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In wireless transmissions great capacity gains can be realized by using multi-
ple-input multiple-output (MIMO) systems. We introduce a closed-loop MIMO 
architecture with linear array signal processing. The novel architecture uses 
the feedback channel to request a retransmission of signal parts in critical sub-
spaces. The requested backup subsequently helps the receiver to evade exces-
sive noise amplification in the linear signal reconstruction. Since the backup 
signal is embedded in the successive transmission frame, which may require yet 
another backup, the procedure results in a recursive spatial multiplexing (RSM) 
scheme. We compare the performance of RSM with other closed-loop MIMO 
systems by means of the system constrained ergodic capacities. The recursive 
nature of RSM makes it impossible to guarantee a maximum delay. Exploiting 
receive diversity in MIMO systems, a reduction of the transmit signal dimensions 
for a constant number of receive antennas leads to less frequent retransmission 
requests. For that reason, we introduce optimal transmit antenna selection strat-
egies, which are found by means of machine learning methods. 

Thomas Edlich 

Recursive Spatial Multiplexing



 

 

 

 

 

 

 

 

 

Thomas Edlich 

 

Recursive Spatial Multiplexing 

 

 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

kassel
university

press 



This work has been accepted by the faculty of Electrical Engineering and Computer 
Sciences of the University of Kassel acquiring the academic degree of Doktor der 
Ingenieurwissenschaften (Dr.-Ing.). 
 
Supervisor:  Prof. Dr. sc.techn. Dirk Dahlhaus 
Co-Supervisor:  Dr. sc.techn. Thomas Hunziker 
 
Examiner:  Prof. Dr.-Ing. Olaf Stursberg 
 Prof. Dr.-Ing. Klaus David 
Defense day:  27th March 2013 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bibliographic information published by Deutsche Nationalbibliothek 
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; 
detailed bibliographic data is available in the Internet at http://dnb.dnb.de. 
 
Zugl.: Kassel, Univ., Diss.  2013 
ISBN 978-3-86219-608-1 (print) 
ISBN 978-3-86219-609-8 (e-book) 
URN: http://nbn-resolving.de/urn:nbn:de:0002-36092 
 
© 2013, kassel university press GmbH, Kassel 
www.uni-kassel.de/upress 
 
Printing Shop: Print Management Logistics Solutions GmbH & Co. KG, Kassel 
Printed in Germany 



Meinen Eltern in Dankbarkeit gewidmet





Danksagung

Ich danke meinem Referenten Herrn Prof. Dr. sc.techn. Dirk Dahlhaus
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Zusammenfassung

In drahtlosen Kommunikationssystemen ermöglicht der Einsatz von meh-

reren Sende- und Empfangsantennen (multiple-input multiple-output,

MIMO) erhebliche Kapazitätssteigerungen. Letztere erfordern oft auf-

wändige räumliche Multiplexverfahren in den entsprechenden MIMO-

Systemen, die aufgrund beschränkter Komplexität und Batteriekapazität,

z.B. in Mobilgeräten, jedoch oft nicht praktikabel sind. Lineare Em-

pfängerstrukturen, wie z. B. der Zero-Forcing-Entzerrer (ZF), bieten eine

niedrige Komplexität, erzeugen allerdings gewöhnlich eine Verstärkung

des Empfängerrauschens.

In dieser Arbeit wird eine einfache MIMO-Architektur mit Rück-

kanal vorgestellt, deren Empfänger auf einer linearen Signalverarbeitung

basiert. Im Gegensatz zu MIMO-Präkodierungsverfahren, bei denen

dem Sender Kanalzustandsinformation zur Verfügung steht, wird im

vorgeschlagenen Verfahren der Rückkanal dazu benutzt, eine erneute

Übertragung von Signalteilen anzufordern, welche in kritischen Unter-

räumen empfangen wurden. Das angeforderte Stützsignal ermöglicht

anschließend dem Empfänger, die durch die lineare Signalaufbereitung

generierte Rauschverstärkung zu limitieren. Da das Stützsignal im nach-

folgenden Senderahmen eingebettet ist, welcher wiederum ein anderes

Stützsignal erfordern könnte, resultiert diese Prozedur in einem rekur-

siven räumlichen Multiplex-Verfahren (recursive spatial multiplexing,

RSM).

Die Leistungsfähigkeit von RSM wird anhand der systembedingten er-

godischen Kapazität untersucht und mit derjenigen anderer MIMO-Ar-

chitekturen mit Rückkanal verglichen. In diesem Zusammenhang wer-

den verschiedene Sendewiederholungsstrategien vorgeschlagen und einan-

der gegenübergestellt. Da in realen Systemen die Datenrate des Rück-

kanals begrenzt ist, wird die dadurch entstehende Veringerung des Kapa-

zitätsgewinns untersucht. Des Weiteren zeigt sich, dass RSM leicht mit

einem MIMO-Präkodierungsverfahren kombiniert werden kann, da sich
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die in den beiden Verfahren zum Sender zurück gesendeten Informationen

ähneln. Obwohl die Nutzung dieser über den Rückkanal gesendeten In-

formation in beiden Verfahren völlig unterschiedlich geschieht, ergänzen

sich diese Verfahren und ermöglichen z. B. einen Anstieg der Kapazität

gegenüber reiner Präkodierung in Fällen, wenn die Kanalzustandsinfor-

mation veraltet ist.

Ein Schwachpunkt von RSM ist die theoretisch unbegrenzte Ver-

arbeitungsverzögerung, da die lineare Signalaufbereitung solang ver-

schoben wird, bis ein empfangenes Signal kein Stützsignal mehr benötigt.

Die rekursive Eigenschaft von einer RSM-basierten Sende-/Empfangs-

struktur verhindert so, dass eine maximale Verzögerungszeit garantiert

werden kann. Durch Ausnutzung der Empfangsdiversität in MIMO-

Systemen, in denen die Zahl der Empfangsantennen die Zahl der Sendean-

tennen übersteigt, kann eine Reduzierung der räumlichen Sendesignal-

dimensionen (bei gleichbleibender Anzahl der Empfangsantennen) die

Häufigkeit von benötigten Sendewiederholungen herabsetzen. Aus diesem

Grund werden optimale Strategien zur Sendeantennenwahl vorgestellt,

welche auf Algorithmen zum maschinellen Lernen basieren.

Schließlich wird ein RSM-basiertes Übertragungssystem in Kanälen un-

tersucht, welche mit Hilfe eines in dieser Arbeit vorgestellten MIMO-

Kanalmessgeräts in verschiedenen Ausbreitungsszenarien gemessen wur-

den. Die so aufgenommenen Kanalbedingungen werden in numerischen

Simulationen genutzt, was den Vorteil bietet, RSM einer einfachen Sys-

temverifikation zu unterziehen, ohne eine echtzeitfähige Implementierung

des Verfahrens vornehmen zu müssen.
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Abstract

Great capacity gains can be realized in wireless transmissions by us-

ing multiple antennas at the transmitter as well as the receiver side.

Those multiple-input multiple-output (MIMO) systems require sophisti-

cated spatial multiplexing techniques, while solutions of high complexity

are often not feasible, e.g. due to limited battery resources in mobile de-

vices. Linear receiver structures, such as zero-forcing (ZF) schemes, offer

low complexity, but usually suffer from excessive noise amplification.

In this thesis, we introduce a simple closed-loop MIMO architecture

with linear array signal processing. In contrast to MIMO precoding sys-

tems, where channel state information (CSI) is fed back to the trans-

mitter end, the novel architecture uses the feedback channel to request a

retransmission of signal parts in critical subspaces. The requested backup

subsequently helps the receiver to evade an excessive noise amplification

in the linear signal reconstruction. Since the backup signal is embed-

ded in the successive transmission frame, which may require yet another

backup, the procedure results in a recursive spatial multiplexing (RSM)

scheme.

We investigate the performance of RSM and compare it with other

closed-loop MIMO systems by means of the system constrained ergodic

capacities. In this context, several retransmission policies are suggested

and compared to each other. Since in real transmission systems the

feedback channel is rate-limited, the resulting performance degradation

is examined. Further, it turns out that RSM can be easily combined

with a unitary precoding MIMO system, since the information fed back

to the transmitter is similar. Although the exploitation of the feedback

information is different, the two systems complement one another and

help to increase the system performance when CSI is outdated.

A weakness of RSM is its theoretically unlimited transmission or pro-

cessing delay, since the linear signal reconstruction at the receiver is post-

poned until a received transmission frame is not in need for a backup
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signal. This recursive nature of the RSM transmitter/receiver architec-

ture makes it impossible to guarantee a maximum delay. Exploiting the

receive diversity in MIMO systems equipped with more receive antennas

than transmit antennas, a reduction of the transmit signal dimensions for

a constant number of receive antennas leads to less frequent retransmis-

sion requests. For that reason, we introduce optimal transmit antenna

selection strategies, which are found by means of machine learning meth-

ods.

Finally, an RSM system is applied to real-world transmission channels

which have been measured by a MIMO channel sounder introduced in the

thesis. The measured MIMO channel data are used in numerical system

simulations. This approach enables a simple verification of RSM without

the need of a real-time implementation.
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Chapter 1.

Introduction

1.1. Motivation

In the recent two decades the demand for digital communications has

increased tremendously. The world wide web has introduced new com-

munication opportunities, such as email or chat, to a broad public. Most

information exchange services, e.g. voice over internet protocol (VoIP)

or video on demand (VoD), are based on the internet protocol. Social

networks enable their users to stay permanently connected, sending mes-

sages, location information or status updates. The growing number of

pervasive services leads to a correspondingly growing number of mobile

communication systems. Simultaneously, the demand for high-rate data

services on these mobile platforms increases.

Wireless transmission plays an important role in mobile communica-

tion, but often suffers from poor performance due to long and short term

channel fading effects. As a result the capacity of the wireless system

decreases. Great capacity gains have been realized by using multiple

antennas at the transmitter as well as the receiver. Exploiting the capa-

bilities of these so-called multiple-input multiple-output (MIMO) systems

requires encoding/decoding methods which are often quite complex. Due

to the limited energy in battery driven mobile devices, complex spatial

multiplexing techniques are mostly very unattractive solutions.

Channel state information (CSI) at the transmitter end can be used

for precoding the multidimensional signal, in order to decompose the

MIMO channel into independent single-input single-output (SISO) chan-

nels [1], [2]. Each of the resulting signal layers is then affected by an

individual SISO channel, which allows the use of off-the-shelf SISO en-

coders/decoders and enables data rates close to the MIMO channel capac-
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ity with a limited processing complexity. This kind of vertical encoding

(VE) architecture has the advantage of achieving diversity, which in turn

lowers the probability of outages. However, the improvement of this ap-

proach is sensitive to inaccuracies of the CSI. Usually, data symbols are

transmitted in frames, while the CSI estimated at the receiver end is fed

back to the transmitter between two consecutive frame transmissions in

a time-division duplex fashion. The system performance suffers signifi-

cantly if the CSI is outdated due to time-variance of the channel [3], [4]

or the CSI is inaccurate due to limited capacity of the feedback channel

[5], [6].

Imperfect CSI at the transmitter necessitates additional methods to re-

cover the parallel signal layers at the receiver end. Without any channel

knowledge at the transmitter, optimal or near-optimal MIMO decoding

becomes a complex task. Solutions of low complexity would be receivers

with simple linear processing based on zero-forcing (ZF) or linear mini-

mum mean-squared error (LMMSE) criteria, for instance, to restore the

parallel signal layers. However, the linear signal reconstruction at the

receiver results in noise amplification over all signal layers in case of a

badly conditioned channel matrix [7]. Successive interference cancella-

tion (SIC), e.g. as part of the Vertical Bell Lab Layered Space-Time

(V-BLAST) proposal [8], is able to limit this noise amplification, but the

necessary successive layer-wise decoding has the drawback of increasing

the receiver complexity and introducing a possible error propagation.

In summary, the increasing demands for high data rate services in mo-

bile devices in conjunction with a long battery life call for simple yet

efficient transmission architectures. While MIMO channels offer great

capacity gains, their exploitation often necessitates encoding/decoding

algorithms of high complexity. Closed-loop MIMO systems, which feed

back channel state estimates to the transmitter, often suffer from out-

dated CSI. This thesis introduces a novel approach for a closed-loop

MIMO architecture, the performance of which does not depend on ac-

curate CSI. Furthermore, the scheme is based on simple linear signal

reconstruction methods and is therefore suitable for the aforementioned

battery-constrained receiver architectures.
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1.2. State of the Art

Since the first proposals of using multiple antennas at the transmitter as

well as the receiver, e.g. [9] or [10], for increasing the capacity of wireless

communication systems, many improvements and extensions have been

suggested. While fundamental research on the capacity potential has

been provided in [11] and [12], several first concrete system architectures

have been suggested, as for instance Diagonal-BLAST (D-BLAST) in

[13] and V-BLAST in [8]. Many modifications of the BLAST scheme

have been proposed thereafter, such as a turbo-like iterative decoding at

the receiver [14]. This T-BLAST scheme uses an inter-layer interleaving

following the encoder.

Without CSI at the transmitter end the maximum-likelihood (ML) re-

ceiver is the optimal decoding method in terms of minimizing the average

error probability [15]. Since the ML receiver performs a search through

all vector constellations for the most likely sent signal vector, the de-

coding procedure is of high complexity. Different approaches have been

suggested to reduce complexity significantly [16], e.g. sphere decoding

[17, 18], in which only a certain part of all possible lattice points are

considered in the ML decoder.

Linear signal reconstruction methods, such as ZF and LMMSE, require

substantially less complexity, but they suffer from noise amplification over

all signal layers [7]. A common solution is the ordered SIC used in V-

BLAST [8], but this again leads to an increasing decoder complexity by

the successively applied decoding and regenerative interference cancella-

tion for each layer. In [19] the authors suggest a poly-diagonalization for

limiting inter-layer interference in order to decrease the noise amplifica-

tion.

For a perfect diagonalization of the MIMO channel at the receiver, CSI

knowledge at the transmitter end can be used. This preprocessing of the

transmit signal presumes accurate knowledge of the present channel con-

ditions. Therefore, a precoding of the transmit signal vector is applied

[1]. In practice, this assumption is often violated due to time-variance of

the channel [3, 4]. Even in a time-invariant environment practical consid-

erations, as for instance a limited capacity of the feedback channel [5, 20],

can cause inaccuracies in the precoding matrix and, thus, limit the sys-

tem performance. Finding appropriate codebooks of precoding matrices
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can be represented as the problem of packings in Grassmannian spaces

[21], as applied in [22], and bounds of these packings have been analyzed

in [23]. Other approaches to reduce feedback information have been ex-

amined by interpolating the CSI [24] or by forming a precoding matrix

based on means of channel averages and transmit antenna correlation

[25].

