57% 21.47% -15.01% 

V2G 22 kW 1.47% 3.16% 3.05% -2.75% 2.32% 53.50% 21.42% -14.99% 

Note: V2G scenarios include mark-up prices 
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Table A-52: Duration curve parameters demand-side management 

Scenario cfpos cfneg 1-(cfneg(PEVs)/cfneg) cfQ<0.8  cfQ>=0.8  rcf0.8   Ph,max Ph,min cfy=0  

Permanent available 42.21% -0.1017% 64.29% 28.58% 13.72% 48.00% 91.91% -33.87% 1.40% 

Home + work  42.10% -0.1021% 64.15% 28.51% 13.69% 48.02% 91.74% -33.82% 1.40% 

Home 41.98% -0.1004% 64.74% 28.43% 13.64% 47.97% 91.83% -33.48% 1.20% 

 

Table A-53: Ramp rate parameters demand-side management 

Scenario rrfpos μ pos σpos μ neg σneg xy=0  rrmax rrmin 

Permanent available 1.50% 2.82% 3.47% -3.17% 2.68% 47.03% 27.68% -17.38% 

Home + work  1.51% 2.83% 3.49% -3.18% 2.69% 47.07% 28.01% -17.53% 

Home 1.52% 2.84% 3.49% -3.24% 2.72% 46.67% 27.99% -17.65% 

 
 

Table A-54: Duration curve parameters vehicle-to-grid DoD battery aging and mark-up price 

Scenario cfpos cfneg 1-(cfneg(PEVs)/cfneg) cfQ<0.8  cfQ>=0.8  rcf0.8   Ph,max Ph,min cfy=0  

Permanent available 42.25% -0.0610% 78.59% 28.85% 13.46% 46.64% 90.14% -27.41% 0.80% 

Home + work  42.13% -0.0660% 76.83% 28.75% 13.44% 46.76% 89.94% -28.22% 0.80% 

Home 42.01% -0.0660% 76.80% 28.66% 13.42% 46.82% 89.11% -28.34% 0.80% 

 
 

Table A-55: Ramp rate parameters vehicle-to-grid DoD battery aging and mark-up price 

Scenario rrfpos μ pos σpos μ neg σneg xy=0  rrmax rrmin 

Permanent available 1.20% 2.34% 3.00% -2.42% 2.27% 49.17% 22.90% -15.34% 

Home + work  1.22% 2.37% 3.03% -2.48% 2.30% 48.90% 23.73% -15.41% 

Home 1.25% 2.42% 3.07% -2.54% 2.36% 48.82% 23.73% -15.82% 

 
 

Table A-56: Duration curve parameters vehicle-to-grid Ah battery aging and mark-up price 

Scenario cfpos cfneg 1-(cfneg(PEVs)/cfneg) cfQ<0.8  cfQ>=0.8  rcf0.8   Ph,max Ph,min cfy=0  

Permanent available 42.26% -0.0504% 82.30% 28.93% 13.37% 46.23% 89.87% -26.02% 0.60% 

Home + work  42.14% -0.0545% 80.84% 28.83% 13.36% 46.33% 89.58% -27.13% 0.60% 

Home 42.03% -0.0545% 80.84% 28.74% 13.34% 46.39% 89.58% -27.22% 0.60% 

 
 

Table A-57: Ramp rate parameters vehicle-to-grid Ah battery aging and mark-up price 

Scenario rrfpos μ pos σpos μ neg σneg xy=0  rrmax rrmin 

Permanent available 1.15% 2.29% 2.86% -2.31% 2.18% 49.78% 19.78% -14.64% 

Home + work  1.17% 2.30% 2.89% -2.37% 2.21% 49.21% 21.01% -14.68% 

Home 1.19% 2.34% 2.93% -2.42% 2.27% 49.04% 21.16% -14.73% 
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Share of fluctuating generation technology 

 

 

Table A-58: Duration curve parameters  

Scenario cfpos cfneg 
1-

(cfneg(PEVs)/cfneg) 
cfQ<0.8  cfQ>=0.8 rcf0.8   Ph,max Ph,min cfy=0  

RS-PV 0% 38.54% -0.697%   25.06% 14.16% 56.50% 90.71% -51.46% 6.40% 

DSM RES-PV 0% 42.20% -0.427% 38.79% 27.76% 14.87% 53.56% 92.58% -31.54% 4.20% 

V2GDoD RES-PV 0% 42.24% -0.348% 50.10% 27.98% 14.61% 52.21% 90.86% -29.34% 3.80% 

RS-PV 15% 38.54% -0.286%   25.56% 13.26% 51.87% 89.87% -32.16% 3.40% 

DSM RES-PV 15% 42.21% -0.132% 53.97% 28.47% 13.86% 48.70% 91.64% -24.85% 1.80% 

V2GDoD RES-PV 15% 42.24% -0.087% 69.41% 28.66% 13.66% 47.65% 90.51% -20.40% 1.40% 

RS-PV 30% 38.54% -0.429%   25.72% 13.24% 51.47% 90.71% -51.46% 4.20% 

DSM RES-PV 30% 42.20% -0.159% 63.03% 28.62% 13.73% 47.97% 92.25% -40.75% 2.00% 

V2GDoD  RES-PV 30% 42.26% -0.077% 81.99% 28.92% 13.41% 46.37% 90.01% -33.65% 1.00% 

RS-PV 45% 38.54% -1.499% 26.47% 13.57% 51.27% 91.55% -70.82% 9.20% 

DSM RES-PV 45% 42.21% -0.763% 49.07% 28.99% 14.00% 48.29% 93.04% -58.68% 6.00% 

V2GDoD  RES-PV 45% 42.30% -0.389% 74.03% 29.19% 13.51% 46.28% 90.14% -49.29% 3.80% 

Note: V2G scenarios include mark-up prices 

 