A very simple closed-loop transmission protocol, the application of

which is not restricted to MIMO systems, is given by the family of au-

tomatic repeat request (ARQ) architectures, as presented in [26]. The

transmit signal is equipped with an error detection code, which enables

the receiver to validate the correctness of the received message. In case

of an erroneously received signal a retransmission of the original message

or redundant information is requested. The latter principle is called a

type-II Hybrid-ARQ (HARQ) [27]. The redundancy can be gradually

increased [28] or a soft combining of the successively received messages

can be applied [29], where the latter is also known as Chase combining.

A Chase combining scheme applied to MIMO systems has been examined

in [30]. Layer-wise HARQ and a single HARQ in the context of a MIMO

transmission have been compared in [31], where the first exhibit a much

larger complexity.

During the last decade, the field of machine learning has become of

great interest for improving communication systems. As machine learn-

ing is used in Sect. 4.3 for improving the novel MIMO system approach

introduced in this thesis, a brief outline of machine learning applications

in MIMO systems is provided in the following. Reinforcement learning

is a type of machine learning with the objective of maximizing a cu-

mulative reward. A broad overview on reinforcement learning problems

and algorithms has been provided in [32]. Finding optimal strategies

for a reinforcement learning problem can be done by using the theory

of Markov Decision Processes (MDP) [33]. In [34], the authors suggest

an MDP based V-BLAST transmit power and rate control in order to

minimize the transmit power constrained on limiting an average transmit

delay time, which can be interpreted as a quality-of-service constraint.

Bit loading and power allocation per antenna by means of solving an

MDP is examined in [35]. While MDPs are suitable for queue manage-

ment tasks, two-dimensional optimization problems are solved in [36, 37],

where a cross-layer approach considers the transmit buffer and the over-
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all throughput of a MIMO system. A similar MDP-modeled problem is

presented in [38] to find an optimal precoding. Reinforcement learning

can also be used in the context of MIMO link adaptation [39].

The evaluation of new algorithms and system architectures is often

performed by means of numerical simulations. Since simulations usually

employ a relatively simple model of the considered transmission chan-

nels, the achieved system performance results depend critically on the

accuracy of the channel models. The weakness of such an approach is

the assumption of a correctly modelled environment. In order to improve

the accuracy of the channel models used in simulations, parts of the new

transmission schemes can be implemented in experimental testbeds or

hardware modules, which enable a verification in ”real-world” scenar-

ios. Clearly, depending on the constraints of the testbed the achievable

accuracy in turn may be limited. For instance, in [40] the authors in-

troduce 4 × 4 MIMO hardware that operates basically in baseband. It

is realized by a combination of a digital signal processor (DSP) and a

field programmable gate array (FPGA), which enables real-time signal

processing, such as an artificial noise generation. MATLAB is a very com-

mon solution employed as user interface of verification systems for test

algorithm implementations, as applied in the 4 × 4 MIMO systems sug-

gested in [41, 42], both operating at a center frequency of 2.4− 2.5 GHz,

but with different bandwidth restrictions. Specialized multi-user MIMO

architectures with orthogonal frequency-division multiplexing (OFDM),

mostly used for Long Term Evolution (LTE) verification tests, are shown

in [43, 44, 45]. While the aforementioned testbeds basically focus on

real-time operation, channel sounders provide a more general approach

in terms of testing an architecture under realistic transmission condi-

tions. In [46] a 4 × 4 MIMO channel sounder based on two off-the-shelf

network analyzers is used. This set-up usually provides a large sounding

bandwidth, but lacks sufficient resolution in time domain to capture time-

variant channels. A widely-used channel sounder is based on the MEDAV

RUSK system. Early virtual MIMO measurements have been performed

by means of mechanical array positioning systems [47], with successively

sounding the channel between only one transmit and receive antenna pair,

where the location of the antennas is changed after each measurement.

Nowadays, MEDAV RUSK is equipped with a very fast switching antenna

array for sounding and modeling MIMO channels [48, 49]. However, it
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has been shown in [50] that this time-division multiplexed switching of

a single transmit/receive chain within the elements of a transmit/receive

antenna array can cause measurement errors potentially leading to an

overestimation of the channel capacity.

1.3. Contribution of this Thesis

The content of this thesis is focused on the introduction and analysis of

a novel spatial multiplexing system approach, its application and several

practical considerations regarding the architecture. As a performance

criterion the system constrained MIMO capacity is used and compared

with related transmission architectures. The main contribution of this

thesis can be summarized as follows.

∙ In Sect. 2.4.3 a novel recursive spatial multiplexing (RSM) scheme

of low complexity is proposed.

∙ The performance of RSM in terms of the constrained ergodic ca-

pacity is examined. The performance degradation when using a

feedback channel with a limited capacity is shown in Sect. 3.3.

∙ The ease of simultaneously exploiting the advantages of unitary

precoding and RSM in one system without further effort is demon-

strated in Sect. 3.5.

∙ Since the RSM approach without further measures can theoretically

result in an unlimited recursion process, a system extension to limit

the maximum transmit delay is proposed in Sect. 4.3. Antenna

selection strategies are derived by means of machine learning, which

enables the MIMO system to adapt to changing channel conditions,

e.g. transmit or receive antenna correlation.

∙ In Sect. 5.1 a flexible MIMO channel sounder is presented which is

used to characterize real-world transmission channels. In contrast

to other testbeds, this measurement system uses the same local

oscillator frequency at each transmit and each receive antenna, re-

spectively, but a time-division demultiplexing at only the transmit-

ter side. The MIMO receiver is able to simultaneously measure the

signals at the separate receive antennas. This reduces measurement



1.4. Outline of this Thesis 7

errors caused by phase noise considerations, as they may occur in

virtual or switching MIMO systems.

∙ The performance indices of RSM derived in previous sections and

based on simplified channel models are verified by measurements

of system implementations in real-world scenarios using the MIMO

channel sounder.

1.4. Outline of this Thesis

Chapter 2 provides an insight into the considered MIMO channel, vertical

encoding MIMO and some linear signal reconstruction methods. Several

existing closed-loop MIMO systems are reviewed and a detailed consid-

eration of the RSM approach is presented, where the overall transceiver

architecture is shown and the optimal feedback information is derived.

Chapter 3 deals with the ergodic performance in terms of the system

throughput per channel use. Different RSM policies are introduced and

their performance is compared with the constrained capacity of other

closed-loop MIMO systems. The practical case of a feedback channel with

limited data rate is considered and the inherent throughput degradation

is examined. It is further shown that RSM can be even applied as an

extension in a precoding MIMO system, where the advantages of both

systems can be combined with each other. A theoretical treatment of

RSM for large numbers of transmit/receive antennas is presented at the

end of this chapter.

Chapter 4 addresses the throughput performance of RSM on condition

that the maximum transmit delay is limited, i.e., the recursion depth

is bounded. Transmission strategies are derived by means of MDP to

minimize the number of outages. A simple machine learning algorithm is

discussed which enables the RSM architecture to find adaptive antenna

selection strategies in slowly time-varying MIMO channel conditions.

Chapter 5 considers some practical aspects of the RSM scheme. A new

MIMO channel sounder is presented. Several transmission scenarios are

described and the measurement results are briefly characterized. Finally,

the different aforementioned RSM schemes, e.g. with/without precoding

or limited maximum delay, are tested using the MIMO channels being

measured by the channel sounder in the corresponding scenarios.
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Chapter 6 contains the main conclusions and provides an outlook to

possible future research topics in the area of RSM.

Throughout the thesis matrices are represented by bold capital letters,

while vectors are written as small letters in boldface. Re{⋅} and Im{⋅}
denote the real and imaginary part, respectively, of a complex value and

(⋅)∗ the complex conjugation. E[⋅] is the expectation of a random variable.

The Hermitian transpose of A is written as A† and the Moore-Penrose

pseudo-inverse of A as A+. tr (A) denotes the trace of the square matrix

A and diag {a} is a diagonal matrix with the elements of the vector a on

its main diagonal. [A]i,j defines the jth element of the ith row of A and

Ia is the a × a-identity matrix. The Frobenius norm of A is denoted as

∥A∥F.



Chapter 2.

MIMO Baseband Architectures

This chapter describes the proposed MIMO transceiver architecture. In

general, MIMO transmission systems offer great capacity gains for reliable

communication over fading channels. In the latter, the different spatial

propagation paths introduce diversity due to independent signal compo-

nents in the dimensions of the signal space. Encoding/Decoding methods

of low complexity enable an orthogonalization of the signal components,

i.e., the MIMO signaling is equivalent to a transmission over multiple

spatial data streams in parallel.

Clearly, fading affects certain parts of the orthogonal signal dimensions,

such that these are in bad condition. In closed-loop architectures, the

receiver feeds back data to the transmitter, in particular channel state

information (CSI). At the transmitter, exploiting CSI and appropriately

precoding (cf. Sect. 2.4.1) the transmit data is a common method to cope

with fading. However, this requires the CSI being up-to-date. In the

case of imperfect or outdated CSI at the transmitter, further processing

is necessary to recover the parallel signal layers at the receiver.

We propose a novel closed-loop MIMO transceiver architecture in

which a recursive multiplexing of spatial signal components is applied

at the receiver. In contrast to a (CSI based) precoding at the transmit-

ter, the fed back information in the recursive spatial multiplexing (RSM)

approach cannot be outdated, as described in the following. A block

diagram shown in Fig. 2.1 illustrates the proposed architecture.

The novel system comprises a demultiplexer at the transmitter side

and a multiplexer at the receiver side. At the transmitter, the serial in-

put data stream is demultiplexed into array signal frames, while these are

multiplexed back to a serial output data stream at the receiver. This cor-

responds to a vertical encoded MIMO (cf. Sect. 2.2) architecture. Thus,
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Figure 2.1 Basic principle of a MIMO architecture with recursive spatial
multiplexing sketched as a block diagram.

the outer data interfaces support the transmission of a serial data stream,

but the inner transmission architecture employs the great benefit of a

MIMO communication system. For limiting the complexity of the re-

ceiver, a linear signal reconstruction is employed.

We consider an N ×M MIMO channel, with N ≥ M , for transmitting

information data, where M denotes the number of transmit antennas and

N the number of receive antennas. Throughout the thesis, we restrict the

number of transmit antennas not to exceed the number of receive anten-

nas, such that M ≤ N , in order to be able to fully restore all transmitted

parallel data streams. A total of L frames transmitted sequentially in

time are indexed by ℓ with ℓ ∈ {1, . . . , L}. Each frame incorporates K

signal vectors, such that the M × 1 vectors xℓ,1, . . . ,xℓ,K represent the

array signal transmitted in the ℓth frame. The received signal is denoted

as yℓ,k. A feedback channel is used to request mℓ critical signal parts for

retransmission in the subsequent frame.

In the following, the individual parts of the considered MIMO archi-

tecture, as sketched in Fig. 2.1, are described in detail.

2.1. MIMO Channel

Before describing the inner system architecture, a brief look at the trans-

mission channel will facilitate the understanding of the new approach.

A point-to-point transmission over a narrowband N × M MIMO prop-

agation channel is considered. We employ a block-fading propagation

channel model, i.e., the propagation channel is stationary over the period
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of a frame transmission, but it may vary arbitrarily from frame to frame.

The N×M matrix Hℓ shown in Fig. 2.2 contains the narrowband MIMO

propagation channel coefficients in the complex baseband describing the

ℓth frame.

M NN
×Hℓ

xℓ,k yℓ,k

nℓ,k

Figure 2.2 Considered MIMO channel.

The output of the propagation channel is superimposed by NK in-

dependent front end noise terms, that is, nℓ,1, . . . ,nℓ,K are zero-mean

complex Gaussian random vectors with covariance matrix E
[
nℓ,kn

†
ℓ,k

]
=

#noiseIN , with IN and #noise denoting the N ×N identity matrix and the

noise power spectral density, resp., such that the receiver observes

yℓ,k = Hℓxℓ,k + nℓ,k, k = 1, . . . ,K. (2.1)

The transmit signal vector xℓ,k is assumed to comprise uncorrelated zero-

mean complex random variables with variance "sig, thus

E
[
xℓ,kx

†
ℓ,k

]
= "sigIM . (2.2)

The signal-to-noise ratio (SNR) at the input of the receiver is defined as


inp = "sig/#noise. In addition to the MIMO channel, the existence of a

feedback channel is assumed to enable the receiver signaling requests at

the transmitter. First, the feedback channel is considered to be perfect

with unlimited capacity. In Sect. 3.3, the effect of a limited feedback

channel is considered.

Using a singular value decomposition, Hℓ can be represented as

Hℓ = UℓSℓV
†
ℓ , (2.3)

where Sℓ is an N ×M matrix containing the non-negative real singular
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values �i(Hℓ) of Hℓ on its main diagonal and all other elements are zero.

Clearly, in the case N = M , Sℓ is a diagonal matrix. For arbitrary values

M and N , Uℓ and Vℓ are unitary matrices of corresponding dimensions

and thus U
†
ℓUℓ = UℓU

†
ℓ = IN and V

†
ℓVℓ = VℓV

†
ℓ = IM . The singular

value decomposition in (2.3) can be used to express the eigendecomposi-

tion of H†
ℓHℓ, such that

H
†
ℓHℓ =

(
UℓSℓV

†
ℓ

)†
UℓSℓV

†
ℓ = VℓSℓU

†
ℓUℓSℓV

†
ℓ = VℓS

2
ℓV

†
ℓ . (2.4)

For Hℓ having full rank M , the matrix S2
ℓ =

diag
{
�2
1(Hℓ), �

2
2(Hℓ), . . . , �

2
M (Hℓ)

}
contains the strictly positive eigen-

values of H†
ℓHℓ in ascending order, i.e., 0 < �2

1(Hℓ) ≤ . . . ≤ �2
M (Hℓ). To

each eigenvalue �2
i (Hℓ), with i ∈ {1, . . . ,M}, the according eigenvectors

constitute the columns of the unitary matrix Vℓ.

Considering the fluctuation of the received signal power caused by the

MIMO channel, the channel is said to be in a fade if the power drops

significantly [7]. The diversity in MIMO channels can help to cope with

fading by means of proper space-time encoding/decoding. The maximum

achievable diversity order equals the product MN of transmit and receive

antennas, if the attenuations of each transmit-receive antenna pair occur

independently [7].

2.2. Vertical Encoding

The information data transmitted by the communication system depicted

in Fig. 2.1 is represented as a serial bit sequence. Usually, SISO transmis-

sion systems employ forward error correction by convolutional encoding

to improve the robustness of the transmission. Temporal interleaving of

the encoded data stream usually copes with the effect of burst errors

and improves the error performance of the convolutional decoder. The

interleaved encoded bit sequence is then mapped to complex symbols ac-

cording to the applied modulation scheme, e.g. binary phase-shift keying

(BPSK) or quadrature amplitude modulation (QAM).

This signal processing of a serial bit stream is depicted as the SISO

encoder in Fig. 2.3. The output of the symbol mapper is demultiplexed

into M signal streams, which are then transmitted over M antennas.
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symbol

mapper
demultiplexer

transmit signal

Figure 2.3 Vertical encoding MIMO architecture.

This structure is called vertical encoding (VE) and also employed in V-

BLAST [8]. For simplification purposes, the convolutional encoder, the

temporal interleaver and the symbol mapper in Fig. 2.3 are represented

as the SISO encoder in Fig. 2.1 and in subsequent block diagrams.

The simplest variant of the demultiplexer is the application of a serial-

to-parallel converter. Each information bit is spread over different com-

plex symbols due to the convolutional encoding, thus, it is also spread

over different transmit antennas by using a simple demultiplexing scheme

as the serial-to-parallel converter1. In view of the latter, a diversity order

greater than N can be achieved. It is also possible to transmit a linear

combination of M different complex symbols at each antenna. Hence,

in both cases, one information bit is spread over all transmit antennas,

which results in VE potentially achieving the maximum diversity order

of MN [7].

While VE benefits from the comparatively simple transmitter struc-

ture, the corresponding receiver architecture can be very complex, since

it is required to decode all substreams jointly. Linear signal reconstruc-

tion methods are introduced in Sect. 2.3 offering low complexity, but

suffering from noise amplification. Successive interference cancellation,

as, for instance, part of the V-BLAST proposal [13], can limit noise en-

hancement at the expense of increasing system complexity due to the

necessary successive layer-wise decoding and a potential error propaga-

tion. Therefore, the V-BLAST receiver structure will not be considered

in this thesis.

1 It is assumed that the minimum free distance of the convolutional code [51] is suffi-
ciently large in comparison to the number of transmit antennas. Thus, each infor-
mation bit is spread across all transmit antennas.
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2.3. Linear Signal Reconstruction

An observed signal frame at the receiver input consists of K vectors

of dimension N × 1 each. The N elements of one of these vectors are

superpositions of the different signals sent by each transmit antenna. For

recovering the transmitted signal, linear estimation methods are applied

to the received signal, in order to keep the receiver complexity low. To

this end, a matrix Gℓ is used to estimate the transmit signal, such that

x̂ℓ,k = Gℓyℓ,k. (2.5)

VE requires the joint decoding of all substreams at the receiver. If some

signal layers are of insufficient quality, the linear signal reconstruction

may fail, as shown below. However, the reviewed algorithms are of low

complexity. In the following, perfect knowledge of the CSI at the receiver

only is assumed. Furthermore, at first the transmitter is considered to

have no CSI.

2.3.1. Zero Forcing

In SISO systems, a ZF filter is usually applied to the received signal for

the purpose of reducing intersymbol interference (ISI), e.g. in [51]. Here,

the effect of ISI is neglected, since narrowband channels are considered

only, i.e., the channel is nondistorting due to constant amplitude response

and envelope delay characteristics of the propagation channel. Although

no interference of consecutively transmitted symbols is present, ZF is

used in a MIMO receiver to overcome the multistream interference (MSI)

resulting from interfering substreams transmitted at the same time.

The simple idea of the ZF algorithm for decomposing the sublayers

in a MIMO receiver is based on equalizing the linear mapping caused

by the channel. This is done by applying a filter to the received signal,

with the property to invert the channel, as described in [7]. For N = M

where Hℓ is a square matrix, the ZF algorithm results in multiplying the

received signal by Hℓ
−1. For N > M , the Moore-Penrose pseudoinverse

[52] H+
ℓ =

(
H

†
ℓHℓ

)−1

H
†
ℓ of Hℓ is used. Hence, the equalized signal is

given by

x̂
(ZF)
ℓ,k = H+

ℓ yℓ,k (2.6)
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with Gℓ = H+
ℓ . Using (2.1) and assuming Hℓ has full rank, the output

of the ZF equalizer is given by

x̂
(ZF)
ℓ,k = xℓ,k +H+

ℓ nℓ,k. (2.7)

As expected, the ZF decouples the transmitted substreams to parallel

channels with additive noise. However, it can be seen from (2.7) that

the noise is enhanced by the ZF operator H+
ℓ . Quantifying this noise

enhancement of the ZF can be done by calculating the postprocessing

noise power matrix

Θ
(ZF)
noise = E

[
H+

ℓ nℓ,k

(
H+

ℓ nℓ,k

)†]

= E

[(
H

†
ℓHℓ

)−1

H
†
ℓnℓ,kn

†
ℓ,kHℓ

(
H

†
ℓHℓ

)−1
]

=
(
H

†
ℓHℓ

)−1

H
†
ℓE
[
nℓ,kn

†
ℓ,k

]
Hℓ

(
H

†
ℓHℓ

)−1

= #noise

(
H

†
ℓHℓ

)−1

. (2.8)

By comparison of the preprocessing noise covariance matrix #noiseIN and

Θ
(ZF)
noise, it is obvious that the postprocessing noise is correlated across

the different substreams due to the ZF equalization. The SNR of each

substream is calculated by considering the elements on the main diagonal

of Θ
(ZF)
noise, such that the ZF constrained SNR of the mth substream in

the ℓth frame results to



(ZF)
ℓ,m =


inp[(
H

†
ℓHℓ

)−1
]

m,m

, (2.9)

where [⋅]a,b denotes the bth element of the ath row of a matrix. In sum-

mary, the ZF linear signal estimator is able to decompose the inherent

M substreams of a received MIMO signal, but at the expense of noise

enhancement.
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2.3.2. Linear Minimum Mean-Squared Error

The output of a ZF equalizer constitutes perfectly decoupled substreams,

but suffers from noise enhancement. An alternative receiver concept for

improving the performance of the ZF equalizer, especially in the low SNR

range, can be derived by minimizing the mean-squared error between the

linearly equalized and transmitted signals. As shown in [7], the LMMSE

receiver matrix G
(LMMSE)
ℓ has to satisfy the equation

G
(LMMSE)
ℓ = argmin

G
ℓ

E
[
∥Gℓyℓ,k − xℓ,k∥2F

]
, (2.10)

where ∥A∥F =
√
tr (AA†) denotes the Frobenius norm of A. The solu-

tion in (2.10) results from the orthogonality principle [53]

E
[(

G
(LMMSE)
ℓ yℓ,k − xℓ,k

)
y
†
ℓ,k

]
= 0M,N , (2.11)

stating the estimation error
(
G

(LMMSE)
ℓ yℓ,k − xℓ,k

)
has to be uncorre-

lated to all observations yℓ,k in order to minimize the mean-squared error

(MSE) [54]. Referring to [7],G
(LMMSE)
ℓ can be derived from (2.11) as

G
(LMMSE)
ℓ =

(
H

†
ℓHℓ +

IM


inp

)−1

H
†
ℓ. (2.12)

A simple comparison of the LMMSE and the ZF estimators has been

performed in [7] by considering (2.12) for high and low SNR regions. For

large SNR values the LMMSE operator converges to the matrix of the ZF,

i.e., G
(LMMSE)
ℓ ≈ H+

ℓ . In contrast, the LMMSE operator approximates

a matched filter matrix when considering low SNR values, such that

G
(LMMSE)
ℓ ≈ 
inpH

†
ℓ.

The performance of the LMMSE estimator will be characterized in

chapter 3 in terms of the signal to interference and noise ratio (SINR) on

the mth substream [7]

�ℓ,m =
1[(

IM + 
inpH
†
ℓHℓ

)−1
]

m,m

− 1. (2.13)
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2.4. Closed Loop MIMO Systems

So far, we have introduced an open-loop MIMO system, i.e., a uni-

directional communication without any feedback information sent from

the receiver back to the transmitter. A very common method is to feed

back CSI to the transmitter. This CSI is then used at the transmitter

to calculate an appropriate precoding of the transmit signal according to

the current state of the channel. The major problem of this approach

concerns the processing delay, i.e., the precoding is useless, if it is out-of-

date and does not match the current CSI. Outdated CSI problems usually

arise in fast fading channels (e.g. mobile communication), or if the time

delay between sensing the channel state at the receiver and the precoding

at the transmitter is too long. A second problem in precoding is the lim-

ited capacity of the feedback channel, which leads to a limited accuracy of

the returned CSI. Furthermore, if the feedback channel is non-perfect, the

transmission also suffers from erroneous and thus mismatched precoding.

In a second closed-loop system architecture, only the reception quality

is returned to the transmitter. The simplest way of indicating the quality

of the received message is a binary signaling, as provided by automatic

repeat request (ARQ) schemes. Here, the receiver checks if the message

has been received without any error. In case the receiver acknowledges the

error-free transmission, the transmitter continues to send the subsequent

messages. In all other cases, the erroneous message is retransmitted until

the correct reception is acknowledged.

Below, unitary precoding and ARQ schemes are discussed in the con-

text of MIMO communication systems. Furthermore, a novel closed-loop

MIMO system approach is introduced, where the differences to the ex-

isting systems are highlighted.

2.4.1. Unitary Precoding

Unitary precoding (UP) is a preprocessing of the transmit signal without

changing the norm of the transmit MIMO signal. The discrete-time base-

band signal of the ℓth frame at the MIMO channel input has the form

Pℓxℓ,1, . . . ,Pℓxℓ,K , as a result of precoding the signals xℓ,1, . . . ,xℓ,K by

the unitary M×M matrix Pℓ. Fig. 2.4 shows a block diagram of a MIMO

system using UP. The following description assumes a sequential trans-

mission of frames alternating with a feedback of CSI from the receiver to
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Figure 2.4 Unitary precoding in a MIMO system.

the transmitter in between two consecutively transmitted signal frames.

The aim of the precoding is to facilitate the decomposition of the

MIMO channel into independent SISO channels by choosing Pℓ such

that it is in line with the eigensystem of H†
ℓHℓ. As it has already been

shown in (2.3), the MIMO channel can be represented by Hℓ = UℓSℓV
†
ℓ .

The diagonal matrix Sℓ contains the singular values of Hℓ. Referring to

Fig. 2.4 and supposing Pℓ to be the (yet unknown) precoding matrix, the

input signal at the receiver is given as

yℓ,k = HℓPℓxℓ,k + nℓ,k

= UℓSℓV
†
ℓPℓxℓ,k + nℓ,k. (2.14)

Since UP is a preprocessing of xℓ,k, a proper diagonalization and thus

decomposing of the MIMO channel into independent SISO channels could

be done by choosing Pℓ = Vℓ. A subsequent post-multiplication of yℓ,k

by U
†
ℓ results in a diagonal channel matrix as desired. As indicated

in (2.3), the receiver has to determine the SVD of the MIMO channel,

which in turn is estimated by means of a training sequence. Since the

transmit data, and thus also the training sequence, is pre-processed by the

precoding, the receiver estimates Hℓ = HℓPℓ, i.e., the composite channel

comprising both the MIMO channel and the precoding. This limits the

receiver complexity, since no knowledge of the actual precoding matrix Pℓ

is required. Similarly to (2.3), the composite channel can be represented
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by the singular value decomposition

Hℓ = UℓSℓV
†
ℓ. (2.15)

The matrix Vℓ is then sent back to the transmitter, where it is used

for the preparation of the subsequent frame. Since Vℓ is part of the

decomposition of the composite channel HℓPℓ and Vℓ is unitary, the

unitary matrix for precoding the signals transmitted in the subsequent

frame reads

Pℓ+1 = PℓVℓ. (2.16)

The following example shall illustrate the procedure. If no precoding is

considered in the first frame, that is P1 = IM , the composite channel

simplifies to H1 = H1 and the SVD equals to the expression in (2.15)

for ℓ = 1. Hence, the precoding for the second frame is given by P2 =

V1 = V1. For ℓ = 2, the SVD calculated by the receiver is based on

the estimate of the composite channel H2 = H2P2 = H2V1 = U2S2V
†
2.

The precoding matrix for the third frame results to P3 = V1V2.

To show the diagonalization property of UP, the case of a time-invariant

channel is considered, i.e., Hℓ+1 = Hℓ. In this case, the composite chan-

nel Hℓ+1 can be expressed as

Hℓ+1 = HℓPℓ+1 = HℓPℓVℓ = HℓVℓ = UℓSℓ, (2.17)

such that Vℓ+1 = IM and a post-multiplication by U
†
ℓ results in a diag-

onal channel matrix. Usually, such a signal reconstruction is impossible

when Hℓ+1 ∕= Hℓ. UP is sometimes called SVD (based) precoding or

optimal beamforming [11].

2.4.2. Automatic Repeat Request

When using an ARQ scheme, the receiver either acknowledges the error-

free reception or requests a retransmission of the corresponding infor-

mation symbols. An error detection code can be used to check the cor-

rectness of the received signal. Under bad channel conditions, a mes-

sage would require several retransmissions. To avoid resulting inefficient

retransmissions, in HARQ a forward error correction (FEC) code, e.g.

Reed-Solomon [55], is applied to the transmit signal. It enables to find
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and correct errors, but it also decreases the data rate by adding redun-

dancy. In [26] two types of HARQ are introduced.

Type-I HARQ defines the aforementioned extension of the ARQ proto-

col by FEC. In cases of sufficient transmission quality, no retransmission

is needed. Few errors of the received message can be corrected by the

inherent FEC. This prevents the occupation of the channel by a retrans-

mission at the expense of the aforementioned lower data rate, since FEC

usually increases the message length by a factor of two or three. In type-II

HARQ, the transmitter alternates between sending an uncoded message

and providing parity bits (redundancy), if necessary. A very common

type-II HARQ has been proposed in [27], where a message is equipped

with an error-detection code only. If the message is received without

any error, the channel capacity has been exploited efficiently. When the

receiver does not acknowledge the error-free reception, the transmitter

uses FEC on the original message to generate redundancy. Instead of

retransmitting the original message, the redundancy only is transmitted

to the receiver. This increases the robustness of the already received first

message, which in turn increases the probability of an error-free decoding.