 

 

Table A-59: Ramp rate parameters  

Scenario rrfpos μ pos σpos μ neg σneg xy=0  rrmax rrmin 

RS-PV 0% 1.64% 3.46% 2.92% -3.11% 2.40% 52.68% 18.13% -16.86% 

DSM RES-PV 0% 1.23% 2.24% 3.09% -2.70% 2.59% 45.29% 19.01% -17.42% 

V2GDoD RES-PV 0% 1.03% 1.93% 2.83% -2.18% 2.27% 46.93% 18.78% -15.65% 

RS-PV 15% 1.75% 3.78% 3.03% -3.25% 2.33% 53.70% 24.47% -14.48% 

DSM RES-PV 15% 1.25% 2.28% 2.97% -2.73% 2.43% 45.48% 23.83% -14.09% 

V2GDoD RES-PV 15% 1.02% 1.95% 2.63% -2.14% 2.10% 47.65% 18.75% -12.56% 

RS-PV 30% 2.26% 4.91% 4.09% -4.17% 3.27% 54.09% 30.82% -22.63% 

DSM RES-PV 30% 1.72% 3.28% 3.96% -3.56% 3.09% 47.93% 30.06% -21.04% 

V2GDoD  RES-PV 30% 1.34% 2.66% 3.36% -2.67% 2.61% 49.90% 25.53% -18.19% 

RS-PV 45% 2.87% 6.26% 5.65% -5.28% 4.98% 54.21% 37.16% -30.92% 

DSM RES-PV 45% 1.72% 4.52% 5.48% -4.64% 4.71% 49.29% 36.33% -30.52% 

V2GDoD  RES-PV 45% 1.34% 3.44% 4.57% -3.34% 3.97% 50.70% 33.30% -26.24% 

Note: V2G scenarios include mark-up prices 
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B. Field test  
 

The price-based control of PEVs as introduced in Chapter 2 and Chapter 5 is applied in 
the field test “Flottenversuch Elektromobilität” (BMU, 2009; E.ON AG, 2012 and 
Volkswagen AG, 2011). The Flottenversuch Elektromobilität is a project funded by the 
German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety 
(BMU) with Volkswagen AG and E.ON Energie AG as the main industry partners.123 
As one task within the subproject AP1 under E.ON AG leadership a on-board meter was 
developed and implemented in 20 Golf Variant “TwinDrive” plug-in hybrid electric 
vehicles. Details on the technical specification are available in (Link, 2011, Chapter 
5.3). The depth of discharge-based battery cost calculation (see Chapter 4.3.4) and the 
optimization algorithm (see Chapter 5.4.6) were implemented in the Volkswagen 
vehicles and the PowerACE DSM simulation environment. The tariff used in the field 
was generated with the PowerACE simulation model including variable grid fees for a 
2030 scenario124 and gives incentives for the grid integration of fluctuating generation 
units (see Chapter 5.3.5). This shows a valuable application of the simulation model in a 
research project. The application of the methods in the field test and the simulation 
environment provides evidence on the technical feasibility and practical relevance of 
this work. 
 

 

                                                 
123 Further partners are GAIA Akkumulatorenwerke GmbH, Evonik Litarion GmbH, ifeu - Institut für 
 Energie- und Umweltforschung Heidelberg GmbH, Westfälische Wilhelms-Universität Münster 
 Fraunhofer ISiT - Fraunhofer Institut für Siliziumtechnologie. 
124 Note: The scenario introduced in Chapter 6 is not consistent with the scenarios of the Flottenversuch 
 Elektromobilität. 
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Publication Status Chapter 
Dallinger, D, and M Wietschel. 2012a. Grid integration of intermittent 
renewable energy sources using price-responsive plug-in electric vehicles. 
Renewable and Sustainable Energy Review 16 (5): 3370–3382. 

Published 
Chapter 4 

and 5 

Biere, D, D Dallinger and M Wietschel. 2009. Ökonomische Analyse der 
Erstnutzer von Elektrofahrzeugen. Zeitschrift für Energiewirtschaft. 

Published Chapter 4 

Dallinger, D, D Krampe and B Pfluger. 2012d. Electric Vehicles in a Smart 
Grid Environment. In: Smart Grid Infrastructure & Networking. Edited by K 
Iniewski. 

Published Chapter 2 

Dallinger, D, G Schubert and M Wietschel. 2013. Integration of intermittent 
renewable power supply using grid-connected vehicles - a 2030 case study for 
California and Germany. Applied Energy 104: 666–682. 

Published 
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Submitted 
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cars - a holistic approach. Energy Policy. 
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Energiewirtschaft. 
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