Especially in 3GPP Long Term Evolution, HARQ with soft combining

is used. The erroneously received message is not discarded when request-

ing the transmitter for a retransmission. The original message and all

retransmissions are then combined at the receiver, e.g. by a maximum-

ratio combining scheme, as introduced by Chase in [29]. Different vari-

ants of this so-called Chase combining exist. While usually combining

after the symbol demodulation, this can can be also performed in sym-

bol domain. Chase combining can be considered as a special case of the

principle of incremental redundancy, initially suggested by Mandelbaum

in [28]. The FEC encoded information is separated into different blocks

by puncturing. If the first transmitted block is not able to be decoded

error-free, other blocks will support the decoding in succeeding trans-

missions. When all different groups have been transmitted, but still the

correct decoding is impossible, several messages can be repeated. Chase

combining is then applied on those groups, as shown in [56].

In MIMO communication links HARQ can be applied to the total

transmit frame, i.e., at the SISO decoder in case of a VE, as examined in

[30]. Here, two approaches of utilizing Chase combining have been stud-

ied, namely carrying out the cumulative combining before or after the
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linear signal reconstruction. It has been shown that the pre-combining

is superior to the post-combining scheme. Several MIMO cross-layer

designs have been proposed, e.g. extending HARQ with adaptive mod-

ulation schemes [57]. In [31], a comparison between MIMO with a sin-

gle HARQ scheme and a layer-wise HARQ design is drawn. While the

throughput of the single HARQ approach is inferior, an HARQ on each

layer suffers from its high complexity.

2.4.3. Recursive Spatial Multiplexing

Having introduced the commonly used closed-loop MIMO architectures

in the previous section, namely UP and ARQ, RSM as a novel closed-

loop system approach is proposed in the following. The description of

RSM is divided into two parts. First, the demultiplexing structure at

the transmitter is explained, while the receiver part is discussed in the

following.

Transmitter

At the transmitter, the SISO encoded and interleaved signal stream is de-

multiplexed intoM parallel signals to match the MIMO signal dimension.

The block diagram of the transmitter is shown in Fig. 2.5.

1
SISO

S/P
encoder

demultiplexer

relay to

next frame

M N

mℓ−1

xℓ,k

bℓ,k

Q
†
ℓ−1xℓ−1,k

MIMO

×Q
†
ℓ−1

feedback

channel

channel

Π

Figure 2.5 Transmitter architecture in RSM.

The serial/parallel converted signal bℓ,k, with k = 1, . . . ,K, is the SISO

encoded data, which occupy M −mℓ−1 of the available M MIMO dimen-
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sions (layers). The remaining mℓ−1 layers are dedicated to signal parts

requested for retransmission by the previous (ℓ−1)th frame. For this pur-

pose, the transmit message xℓ,1, . . . ,xℓ,K is relayed to the time instance

(or time slot) of the next frame. The subspace selector Qℓ−1, which is an

M × mℓ−1 matrix obtained from the receiver via the feedback channel,

identifies a backup signal of the form Q
†
ℓ−1xℓ−1,1, . . . ,Q

†
ℓ−1xℓ−1,K to be

embedded in the next frame. In summary, this subsequent frame then

contains

(xℓ,1, . . . ,xℓ,K) = Π

([
bℓ,1

Q
†
ℓ−1xℓ−1,1

]
, . . . ,

[
bℓ,K

Q
†
ℓ−1xℓ−1,K

])
, (2.18)

where Π denotes an inner interleaving of the signals over the M lay-

ers, which has the purpose of decorrelating the noise terms after the

signal reconstruction at the receiver. The transmit signal xℓ,k is again

assumed to represent uncorrelated zero-mean complex random variables

with variance "sig, as shown in (2.2). This holds true as long as the sub-

space identifier Qℓ satisfies Q
†
ℓQℓ = Imℓ

, i.e., Qℓ is to be an M × mℓ

matrix with orthonormal columns, and as long as

E
[
bℓ,kb

†
ℓ,k

]
= "sigIM−mℓ

, (2.19)

which is a common assumption for the output signal of a SISO encoder.

Receiver

The transmit signal passes the narrow band MIMO channel and under-

goes MN attenuations and phase shifts. Here, no particular channel

model is assumed, since the basic receiver architecture is independent of

the underlying channel statistics. MIMO channel models are specified

in Chapt. 3 and Sect. 4.3 when examing the performance of the RSM

approach.

Throughout this work, a linear signal reconstruction is assumed to

be applied at the receiver in order to limit the receiver complexity (cf.

Sect. 2.3). Hence, a linear estimator Gℓ can be formulated for the trans-

mitted array signal, as it can be seen in Fig. 2.6. However, the linear

processing results in noise enhancement over all parallel M layers in cases

of badly conditioned channel matrices.
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Figure 2.6 Receiver structure of the RSM approach.

We assume the availability of mℓ-dimensional backup vector signals

rℓ,1, . . . , rℓ,K , where rℓ,k has the form

rℓ,k = Q
†
ℓxℓ,k + n′

ℓ,k (2.20)

where n′
ℓ,k is a zero-mean random vector, which denotes the inherent

noise of the backup signal whith E
[
n′

ℓ,kn
′†
ℓ,k

]
= #

(ℓ)
backupImℓ

. The com-

ponents in n′
ℓ,k are considered uncorrelated, due to the previously pro-

cessed deinterleaving of the signals over the M layers. The input signal to

the zero forcer is composed by the observed signal yℓ,k and the scaled ver-

sion of the undecodable signal layers of the previous frame rℓ,k according

to

ỹℓ,k = H̃ℓxℓ,k + ñℓ,k (2.21)

with ỹℓ,k =

[
yℓ,k

�
1
2

ℓ rℓ,k

]
, H̃ℓ =

[
Hℓ

�
1
2

ℓ Q
†
ℓ

]
, ñℓ,k =

[
nℓ,k

�
1
2

ℓ n
′
ℓ,k

]
,

and �ℓ a scaling factor as described in the following. The backup signal

rℓ,k is the result of a retransmitted signal in a subsequent frame and

this is collocated with the received signal yℓ,k of the active frame. Since

we employ a block-fading propagation channel model (cf. Sect. 2.1), the

propagation channel may vary arbitrarily from frame to frame and, thus,

the variances of the noise vector elements in nℓ,k and n′
ℓ,k may differ.
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Therefore, the vector rℓ,k is scaled by a factor

�
1
2

ℓ =

√
#noise

#
(ℓ)
backup

, (2.22)

where the scaling by �
1
2

ℓ leads to E
[
ñℓ,kñ

†
ℓ,k

]
= #noiseIN+mℓ

.

The zero forcing matrix Gℓ can be derived on the basis of (2.21),

assuming knowledge of H̃ℓ at the receiver end. The output of the linear

signal reconstruction is a signal vector of the form

x̂ℓ,k = Gℓỹℓ,k = Π

([
b̂ℓ,k

rℓ−1,k

])
= Π

([
bℓ,k

Q
†
ℓ−1xℓ−1,k

])
+wℓ,k,

(2.23)

where the vector wℓ,k = x̂ℓ,k−xℓ,k represents the error signal vector. The

reconstructed signal x̂ℓ,k is an M×1 vector, in which the upper M−mℓ−1

elements, namely b̂ℓ,k, are parallel/serial converted and sent to the SISO

decoder. The remaining lower mℓ−1 elements compose rℓ−1,k, i.e., the

backup for the preceding frame.

The recursive structure of the receiver is summarized as follows. When

a frame of signals is received, it is stored in a last-in first-out (LIFO)

memory. At the same time, the condition of the current MIMO channel

is estimated, e.g. by means of a training sequence which could be a part

of yℓ,1. In the case of bad or insufficient channel conditions, the linear

signal reconstruction is postponed unless a backup for the critical signal

parts is available. Then, the receiver requests a retransmission of the

signals at these critical layers by feeding back an identifier Qℓ to address

the requested signal part Q†
ℓxℓ,k, for k = 1, . . . ,K. Fig. 2.7 demonstrates

these details, which are only briefly shown in Fig. 2.6. If the received

frame does not require a backup signal, i.e., mℓ = 0, all frames stored in

the LIFO are processed by the RSM decoder in reverse order. That is,

the zero forcing is applied to the last frame stored in the LIFO memory

first. As shown in Fig. 2.7, we introduce a delay of TLIFO, defined as the

RSM processing time for each frame contained in the LIFO. We assume

that the time for processing the full LIFO content is less than the period

of a transmitted frame.
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Figure 2.7 Simplified RSM receiver structure.

At the receiver, the multiplexing and decoding need to be delayed as

long as the channel conditions do not meet the requirements. That is, the

frame containing a backup signal may also necessitate a retransmission

of certain signal parts from the following frame and so on. The RSM

completes once a frame is received, which can be processed without the

need for a backup. Fig. 2.8 points out the RSM operation principle.

The left hand side depicts the transmission and retransmission struc-

ture, where each transmission comprises the framing at the leftmost box,

the interleaving at the middle and sending the frame over the channel on

transmission/retransmission

LIFO

LIFO

check channel
conditions

ZF

ZF

ZF

recursive spatial multiplexing

Π−1

Π−1

Π−1

Π

Π

Π Hℓ

Hℓ+1

Hℓ+2

Figure 2.8 Operation principle of RSM.
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the right. Frame 2 and 3 each contains a part of the previously transmit-

ted signal as a backup, since certain parts of the preceding frame have

been received with insufficient quality. The quality of the signals can be

checked, for instance, by comparing the channel state with a threshold,

marked as a dashed line here. The signal reconstruction and decod-

ing start as soon as a complete signal vector is above that threshold,

i.e., the channel conditions meet the requirements, as shown in the third

frame. Signal reconstruction (shown on the gray shaded right hand side

at Fig. 2.8) is then performed in reverse frame order, using the stored

signal frame from the LIFO and the backup signal provided by the sub-

sequent frame.

Backup Addressing

It is yet to be discussed how to address the backup signal to be trans-

mitted in the subsequent frame. By providing a partial retransmission

of the transmitted signal the receiver is able to decode the message of

the previous frame while receiving new data in the current frame. For

the (ℓ+1)th frame at the transmitter, a linear combination of the signal

vectors of the ℓth transmitted frame is created and thereafter combined

with the new message bℓ+1,k of the (ℓ+ 1)th frame (cf. (2.23)).

The objective of the backup procedure is to provide signals with a

sufficient SNR for subsequent decoding. In the following, we will focus

on a ZF based signal reconstruction. The noise vector wℓ,k observable at

the output of the signal reconstruction is defined as

wℓ,k = Gℓỹℓ,k − xℓ,k. (2.24)

In the following, it is assumed that the channel estimation at the receiver

is perfect such that E [wℓ,k] = 0. According to (2.8), the postprocessing

noise power matrix at the output of the RSM system results to

E
[
wℓ,kw

†
ℓ,k

]
= E

[
Gℓñℓ,kñ

†
ℓ,kG

†
ℓ

]
= #noiseGℓG

†
ℓ = #noise

(
H̃

†
ℓH̃ℓ

)−1

,

(2.25)

with the zero forcing matrix Gℓ =
(
H̃

†
ℓH̃ℓ

)−1

H̃
†
ℓ according to (2.6). The



2.4. Closed Loop MIMO Systems 27

MSE of the estimated signal Gℓỹℓ,k is defined by

� (Qℓ) =
1

M
E
[
∥wℓ,k∥2F

]

=
#noise

M
tr

((
H̃

†
ℓH̃ℓ

)−1
)

=
#noise

M
tr

((
H

†
ℓHℓ + �ℓQℓQ

†
ℓ

)−1
)
. (2.26)

According to (2.4), the eigenvalue decomposition of the Hermitian matrix

H
†
ℓHℓ can be represented by VℓS

2
ℓV

†
ℓ .

Proposition:

When mℓ = {1, . . . ,M} denotes the number of retransmitted

layers in the backup, then the matrix

Q̄ℓ = arg min
{Q∈ℂMmℓ :Q†

ℓ
Qℓ=Imℓ}

� (Qℓ) (2.27)

minimizes the MSE of the estimated signal Gℓỹℓ,k, where Q̄ℓ

is a matrix constituted by the columns of Vℓ associated with

the mℓ smallest eigenvalues in S2
ℓ .

Proof:

First, the case of mℓ = 1 is considered. Here, the matrix Qℓ is a column

vector Qℓ = qℓ of size N × 1. By using (2.4), the MSE in (2.26) can be

expressed as

tr

((
H

†
ℓHℓ + �ℓqℓq

†
ℓ

)−1
)

= tr

((
VℓS

2
ℓV

†
ℓ + �ℓqℓq

†
ℓ

)−1
)

= tr

((
Vℓ

(
S2
ℓ + �ℓV

†
ℓqℓq

†
ℓVℓ

)
V

†
ℓ

)−1
)

= tr

((
S2
ℓ + �ℓq̄ℓq̄

†
ℓ

)−1
)
, (2.28)

with q̄ℓ = V
†
ℓqℓ. Applying the Sherman–Morrison matrix inversion iden-
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tity [58] leads to

tr

((
S2
ℓ + �ℓq̄ℓq̄

†
ℓ

)−1
)

= tr
(
S−2
ℓ

)
− tr

(
S−2
ℓ q̄ℓq̄

†
ℓS

−2
ℓ

�−1
ℓ + q̄

†
ℓS

−2
ℓ q̄ℓ

)

= tr
(
S−2
ℓ

)
− tr

(
q̄
†
ℓS

−4
ℓ q̄ℓ

�−1
ℓ + q̄

†
ℓS

−2
ℓ q̄ℓ

)
, (2.29)

where the latter expression is due to the fact that the trace is invariant

under cyclic permutations. From (2.26) and (2.29), it can be easily seen

that (2.27) for mℓ = 1 is equivalent to the problem of finding a q̄opt which

maximizes

f (q̄ℓ) =
q̄
†
ℓS

−4
ℓ q̄ℓ

�−1
ℓ + q̄

†
ℓS

−2
ℓ q̄ℓ

, (2.30)

such that

q̄opt = arg max
∥q̄ℓ∥

2
F=1

f (q̄ℓ) , (2.31)

with ∥q̄ℓ∥2F = q̄2ℓ,1 + . . .+ q̄2ℓ,M . Rewriting f (q̄ℓ) in terms of the elements

of q̄ℓ = [q̄ℓ,1, q̄ℓ,2, . . . , q̄ℓ,M ]
T
and exploiting that S2

ℓ is a diagonal matrix

containing the positive eigenvalues �2
1 (Hℓ) , . . . , �

2
M (Hℓ) of H

†
ℓHℓ results

to

f (w) =

M∑
m=1

wm�−4
m (Hℓ)

�−1
ℓ +

M∑
m=1

wm�−2
m (Hℓ)

, with

M∑

m=1

wm = 1, (2.32)

where wm = [ℜ (q̄ℓ,m)]
2
+ [ℑ (q̄ℓ,m)]

2
denotes the mth element of the

vector w = [w1, . . . , wM ]
T
. Since �2

1 (Hℓ) ≤ �2
2 (Hℓ) ≤ . . . ≤ �2

M (Hℓ),

an intuitive approach is to choose w = [1, 0, . . . , 0]
T
, i.e., w1 = 1 while

all other elements of w are equal to zero. According to (2.28), for this

choice, the optimal backup addressing vector qopt is given by the column

of Vℓ associated with the smallest eigenvalue of S2
ℓ , which is proven in

the following.

Assuming two arbitrary vectors w = [w1, . . . , wM ]
T

and w̃ =

[w1 + wk, w2, . . . , wk−1, 0, wk+1, . . . , wM ]
T
, which both comply with
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M∑
m=1

wm = 1 and wm ≥ 0, but have different entries at the first and

kth position, the inequality

f (w̃)− f (w) ≥ 0 (2.33)

has to be fulfilled. If (2.33) is true for any k ∈ {2, . . . ,M}, each el-
ement wm with m > 1 can, in particular, be chosen zero and yields

w = [1, 0, . . . , 0]
T
. For simplicity matters, the mth eigenvalue �2

m (Hℓ) is
denoted as �2

m and we obtain

f (w̃)− f (w) =

M∑
m=1

wm�−4
m + wk�

−4
1 − wk�

−4
k

�−1
ℓ +

M∑
m=1

wm�−2
m + wk�

−2
1 − wk�

−2
k

−

M∑
m=1

wm�−4
m

�−1
ℓ +

M∑
m=1

wm�−2
m

=
1(

�
−1
ℓ +

M∑

m=1

wm�
−2
m

)(
�
−1
ℓ +

M∑

m=1

wm�
−2
m + wk�

−2
1 − wk�

−2
k

)

︸ ︷︷ ︸
>0

×

[(
M∑

m=1

wm�
−4
m + wk�

−4
1 − wk�

−4
k

)(
�
−1
ℓ +

M∑

m=1

wm�
−2
m

)

−

(
M∑

m=1

wm�
−4
m

)(
�
−1
ℓ +

M∑

m=1

wm�
−2
m + wk�

−2
1 − wk�

−2
k

)]
.

(2.34)

Since the denominator of (2.34) is greater than zero, (2.33) is fulfilled if

the numerator is non-negative. For wk = 0, the numerator is zero. For

wk > 0, we have to prove that

(
�−2
1 − �−2

k

)
((

�−1
ℓ +

M∑

m=1

wm�−2
m

)
(
�−2
1 + �−2

k

)
−

M∑

m=1

wm�−4
m

)
≥ 0.

(2.35)

Since �−2
1 ≥ �−2

k , (2.35) is equivalent to

�−1
ℓ

(
�−2
1 + �−2

k

)
+

M∑

m=1

wm�−2
m

(
�−2
1 + �−2

k

)
−

M∑

m=1

wm�−4
m ≥ 0. (2.36)
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Since �−1
ℓ

(
�−2
1 + �−2

k

)
≥ 0, a sufficient condition for (2.36) is

M∑

m=1

wm�−2
m

(
�−2
1 + �−2

k

)
−

M∑

m=1

wm�−4
m ≥ 0, (2.37)

which is true, since �−2
1 ≥ �−2

2 ≥ . . . ≥ �−2
M .

Depending on the applied policy (see Chapt. 3), multiple layers for

transmitting the backup in the subsequent frame may be necessary, i.e.,

mℓ > 1. In this case, the different columns of Qℓ have to be orthogonal

to each other, thus any two columns qi and qj of Qℓ have to satisfy

⟨qi,qj⟩ =
{

∥qi∥F ∥qj∥F if i = j

0 else
, ∀i, j ∈ {1, . . . ,mℓ} , (2.38)

where ⟨qi,qj⟩ = q
†
iqj denotes the inner product of vector qi and qj . This

can be explained by referring to the proof of (2.31). If any optimal qs,

which is an eigenvector of H†
ℓHℓ, has been found, a matrix �ℓqsq

†
s can

be added to H
†
ℓHℓ without changing the underlying set of eigenvectors.

In general, if any new qt is an eigenvector of

⎛
⎜⎝H

†
ℓHℓ + �ℓ

m∑

i=1
i∕=t

qiq
†
i

⎞
⎟⎠ , ∀t ∈ {1, . . . ,m} (2.39)

then qt is also an eigenvector of

⎛
⎜⎝H

†
ℓHℓ + �ℓ

⎛
⎜⎝

m∑

i=1
i∕=t

qiq
†
i + qtq

†
t

⎞
⎟⎠

⎞
⎟⎠ =

(
H

†
ℓHℓ + �ℓ

m∑

i=1

qiq
†
i

)

=
(
H

†
ℓHℓ + �ℓQℓQ

†
ℓ

)

(2.40)

which is a proof for (2.38). Finally, the approach that any found qt is an

eigenvector of H†
ℓHℓ is true, since it has been shown above that qt is an

eigenvector of
(
H

†
ℓHℓ + �ℓQℓQ

†
ℓ

)
and of �ℓQℓQ

†
ℓ.



Chapter 3.

Ergodic RSM Performance

In this chapter, different policies and their resulting performances are

considered. A policy defines under which circumstances a retransmission

is requested by the receiver and what the properties of this retransmis-

sion are, e.g. the dimension of the backup signal. In order to assess

the performance of the proposed RSM scheme, it is compared with a

number of standard MIMO transmission architectures relying on a con-

ventional ARQ mechanism. Further, the impact of a limited feedback

channel is investigated and the performance gain of combining UP and

RSM is demonstrated. The last section extends the analysis to the case

of systems with a large number of transmit and receive antennas.

3.1. Policies

It has been shown in Sect. 2.4.3 that the backup signal is addressed by the

M ×mℓ matrix Qℓ to minimize the postprocessing MSE � (Qℓ). Hence,

for a given value of mℓ, the ideal mℓ-dimensional subspace is known,

but the question is how to choose the dimension mℓ of the backup signal

subspace. In terms of the overall capacity, a trade-off has to be found.

Larger . . . ,mℓ,mℓ+1, . . . reduce the noise at the decoder input, but at the

cost of a lower payload. As the ZF receiver enables a diagonalization of

the channel, the RSM constrained capacity is the sum of the capacities

of each layer [11]. We assume Gaussian noise terms [51] as considered in
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Sect. 2.1 and, using (2.26), define the noise power amplification1

%ℓ =
� (Qℓ)

#noise
=

1

M
tr

((
H

†
ℓHℓ + �ℓQℓQ

†
ℓ

)−1
)
, (3.1)

which is the second moment of the noise terms in the reconstructed signal

Gℓỹℓ,k normalized by #noise. Further we define the RSM constrained

postprocessing SNR 
dec = 
inp/%ℓ at the SISO decoder input. For the

transmission of SISO encoded data bℓ,k in the ℓth frame gℓ = M −mℓ−1

signal layers can be used, thus, gℓ defines the multiplexing gain of the

transmission. Thus, the instantaneous capacity of the RSM transmission

system for frame ℓ is given by

Cℓ = gℓ log2

(
1 +


inp
%ℓ

)
. (3.2)

In an N ×M MIMO system with N ≥ M , we have 0 ≤ gℓ ≤ M . Con-

sidering RSM, the multiplexing gain of the active frame can be reduced

by the necessity of transmitting a backup signal for the preceding frame,

which occupies a certain number of dimensions mℓ−1. The demultiplexer

accepts gℓ dimensions from the encoder for the ℓth frame, but this number

varies from frame to frame, due to the time-variant channel.

In order to characterize the choice of the signals to be retransmitted,

we define a policy ', which is a mapping from the eigenvalue vector

Λℓ =
[
�2
1(Hℓ), . . . , �

2
M (Hℓ)

]T ∈ {0,ℝ+}M to mℓ ∈ {0, . . . ,M} so that

' : {0,ℝ+}M → {0, . . . ,M} and

mℓ = '
([

�2
1(Hℓ), . . . , �

2
M (Hℓ)

]T)
= ' (Λℓ) . (3.3)

There is no backup signal in the subsequent frame whenever '(⋅) = 0,

whereas '(⋅) = M indicates that a full retransmission of the active frame

is requested.

1 We distinguish %ℓ from the scaling factor �−1
ℓ

: while %ℓ = � (Qℓ) /#noise considers

the pre- and postprocessing noise terms of the same frame, �−1
ℓ

= #
(ℓ)
backup/#noise

corresponds to the backup noise content of the subsequent frame.
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Policy 1:

It can be easily seen from (2.26) that the smallest eigenvalue �2
1(Hℓ) has

the greatest impact to the resulting MSE of the reproduced signal. Hence,

regarding the limitation of the noise power amplification it is more valu-

able to support the corresponding dimension associated with the smallest

eigenvalue by a backup signal then any other dimension. Applying pol-

icy '1 is to request a one-dimensional backup to be transmitted in the

subsequent frame, if the smallest eigenvalue of the active frame is below

a certain threshold �, thus

'1(Λℓ) =

{
1, if �2

1(Hℓ) < �

0, if �2
1(Hℓ) ≥ �

. (3.4)

The decoding, and thus the multiplexing at the receiver, starts as soon

as the smallest eigenvalue �2
1(Hℓ) ≥ �.

Policy 2:

Applying policy '2 is to request a multi-dimensional backup to be trans-

mitted in the subsequent frame for all eigenvalues ofH†
ℓHℓ below a certain

threshold �, thus

'2(Λℓ) =
∣∣{i = 1, . . . ,M : �2

i (Hℓ) < �
}∣∣ , (3.5)

with ∣{⋅}∣ denoting the cardinality of the set. The decoding, and thus the

multiplexing at the receiver, starts as soon as all eigenvalues are greater

or equal to the threshold �. This guarantees an SNR 
dec at the SISO

decoder input, which is at least equal to 
inp�, as can be easily seen from

the following example.

Considering the eigenvalues �2
1(HL), . . . , �

2
M (HL) of the last of a se-

quence of transmitted frames to be greater or equal to a threshold �, the

noise power amplification at this very frame is given by (3.1) for Qℓ = 0

and reads

%L =
1

M
tr

((
H

†
LHL

)−1
)

=
1

M

M∑

i=1

1

�2
i (HL)

(3.6)

with �2
i (HL) ≥ � for i = 1, . . . ,M . In this case, it can be easily seen
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Figure 3.1 Comparing noise enhancement without RSM (white) and with
RSM (gray) for policy (3.5), when (a) one eigenvalue or (b)
two eigenvalues are below threshold �.

from (3.6) that %L ≤ �−1. Hence, the postprocessing SNR 
dec of the

estimated signal, which is also the SNR of the inherent backup signal

for the previous frame, provides 
dec = 
inp/%L ≥ 
inp�. Supporting

the signal dimensions of the (L− 1)th frame associated with eigenvalues

below the threshold �, the backup also increases the postprocessing SNR

of this very frame.

Fig. 3.1 shows the noise enhancement per layer caused by each eigen-

value of H†
ℓHℓ when applying a ZF equalizer. Two different scenarios are

considered. In (a) the large noise enhancement of layer 4 (white bar) is

limited to the gray shaded value by providing a one-dimensional backup

signal. The case (b) demonstrates the same issue, if two eigenvalues are

below the threshold. It can be seen, that the noise power amplification

%ℓ is limited to a maximum of �−1, since the backup forces each layer to

fulfill this requirement.

Policy 3:

Policy '3 is similar to policy '2, that is, the backup signal comprises as

many dimensions of the MIMO transmit signal as necessary for a certain

SNR of the reconstructed signal. But in contrast to policy '2, where the

noise enhancement of each MIMO layer is below a certain limit, the aim

of policy '3 is to limit the average noise amplification %ℓ of the received

frame. Since the trace of a matrix is equal to the sum of its eigenvalues,
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(3.1) can be modified to represent policy '3 as

'3(Λℓ) = min {m = 0, . . . ,M : %ℓ (m) ≤ %̌} (3.7)

with

%ℓ (m) =
1

M

(
m∑

i=1

(
�2
i (Hℓ) + �ℓ

)−1
+

M∑

i=m+1

(
�2
i (Hℓ)

)−1

)
. (3.8)

Multiplexing at the receiver starts as soon as a frame fulfills the condition

%ℓ (0) ≤ %̌, i.e., no retransmission of any signal part is needed to limit

the MSE of the reconstructed signal. While policy '2 depends only on

the number of eigenvalues that are below a certain threshold, policy '3

is a function of all eigenvalues of the received frame. This property is

depicted in Fig. 3.2.

This policy ensures a mean postprocessing SNR per frame, which is

greater or equal to 
inp/%̌. The most obvious difference to policy '2 can

be seen in case (a) of Fig. 3.2: though two eigenvalues are below a level

%̌−1, only the smallest eigenvalue requires a retransmission yielding the

(layer-) average noise enhancement %ℓ ≤ %̌. In (b) two eigenvalues are

supported by a backup signal.
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Figure 3.2 Comparing noise enhancement without RSM (white) and with
RSM (gray) applying policy (3.7), when the backup signal is
required to be (a) one-dimensional or (b) two-dimensional.
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3.2. Performance Comparison

In this section, the previously proposed policies for RSM are compared

with each other in terms of their performance. Further, a performance

comparison with a number of standard transmission architectures is ex-

amined which are based on a conventional ARQ mechanism, that is, only

full frame retransmissions are requested if necessary. We focus on the

achievable long-term average capacity with SISO decoders attuned to a

target SNR 
inp/%̌ or an outage capacity in the case of standard architec-

tures.2 The target SNR, threshold and outage capacities are optimally

chosen with respect to the capacity.

3.2.1. Capacity

Ergodic MIMO Capacity: Based on Shannon’s theory of communica-

tion [59] and referring to [12, 11], the instantaneous capacity of the MIMO

channel for the ℓth frame without any channel knowledge at the trans-

mitter is given by

CMIMO(Hℓ) = log2

(
det
(
IN + 
inpHℓH

†
ℓ

))
(3.9)

=

M∑

i=1

log2
(
1 + 
inp�

2
i (Hℓ)

)
(3.10)

in bits per channel use. It can be easily seen from (3.10) that the in-

stantaneous MIMO capacity results from summing the capacities of the

SISO-equivalent layers of the channel. This implies optimal coding across

the transmit antennas and optimal decoding at the receiver for perfect

diagonalization of the MIMO channel. The MIMO channel is considered

as a zero-mean circularly symmetric Gaussian distributed random matrix

H with variance 1/M and independent elements. Referring to Sect. 2.1,

a block fading MIMO channel model is assumed, where H1,H2, . . . are

independent realizations of H. The ergodic capacity of an unconstrained

2 A non-ergodic treatment of the performance is given in Sect. 4.
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MIMO system is thus defined as

C̄MIMO = E

[
M∑

i=1

log2
(
1 + 
inp�

2
i (H)

)
]
. (3.11)

Optimal MIMO Coding/ARQ: As discussed in Sect. 2.4.2, in a con-

ventional ARQ system a (complete) retransmission of a transmit frame

is requested, if the channel is in bad condition. In other words, if the

capacity provided by the present channel is below a considered data rate

Rout an outage of the transmit message occurs. The �-outage capacity is

given by CARQ(�) = sup{Rout > 0 : Pr [CMIMO(H) < Rout] ≤ �}, where
� denotes the probability that the MIMO capacity CMIMO(H) is below

the predefined rate Rout, with 0 < � < 1. The capacity per channel use

of a conventional ARQ architecture is defined as

C̄ARQ = sup
0<�<1

(1− �)CARQ(�). (3.12)

The factor (1 − �) represents the loss in capacity due to the requested

retransmissions.

ZF Signal Reconstruction/ARQ: A ZF receiver has been introduced

in Sect. 2.3.1. It has been shown that multiplying the received signal

yℓ,k with the (pseudo-) inverse of the channel matrix H+
ℓ leads to addi-

tive noise vectors after the ZF with covariance matrix #noise(H
†
ℓHℓ)

−1.

Proceeding as in (3.10) and using (2.9), the instantaneous constrained

capacity of the ZF receiver is given as [60]

CZF(Hℓ) =

M∑

i=1

log2

(
1 + 


(ZF)
ℓ,i

)
. (3.13)

When we embed a ZF receiver in a MIMO ARQ architecture, an outage

occurs if CZF(Hℓ) < Rout and, thus, the ergodic capacity per channel use

follows from (3.12) as

C̄ZF = sup
0<�<1

(1− �)CZF(�), (3.14)
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with

CZF(�) = sup {Rout > 0 : Pr [CZF(H) < Rout] ≤ �} . (3.15)

LMMSE Signal Reconstruction/ARQ: Similarly to (3.13) the instanta-

neous constrained capacity in case of an LMMSE signal reconstruction is

defined by the sum of the Shannon capacities of each layer of the channel.

Due to the remaining inter-layer interference after the LMMSE signal re-

construction, the SINR on the mth layer, denoted by �ℓ,m from (2.13),

is considered here, such that

CLMMSE(Hℓ) =
M∑

i=1

log2 (1 + �ℓ,i) . (3.16)

According to the principal in (3.12) and (3.14) the ergodic capacity per

channel use equals

C̄LMMSE = sup
0<�<1

(1− �)CLMMSE(�), (3.17)

with

CLMMSE(�) = sup {Rout > 0 : Pr [CLMMSE(H) < Rout] ≤ �} , (3.18)

when we use an LMMSE receiver in a MIMO ARQ system.

RSM: The minimal MSE of the estimated signal x̂
(ZF)
ℓ,k after the ZF

is �(Q̄ℓ) as given by (2.26) and (2.27). Since H is now considered a

random variable, we define �(Hℓ) as the power of the postprocessing

noise in the ℓth frame. Note that �(Hℓ+1) of the succeeding frame is

unknown, when the receiver requests an appropriate backup on the basis

of the active channel conditions. For an ergodic performance analysis of

an RSM system it is supposed that the receiver observes a large number

of frames and starts the multiplexing procedure in reverse frame order,

where the Lth frame fulfills '(ΛL) = 0. Without any delay limitation, the

achievable performance depends on the ergodic properties of the sequence

�(HL), �(HL−1), . . ..
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Since the spatial multiplexing at the receiver takes place in reverse

frame order, the quantities Wℓ = �(HL−ℓ)/#noise are defined, where the

sequence W0,W1, . . . represents the MSEs of the reconstructed signals

normalized by #noise. With (2.26),

Wℓ =
1

M

⎛
⎝

'(zℓ)∑

i=1

1

zℓ,i +W−1
ℓ−1

+
M∑

i='(zℓ)+1

1

zℓ,i

⎞
⎠ (3.19)

for ℓ ∈ ℕ with the initial value W0 = �(HL)/#noise, where zℓ,i =

�2
i (HL−ℓ) and zℓ = [zℓ,1, . . . , zℓ,M ]

T
. The infinite sequence W0,W1, . . .

represents a Markov chain with the range ℝ+. The transition probabili-

ties in this chain depend on the distribution of zℓ and the retransmission

policy '. Here, a policy ' is said to be permissible if the two conditions

1. Pr ['(zℓ) = M ] < 1 (3.20)

2. E

[
1

zℓ,'(zℓ)+1
∣{'(zℓ) < M}

]
< ∞, (3.21)

where E [⋅ ∣ ⋅] denotes the conditional expected value, are fulfilled. (3.20)

states that the policy has to be chosen, such that the probability of a

full retransmission is less than one. The condition in (3.21) says that

the expected noise power amplification of the layers not supported by

a retransmission is less than infinity. Obviously, this holds true for all

suggested policies given in Sect. 3.1 as long as the threshold/target SNR

is below a certain limit. It has been shown in [61] that the Markov

chain induced by a permissible policy ' is ergodic in the sense that the

probability distributions of W1,W2, . . . converge (weakly) to a unique

probability measure Ψ('), and

lim
L→∞

1

L

L∑

ℓ=1

Wℓ → S(') (3.22)

where

S(') =

∫

ℝ+

WdΨ(')(W) < ∞. (3.23)

Since '1,'2 and '3 are permissible policies, the noise power at the de-
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coder input, averaged over the processed frames, equals S(')#noise if

L → ∞. Averaging the noise power over the different signals for the

SISO decoder (according to the transmission on different layers) results

also to S(')#noise, due to the independence of Wℓ and '(zℓ+1). The mean

multiplexing gain g(') achieved by the policy ' can be easily derived as

g(') = E [gℓ] = M − E ['(zℓ)] . (3.24)

The MIMO capacity given in (3.11) is modified to define the RSM con-

strained capacity in the following. Although the distribution of the noise

terms at the output of the multiplexer may be non-Gaussian (due to the

averaging), it does not impair the achievable capacity, at least for nearest

neighbor decoding [62].

In the case of RSM, the multiplexing gain is reduced by retransmitting

backup signals, whereas this very backup enables the reduction of the

average noise power amplification after the signal reconstruction. Thus,

using 
dec = 
inp/S
(') and the multiplexing gain from (3.24), the RSM

constrained ergodic capacity for a given policy can be expressed as

C̄
(')
RSM(
inp) = sup

'∈ℳ

(
g(') log2

(
1 +


inp
S(')

))
, (3.25)

where ℳ denotes a given family of permissible policies. The policies

defined in Sect. 3.1 lead to three different families of permissible policies,

namely

ℳ1 = {'1(�) : � > 0} , (3.26)

ℳ2 = {'2(�) : � > 0} , (3.27)

ℳ3 = {'3(�) : � > 0} . (3.28)

That is, (3.25) denotes the achievable capacity for a certain policy with an

optimally chosen � or �, respectively. Note, that the notation in (3.26),

(3.27), (3.28) refers to finding an optimal policy from a family for a given

MIMO channel realization.
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3.2.2. Simulation Results

The capacities reported in this section have been obtained by Monte-

Carlo simulations3. In Chapt. 5 the following results are compared to the

RSM performance provided by measurements on a 4× 4 MIMO testbed.

To this end, most results are presented for a 4 × 4 and an 8 × 8 MIMO

channel. The latter shall demonstrate the system behavior for larger

MIMO systems.

Fig. 3.3 and Fig. 3.4 compare the capacity resulting from policy '1 and

policy '2 in the case of a 4× 4 and an 8× 8 MIMO system, respectively.

The policies are comprised in the two families ℳ1 = {'1(�) : � > 0} and

ℳ2 = {'2(�) : � > 0}. Note that we focus on the achievable capacity of

a family, i.e., the threshold � is optimized for maximizing the ergodic ca-

pacity. Along with the results the unconstrained ergodic MIMO capacity

3 Consistent results have been obtained by numerical computations of the induced
Markov chain in [61].
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Figure 3.3 Capacity comparison of RSM using policy '1 and policy '2

over a 4× 4 MIMO channel with Rayleigh fading.
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Figure 3.4 Capacity comparison of RSM using policy '1 and policy '2

over a 8× 8 MIMO channel with Rayleigh fading.

C̄MIMO, as denoted in (3.11), is considered as an upper bound. Further,

the results are compared with the constrained capacity of two open-loop

architectures with array signal reconstruction based on LMMSE and ZF,

respectively.

As expected, policy '2 outperforms policy '1, because the applica-

tion of '2 guarantees a minimal SNR in each frame. Interestingly, the

performance difference becomes more apparent in the 8 × 8 MIMO sys-

tem. The results in Fig. 3.3 indicate, that the performance is similar for

policy '1 and '2 for 
inp ≥ 12 dB. As already mentioned, optimizing

the expression in (3.25) is equivalent to balance the impact of the mul-

tiplexing gain and the noise power amplification. For increasing values

of 
inp the average capacity per layer increases, while the noise power

amplification still depends on the channel and the applied policy only.

That is, the multiplexing gain becomes more pronounced for large values

of 
inp. Thus, the necessity for requesting backup signal decreases with

increasing SNR, what brings policy '2 to approach '1.

For MIMO systems of higher dimensions, as for instance an 8 × 8

MIMO channel, the performance improvement of policy '2 becomes more
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apparent, as shown in Fig. 3.4. Obviously, with increasing number of

considered signal layers, the probability Pr [mℓ > 1] increases, which in

turn lets policy '2 outperform policy '1. In case of a low SNR 
inp ≤
11 dB even a LMMSE receiver provides a higher capacity than policy '1

for RSM.

Fig. 3.5 and Fig. 3.6 show the capacity for policy '2 in comparison

to policy '3. Obviously, these two policies achieve similar ergodic per-

formance, but they are part of different approaches. Referring to the

explanations in Sect. 3.1, '2 limits the maximum noise power per layer,

while '3 limits the average noise power by an upper bound. This leads

to different values of the noise enhancement, but also to different multi-

plexing gains. In a Rayleigh fading MIMO channel the maximum RSM

constrained ergodic capacity seems to be similar for the two policies, as

the results suggest.

A more practical comparison of the two policies '2 and '3 is provided

in the following. Both policies provide a guaranteed postprocessing SNR
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Figure 3.5 Capacity comparison of RSM using policy '2 and policy '3

over a 4× 4 MIMO channel with Rayleigh fading.
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Figure 3.6 Capacity comparison of RSM using policy '2 and policy '3

over a 8× 8 MIMO channel with Rayleigh fading.


dec ≥ 
target at the SISO decoder input, with 
target = 
inp/� for policy

'2 and 
target = 
inp/%̌ when applying policy '3. As can be easily seen

from (3.5) and (3.7), the result of a policy depends on the threshold �

or the noise power amplification %̌, respectively. For the moment and

according to (3.24), we denote the multiplexing gain g(')(
target) = M −
E ['(zℓ)] depending on the required postprocessing SNR 
target. Thus,

the ergodic capacity considering a guaranteed postprocessing SNR 
target
is defined as

Č
(')
RSM = sup


target>0

(
g(')(
target) log2 (1 + 
target)

)
. (3.29)

This denotes the RSM constrained capacity for which an error-free de-

coding of the transmitted signal is assured, comparable to an outage

capacity. These RSM constrained capacities are also shown in Fig. 3.5
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and Fig. 3.6. From the policy explanation in Fig. 3.2 it is evident that

policy '3 provides a higher guaranteed capacity than policy '2 because

of the larger achievable multiplexing gain. This comparison cannot be

performed for policy '1, since a minimum capacity cannot be guaranteed

by a retransmission of only one dimension.

Finally, RSM is compared to other simple closed-loop MIMO systems,

i.e., ARQ based architectures as described in Sect. 2.4.2, by means of

the system constrained capacity. In this comparison, RSM is applied for

policy '2. Fig. 3.7 and Fig. 3.8 show C̄RSM, C̄ARQ, C̄ZF and C̄MMSE

versus 
inp for the cases of a 4 × 4 MIMO channel and a 8 × 8 MIMO

channel, respectively. Additionally the ergodic MIMO capacity C̄MIMO

is shown for reference. At higher values of the SNR the RSM scheme

seems to be much closer to the architectures with optimal MIMO coding

in terms of capacity than to the ZF and MMSE-based schemes.
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Figure 3.7 Capacity by the RSM-enhanced multiplexing and standard
ARQ-based scheme over a 4×4 MIMO channel with Rayleigh
fading.
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Figure 3.8 Capacity by the RSM-enhanced multiplexing and standard
ARQ-based scheme over a 8×8 MIMO channel with Rayleigh
fading.

3.3. Limited Feedback Channel

So far, the feedback channel has been considered to be a perfect channel

with unlimited capacity. This assumption enables a perfect backup signal

addressing, since the optimal retransmission identifier Q̄ℓ is fed back

to the transmitter without any loss. However, in practice, a feedback

channel offers only a limited capacity. Hence, the subspace selector Q̄ℓ

has to be quantized, which in turn affects the system performance.

In other closed-loop MIMO systems, where CSI is fed back to the

transmitter for precoding purposes, adequate codebooks of precoders are

defined, which has been investigated e.g. in [5]. This procedure is equiv-

alent to defining proper codebooks of subspace identifiers in the context

of RSM. Finding optimal codebooks leads to the problem of packings

in Grassmannian manifolds, which has been considered e.g. in [21] for

packings of n-dimensional subspaces in ℝ
m, with m ≥ n. Some exam-

ples of these real-valued packings can be found in [63]. In the case of

defining codebooks for unitary precoders and subspace selectors in RSM,
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the problem is to find complex-valued packings in complex Grassmannian

manifolds.

Let S (M,m) represent the Stiefel manifold of all M × m matrices

with orthonormal columns, where m ∈ {1, . . . ,M}. Considering two

such matrices U,Q ∈ S (M,m), the chordal distance between these m-

dimensional subspaces (spanned by the columns of U and Q) is denoted

by

dchord(U,Q) =
1√
2

∥∥UU† −QQ†
∥∥
F
. (3.30)

To request a backup signal for the ℓth frame, rather than Q̄ℓ the receiver

can only choose an element Q̂ℓ from a finite codebook Cmℓ
. Each set

Cm ⊂ S (M,m) comprises a finite number of m-dimensional subspaces of

ℂ
M . Note that different codebooks for different values of m have to be

predefined, the exact number depends on the range of the applied policy

'.

Of course, the retransmission identifier Q̂ℓ from the finite codebook

addresses a suboptimal backup signal at the transmitter. The question

is what is the impact of choosing this suboptimal addressing?

If the sub-optimal backup addressing Q̂ℓ is applied at the transmitter,

the MSE from (2.26) changes to

�
(
Q̂ℓ

)
=

#noise

M
tr

((
H

†
ℓHℓ + �ℓQ̂ℓQ̂

†
ℓ

)−1
)

=
#noise

M
tr

((
H

†
ℓHℓ + �ℓQ̄ℓQ̄

†
ℓ + �ℓEℓ

)−1
)
, (3.31)

where theM×M Hermitian matrix Eℓ = Q̂ℓQ̂
†
ℓ−Q̄ℓQ̄

†
ℓ is non-zero in the

case Q̂ℓ ∕= Q̄ℓ. In the following a reasonable choice for Q̂ℓ from a finite

codebook Cmℓ
is described. Considering (3.31), the vector containing the
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positive eigenvalues of
(
H

†
ℓHℓ + �ℓQ̄ℓQ̄

†
ℓ + �ℓEℓ

)
is given by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�2
1 (Hℓ) + �ℓ + �ℓ,1

...

�2
mℓ

(Hℓ) + �ℓ + �ℓ,mℓ

�2
mℓ+1 (Hℓ) + �ℓ,mℓ+1

...

�2
M (Hℓ) + �ℓ,M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with �ℓ,1, . . . , �ℓ,M representing the deviations due to a non-zero Eℓ. Be-

cause both Q̂ℓ and Q̄ℓ are orthonormal matrices of the same size, it

follows that tr (Eℓ) = 0 and therefore
∑M

i=1 �ℓ,i = 0. It follows from

the Wielandt-Hoffman theorem [64] that
∑M

i=1 �
2
ℓ,i ≤ ∥�ℓEℓ∥2F, while

∥�ℓEℓ∥2F is equal to 2�2
ℓd

2
chord(Q̂ℓ, Q̄ℓ) according to (3.30). Hence, a

small chordal distance dchord(Q̂ℓ, Q̄ℓ) limits the eigenvalue deviations,

such that a reasonable choice of the subspace selector Q̂ℓ from a given

codebook Cmℓ
is the one with minimal distance to Q̄ℓ, i.e.,

Q̂ℓ = arg min
U∈Cmℓ

dchord
(
U, Q̄ℓ

)
. (3.32)

Following this choice of the subspace selector, the noise power propaga-

tion can be described by the extended Markov chain

W̃ℓ =
1

M

⎛
⎝

'(zℓ)∑

i=1

1

zℓ,i + W̃−1
ℓ−1 +Dℓ,i

+
M∑

i='(zℓ)+1

1

zℓ,i +Dℓ,i

⎞
⎠ (3.33)

for ℓ ∈ ℕ with some initial value W̃0 = w̃0 and Dℓ = [Dℓ,1, . . . , Dℓ,M ]
T

accounting for the eigenvalue deviations due to Q̂L−ℓ ∕= Q̄L−ℓ. Ac-

cording to the considerations of �ℓ,1, . . . , �ℓ,M above, the random vectors

D1,D2, . . . are subject to

Dℓ,1 +Dℓ,2 + . . .+Dℓ,M = 0 (3.34)

D2
ℓ,1 +D2

ℓ,2 + . . .+D2
ℓ,M ≤ 2W̃−2

ℓ−1d
2
max,'(zℓ)

, (3.35)

where dmax,m represents the maximal distance between a certain matrix
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Q̄ℓ and its nearest neighbor Q̂ℓ ∈ Cm , such that

dmax,m = sup
Q∈S(M,m)

min
U∈Cm

dchord (U,Q) . (3.36)

It has been shown in [61] that the Markov chain in (3.33) is ergodic if the

applied policy ' is permissible and additionally there exists a constant

z0 > 0 such that Pr
[{

zℓ,'(zℓ)+1 ≥ z0
}
∣{'(zℓ) < M}

]
= 1.

Different ways for finding appropriate Grassmannian packings have

been suggested by several authors. For instance, an optimization tech-

nique which uses a relaxation method in conjunction with gradient search

algorithms is presented in [65], while in [66] the authors describe a nu-

merical method based on alternating projection to find good packings in

the Grassmannian manifold. A systematic Fourier-based design approach

is proposed in [67], which has been used in [5] to create complex-valued

codebooks. Some example codebooks are available for download at [68].

The latter method has the advantage of finding packings with a simplified

design process. At least, the last two aforementioned techniques suffer

from the rapidly increasing complexity, when the ambient dimension M

or the number of subspaces in the codebook is large.

For examining the performance degradation in case of a limited feed-

back channel, we have devised codebooks according to the systematic

approach described in [67]. The simplicity of this search algorithm is

achieved by finding codebooks with large minimum chordal distances.

But it is emphasized that these distances are usually far away from the

optimum. Nevertheless, these codebooks are valuable means for demon-

strating the effect of a feedback channel with limited capacity.

Fig. 3.9 and Fig. 3.10 show the the performance degradation resulting

from a finite-rate feedback channel for the case of retransmission policy

'1 applied in a 4×4 and a 8×8 RSM system, respectively. More precisely,

the RSM constrained ergodic capacity is considered here. The previously

designed codebook C1 consists of M × 1 vectors, since '1 ∈ {0, 1}. The

result for ∣C1∣ = 256 has been calculated with a randomly generated

codebook, because the systematic codebook design method suffers from

inefficiency when the number of codebook entries increases.

The limited capacity caused by a finite-rate feedback channel for the

case of retransmission policy '2 is shown in Fig. 3.11 and Fig. 3.12,

respectively. As mentioned above, a separate codebook is designed for
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Figure 3.9 Performance degradation of C̄RSM resulting from finite-rate
feedback channel of 4× 4 MIMO system for policy '1.
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Figure 3.10 Performance degradation of C̄RSM resulting from finite-rate
feedback channel of 8× 8 MIMO system for policy '1.
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every m ∈ {1, . . . ,M − 1}. Similarly to the results in Sect. 3.2.2, no

significant difference between the RSM constrained ergodic capacities of

'2 and '3 has been found, when the capacity of the feedback channel is

limited. Hence, the performance plot for '3 has been omitted.

The results suggest that the performance degradation due to the lim-

ited feedback channel is small, if the codebook is sufficiently large. For

the case of an 8 × 8 MIMO channel, the performance reduction is more

significant for policy '2. As can be concluded from Fig. 3.12, this per-

formance reduction is higher in the low SNR region, while it decreases

slowly for increasing SNR. All results show that the impact of a limited

feedback channel is small even if the capacity of the feedback is restricted

to only a few bits per channel use.

Referring to the results depicted in Fig. 3.9, Fig. 3.10, Fig. 3.11 and

Fig. 3.12, the required capacity of the feedback channel is equal to

log2(∣C∣M + 1) bits per channel use, since the corresponding bits ad-

dress M different codebooks each of ∣C∣ entries and an additional state

for the cases ”no retransmission” (mℓ = 0).
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Figure 3.11 Performance degradation of C̄RSM resulting from finite-rate
feedback channel of 4× 4 MIMO system for policy '2.
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Figure 3.12 Performance degradation of C̄RSM resulting from finite-rate
feedback channel of 8× 8 MIMO system for policy '2.

3.4. Using Side Information at the SISO

Decoder

The RSM system described in Sect. 2.4.3 involves a vertical interleav-

ing/deinterleaving at both the transmitter and receiver. This interleav-

ing across the signal layers has the purpose of averaging over different

noise power levels on different layers. One can improve the attainable

capacity of a MIMO transmission system by providing side information

about these different noise levels to the SISO decoder.

As can be seen from (3.2), the instantaneous capacity depends on the

multiplexing gain gℓ, the SNR 
inp and the noise power amplification %ℓ.

For the moment, we focus on the instantaneous capacity Cℓ,m of each

layer m, with m = mℓ−1 + 1, . . . ,M . Therefore, we define the noise

power amplification %ℓ,m for the mth layer, such that

Cℓ,m = log2

(
1 +


inp
%ℓ,m

)
, m = mℓ−1 + 1, . . . ,M. (3.37)
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For each frame transmission M − mℓ−1 layers contribute to the RSM

constrained capacity per MIMO channel use as shown in (3.2), while

mℓ−1 layers transmit a backup signal for the (ℓ−1)th frame. For a given


inp, the capacity Cℓ,m is a convex function depending on %ℓ,m . Defining

the average noise power amplification of the signal layers corresponding

to the upper M −mℓ−1 eigenvalues of H†
ℓHℓ as

%̆ℓ =
1

M −mℓ−1

M∑

m=mℓ−1+1

%ℓ,m , (3.38)

it can be seen by using the principle of Jensen’s inequality [69] that the

sum of the instantaneous capacities Cℓ,m , with mℓ−1 + 1, . . . ,M , is

M∑

m=mℓ−1+1

Cℓ,m ≥ (M −mℓ−1) log2

(
1 +


inp
%̆ℓ

)
. (3.39)

The aforementioned principle of providing side information is based on

(3.39), while the side information is 
inp/%ℓ,m . Hence, the capacity of

RSM depicted above can be even increased by exploiting the capacity of

each signal layer separately. For this purpose, the SISO decoder needs

to have side information about the noise levels or SNR, respectively, of

each layer.

When applying the vertical interleaving/deinterleaving for decorrelat-

ing the noise terms of the backup signal, the decoder requires the noise

level information for each element of n′
ℓ,k. It could be more advan-

tageous to use a horizontal interleaving/deinterleaving instead, i.e., the

signals within each of the M layers are reordered and, thus, the noise

terms are decorrelated in time. Since the reordering pattern is different

for each layer, this results in a vertical decorrelation of the noise terms

after the signal reconstruction. But still, the noise terms remain in its

corresponding signal layer. Clearly, information about the noise has to

be provided on a per-layer basis. Further, the scaling of the backup at

the receiver is no more a multiplication by a scalar factor, but turns into

a matrix multiplication for scaling each of the signal layers separately.

According to (2.20), the backup signals now contain inherent noise

vectors n̄ℓ,1, . . . , n̄ℓ,K , which have zero mean and are uncorrelated as a
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result of the interleaving. Therefore we assume that

E
[
n̄ℓ,kn̄

†
ℓ,k

]
= Ωℓ#noise, (3.40)

with Ωℓ a diagonal mℓ ×mℓ matrix of the form

Ωℓ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣


inp



(ZF)
ℓ+1,1

0 . . . 0

0

inp



(ZF)
ℓ+1,2

0
...

... 0
. . . 0

0 . . . 0

inp



(ZF)
ℓ+1,mℓ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (3.41)

where 

(ZF)
ℓ+1,m is the ZF constrained SNR of the mth substream in the

subsequent (ℓ+1)th frame, as denoted in (2.9), which provides a backup

for the current ℓthe frame. A scaling of the backup by Ω
− 1

2

ℓ matches
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Figure 3.13 Comparing horizontal and vertical interleaving by means of
the RSM constrained ergodic capacity for policy '2 in a
Rayleigh flat-fading MIMO channel (4× 4 and 8× 8).
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the second order properties of the noise in the backup to those of nℓ,k.

Fig. 3.13 demonstrates the performance improvement of this approach

compared to the previously described vertical interleaving for the case of

an RSM system of size 4× 4 and 8× 8, respectively.

While horizontal interleaving can improve the RSM constrained capac-

ity of a 4×4 MIMO system by up to 1 dB, the recognizable improvement

in an 8 × 8 MIMO architecture is only marginal. In order to follow the

objective of low receiver complexity, this work usually deals with verti-

cal interleaving. A demonstration of horizontal interleaving is given in

Sect. 3.5.

3.5. Precoded RSM

In Sect. 3.2, the transmitter/receiver-constrained capacity has been in-

vestigated. The ergodic MIMO capacity represents an upper limit which

is the attainable capacity for a UP MIMO system (see Sect. 2.4.1) with

full CSI at the transmitter4. CSI at the transmitter end can be used

for precoding the multidimensional transmit signal such that the MIMO

channel is turned into independent SISO channels [1]. As described in

Sect. 2.4.1, each of the signal streams is attenuated by an individual SISO

channel, which allows the use of off-the-shelf SISO encoders and decoders

in the outer system and enables data rates close to the MIMO channel

capacity while keeping the complexity limited. The weakness of this ap-

proach is the need for accurate CSI. The system performance is reduced

significantly if the CSI is outdated due to a time-varying channel [3], [4]

or inaccurate due to limited capacity of the feedback channel [5].

Imperfect CSI at the transmitter necessitates the receiver to recover the

parallel signal streams by adequate methods, like ZF or LMMSE filtering

at the receiver, as described in Sect. 2.3.1 and Sect. 2.3.2, respectively5.

Although these techniques result in noise amplification over all signal

layers in case of a badly conditioned channel matrix, it has been shown

above that RSM enables the receiver to evade an excessive noise ampli-

4 Clearly, a waterpouring based power allocation at the transmitter would even in-
crease the capacity, but this is not considered in this thesis.

5 As emphasized above, though there exists a bunch of methods with better perfor-
mance, we focus on simple reconstruction techniques for complexity reasons.
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fication in linear signal reconstruction. While the ergodic performance

achievable by RSM is independent of the correlation value of the channel

matrices associated with consecutive frame transmissions, the capacity

of a MIMO architecture with feedback of CSI and precoding generally

decreases for decreasing correlation values. The performance of perfect

precoding based on accurate and up-to-date CSI is shown as C̄MIMO and

C̄ARQ in Fig. 3.8, for instance. It can be seen that perfect precoding

outperforms RSM, whereas in channels varying significantly from frame

to frame – possibly because of long intervals between consecutive signal

bursts – RSM is supposed to be the superior technique.

Motivated by the fact that similar information needs to be sent back

from the receiver to the transmitter for facilitating precoding and backup

signal identification, here, a closed-loop MIMO architecture incorporat-

ing both UP and RSM (UPRSM) is investigated. Therefore, the nec-

essary system changes are described, and subsequently the performance

improvement compared to each individual closed-loop architecture is an-

alyzed. A basic block diagram of the considered system is shown in

Fig. 3.14. The major difference according to the RSM system description

is the precoding block at the transmitter and the feedback data, which

now covers information for this very precoding and the backup signal

addressing.

As mentioned above, unitary precoding takes advantage of CSI at the

transmitter. Therefore, correlated channel matrices H̄1, . . . , H̄L are as-

sumed in this section. According to the model introduced in [70], the

channel matrices are generated such that
[
H̄1

]
n,m

,
[
H̄2

]
n,m

, . . . with

} {}
SISO

SISOencoder

decoder

S/P
P/S

xℓ,k yℓ,k

relay backup relay backup to

to next frame previous frame

MIMO

feedback

channel

channel

precoding

×Pℓ

zero

forcing

×Gℓ

precode &

subspace selection

Figure 3.14 RSM transmission system extended by unitary precoding.
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1 ≤ n ≤ N , 1 ≤ m ≤ M represent NM independent random sequences.

For any given n, m, the sequence
[
H̄1

]
n,m

,
[
H̄2

]
n,m

, . . . represents a

complex Gaussian random process with autocorrelation

E
[[
H̄ℓ

]∗
n,m

[
H̄ℓ+�

]
n,m

]
= �∣�∣ (3.42)

with � ∈ [0, 1] the correlation coefficient of the elements of adjacent

frames and � ∈ ℤ the lag of two considered frames.

We emphasize that the following comparison considers a horizontal

interleaving (see Sect. 3.4) and, thus, the postprocessing SNR of each of

the M signal layers is of interest. In the case of UP, a ZF at the receiver

without any backup boosts the additive noise affecting the mth layer by

a factor of
[
(H†

ℓHℓ)
−1
]
m,m

(cf. Sect. 2.4.1). Hence, using the eigenvalue

decomposition of H†
ℓHℓ the postprocessing SNR at the mth signal layer

becomes



(UP)
ℓ,m =


inp[
VℓS

−2
ℓ V

†
ℓ

]
m,m

. (3.43)

Extending UP with RSM results in an improvement of the SNR by de-

riving the ZF estimator as

Gℓ = H̃+
ℓ =

[
Hℓ

Ω
− 1

2

ℓ Q
†
ℓ

]+
. (3.44)

Correspondingly to the factor in (3.43), the noise amplification for the

mth signal layer is given by
[
H̃

†
ℓH̃ℓ

]
m,m

. Again, using the eigenvalue

decomposition, as expressed in (2.3), the postprocessing SNR at the mth

signal layer results to


ℓ,m =

inp[(

VℓS
2
ℓV

†
ℓ +QℓΩ

−1
ℓ Q

†
ℓ

)−1
]

m,m

. (3.45)

Since Vℓ is a unitary matrix and Qℓ is composed by the first mℓ columns
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of Vℓ, factoring out Vℓ leads to the postprocessing SNRs


ℓ,m =

inp[

VℓS̃
−2
ℓ V

†
ℓ

]
m,m

, m = 1, . . . ,M, (3.46)

where S̃−2
ℓ is a diagonal matrix with elements

[
S̃−2
ℓ

]
m,m

=

⎧
⎨
⎩

(
[Sℓ]m,m +



(ZF)
ℓ+1,m


inp

)−2

for m ≤ mℓ

[
S−2
ℓ

]
m,m

for m > mℓ.

(3.47)

The benefit from the backup has been shown above, for instance in

Sect. 2.4.3 and Sect. 3.2. A corresponding comparison results from (3.43)

and (3.46). While very small values in the diagonal of S̃2
ℓ obviously boost

the noise and thus decrease the SNRs after a ZF without any backup

available, this effect is reduced by biasing the mℓ smallest eigenvalues in

(3.47) by the backup.

Finally, the transmitter/receiver-constrained capacity is examined by

performing Monte-Carlo simulations and the results of UPRSM are com-

pared with a UP MIMO system [1] and the previously examined RSM.

Therefore, sequences of 4×4 and 8×8 correlated MIMO channel matrices

for different � with 0 ≤ � ≤ 1 are generated as considered above. The

UP constrained ergodic capacity with outdated CSI and ZF is given as

C̄UP = E

[
M∑

m=1

log2

(
1 + 


(UP)
ℓ,m

)]
(3.48)

in bits per MIMO channel use. Different to (3.48), the calculations of

C̄RSM and C̄UPRSM, which are the RSM/UPRSM constrained ergodic

capacities have to take into account the decreasing multiplexing gain

caused by the retransmissions, such that

C̄UPRSM = E

⎡
⎣

M∑

m=mℓ−1+1

log2 (1 + 
ℓ,m)

⎤
⎦ . (3.49)

The simulation results are depicted in the following figures.
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Figure 3.15 The ergodic capacity of precoding MIMO and UPRSM (both
4× 4) versus SNR.
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Figure 3.16 The ergodic capacity of precoding MIMO and UPRSM (both
8× 8) versus SNR.
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Fig. 3.15 and Fig. 3.16 show the comparison of UP, RSM and UPRSM

for a 4×4 and an 8×8 MIMO channel, where C̄UP(� = 0) and C̄UP(� = 1)

reflect the lower and upper performance limits, respectively. In between

these limits, the achievable ergodic capacities of UPRSM for different cor-

relation coefficients are plotted. In the case � = 0, consecutive channels

are uncorrelated and thus unitary precoding does not offer any benefit.

In fact, the results of C̄UPRSM(� = 0) are equal to the ergodic capacity

of an RSM system (compare Sect. 3.4).

In the case of perfect CSI at the transmitter (� = 1), the UPRSM con-

strained capacity is equal to that of UP, and UPRSM offers an improve-

ment of approximately 2.5 − 3 dB compared to RSM (C̄UPRSM(� = 0)).

Fig. 3.17 and Fig. 3.18 show the comparison of the three different sys-

tems as the capacity is plotted versus � at a fixed SNR to demonstrate

the different behavior of the systems in a correlated fading environment.
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Figure 3.17 Comparison of the ergodic capacity of 4 × 4 MIMO trans-
mission with UP, RSM and UPRSM for different channel
correlation coefficients � and an SNR of 
inp = 15 dB.
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Figure 3.18 Comparison of the ergodic capacity of 8 × 8 MIMO trans-
mission with UP, RSM and UPRSM for different channel
correlation coefficients � and an SNR of 
inp = 30 dB.

While Fig. 3.17 gives the results for an SNR of 
inp = 15 dB in case of a

(4×4) MIMO channel, the 8×8 MIMO channel in Fig. 3.18 is considered

for an SNR of 
inp = 30 dB.

The leftmost value C̄UP(� = 0) is the transceiver constrained capacity

per channel use without any CSI at the transmitter, since channel realiza-

tions of subsequent frames are considered to be uncorrelated. By increas-

ing �, C̄UP is increasing because of the rising accuracy of the CSI at the

transmitter. While C̄RSM is invariant to variations of � (see Sect. 2.4.3),

UPRSM can exploit the CSI at the transmitter for increasing � to enhance

the performance of the system. The relative impact of RSM decreases

with increasing � as can be seen from the two curves C̄UP and C̄UPRSM

approaching each other for � → 1.

The latter aspect is also demonstrated in Fig. 3.19, where for a total
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of L frames a plot of the average backup size

m̄ =
1

L

L∑

ℓ=1

mℓ (3.50)

versus the correlation coefficient � is drawn for an SNR of 
inp = 30 dB.

Obviously, the necessity of a retransmission decreases with increasing �.

In case of perfect channel knowledge at the transmitter (� = 1), the

average backup size m̄ = 0.

As a result, the combination of UP and RSM capitalizes on the ad-

vantages of both schemes for different values of �, while the amount of

additional feedback is very low. For unitary precoding, the matrix Vℓ is

fed back from the receiver to the transmitter end comprising the eigen-

vectors of H†
ℓHℓ, whereas in RSM several columns of this very matrix

are used at the transmitter to form a backup signal. Hence, the required
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Figure 3.19 Comparing the average backup size m̄ of UPRSM and RSM
(both 8× 8) for varying � and an SNR 
inp = 30 dB.
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feedback channel capacity is comparable to a conventional UP system.

More precisely, the feedback channel needs additional capacity to signal

M + 1 states, namely for mℓ ∈ {0, 1, . . . ,M}, along with the CSI for the

precoding, noting the latter consumes considerable more bandwidth to

be effective (cf. Sect. 3.3 and [5]).

3.6. Higher Order MIMO Systems

The performance analysis focuses on the maximum capacity per channel

use for a certain policy at the receiver. The policies '1 and '2 introduced

in Sect. 3.1, which depend on a certain threshold �, are assumed to opti-

mize this parameter in order to maximize the ergodic capacity. However,

it has not yet been clarified how to find such an optimal threshold.

Considering a MIMO channel matrix Hℓ with zero-mean complex

Gaussian distributed elements, the random matrix H
†
ℓHℓ is known as

a Wishart matrix [71]. The joint probability density function of the

eigenvalues �2
1 ≤ �2

2 ≤ . . . ≤ �2
M is given in [72] as

f(�) =
2−MN�M(M−1)

Γ̃M (N) Γ̃M (M)
exp

(
−1

2

M∑

i=1

�i

)
M∏

i=1

�N−M
i

∏

i>j

(�i − �j)
2
,

(3.51)

with the multivariate gamma function defined by

Γ̃N (a) = �N(N−1)/2
N∏

i=1

Γ (a− i+ 1) (3.52)

and Γ (⋅) the gamma function, [51]. Note that the expectation of the

multiplexing gain g = E [gℓ] in (3.25) depends on (3.51) and the applied

policy. In the following, we focus on policy '2, that is, the result mℓ

of this policy depends on the random vector zℓ and the choice of the

threshold �. Thus, to point out this dependency, we introduce the nota-

tion '2(zℓ, �). The instantaneous noise amplification in (3.19), where

Wℓ =
1

M

⎛
⎝

'2(zℓ,�)∑

i=1

1

zℓ,i +W−1
ℓ−1

+

M∑

i='2(zℓ,�)+1

1

zℓ,i

⎞
⎠ , (3.53)
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illustrates the difficulties in finding a threshold value � that minimizes

E [Wℓ]. The left hand side of (3.53) is a recursive function of random

variables with a joint probability density function given in (3.51). The

number of summands involved in the recursion again is calculated by the

policy, for which the result in turn depends on the random eigenvalues

and the threshold that shall be optimized. Instead of trying to find a

generic analytical solution of this problem, applicable for different values

of M , N , ' and 
inp, a numerical assessment of � is introduced in the

following.

The assessment presumes that the ergodic capacity C̄RSM for a given

SNR 
inp is a strictly concave function depending on the threshold �.

This assumption is based on the fact that the multiplexing gain g is a

monotonically decreasing function, while the term log2(1 + 
inp/S
(')) is

monotonically increasing for an increasing threshold �. Monte-Carlo sim-

ulations for a bunch of different values of � indicate that this assumption

is valid (an analytical proof is missing, due to the aforementioned com-

plexity). Fig. 3.20 depicts the result of such simulation, where C̄RSM is
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Figure 3.20 Assessment of threshold �opt (dashed line) that maximizes
C̄RSM in a 4× 4 MIMO channel at an SNR 
inp = 10dB.
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shown as a function of � in a 4×4 MIMO channel at an SNR 
inp = 10dB.

Following this approach for different SNRs and different MIMO channel

sizes, a look-up table can be used at the receiver. Supposing that the

receiver has adequate knowledge of the preprocessing SNR 
inp, the look-

up table provides a �opt that maximizes the ergodic capacity per channel

usage. A graphical representation of such a table is given in Fig. 3.21.

Obviously, as the number of transmit and receive antennas in the trans-

mission system increases the optimal threshold changes due to differ-

ent underlying joint probability density functions for the eigenvalues of

H
†
ℓHℓ. Further, with increasing size of H†

ℓHℓ, the assessed value of �opt
also increases. The results plotted in Fig. 3.21 raise the question, whether

�opt is bounded for a fixed 
inp, since the difference of adjacent curves in

Fig. 3.21 decreases for increasing MIMO channel dimensions.

Interestingly, the case of a MIMO channel with unlimited numbers of

transmit/receive antennas can be observed by means of random matrix

theory, e.g. [73]. A central result in random matrix theory states the

Marcenko-Pastur law, i.e., if H†
ℓHℓ is a Wishart matrix, the empirical

distribution of the eigenvalues �2 =
(
�2
1(Hℓ), �

2
2(Hℓ), . . . , �

2
M (Hℓ)

)
con-
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Figure 3.21 Numerical results of the optimal threshold for different num-
ber of antennas.
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verges almost surely, as M,N → ∞ with M
N → � to the density function

f�(�
2) =

(
1− 1

�

)+

�(�2) +

√
(�2 − a)+(b− �2)+

2���2
(3.54)

with (z)+ = max(0, z) and

a = (1−
√

�)2 b = (1 +
√
�)2 (3.55)

Assume Hℓ to be a square matrix with N = M → ∞, i.e., there are as

many receive antennas as transmit antennas for a communication link.

In this case, � = 1 and (3.54) simplifies to

f1(�
2) =

√
�2(4− �)

2��2
=

1

�

√
1

�2
− 1

4
. (3.56)

As it is shown for the case of finite MIMO dimensions, the noise amplifi-

cation in (3.53) is a recursive function. In the case of M,N → ∞, (3.56)

simplifies the search for an optimal threshold. Of course, the maximal

multiplexing gain for a MIMO channel with unlimited dimensions is equal

to infinity. However, taking into account the backup signals ”consume”

a part of these infinite number of layers, the multiplexing gain ratio for

the density function given in (3.56) can be expressed by

g('2,∞) =
1

�

4∫

�

f1(�
2)d�2 =

1

�

4∫

�

√
1

�2
− 1

4
d�2 (3.57)

where (3.57) equals one if the threshold � = 0. Using the tables in [74],

it can be easily seen that (3.57) results to

g('2,∞) =
1

2�

(
� −

√
(4− �) � + 2arcsin

(
2− �

2

))
. (3.58)

Applying (3.56) to the recursive function of the noise amplification, we
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obtain

W =

�∫

0

f1(�
2)

�2 +W−1
d�2 +

4∫

�

f1(�
2)

�2
d�2 (3.59)

=
1

�

⎛
⎜⎝

�∫

0

1

�2 +W−1

√
1

�2
− 1

4
d�2 +

4∫

�

1

�2

√
1

�2
− 1

4
d�2

⎞
⎟⎠ (3.60)

=
1

�

(
−�

2
+

√
4

�
− 1 +

√
1 + 4W arctan

(√
� (1 + 4W)

4− �

))
(3.61)

while assumingW is stationary for anM×M matrixH
†
ℓHℓ withM → ∞.

The Banach fixpoint theorem [75] can be used to solve (3.61) numerically

as shown in appendix A.1. Although the probability density function in

(3.56) seems to offer the possibility of finding an optimal threshold in

this case, the resulting terms in (3.58) and (3.61) illustrate that solving

the equation

�opt(
inp) = argmax
�

g(∞)(�) log2

(
1 +


inp
W(�)

)
(3.62)

is still a difficult task. For that reason, again a numerical assessment

of �opt(
inp) has been performed. The results shown in Fig. 3.21 suggest

that the optimal threshold �opt in order to maximize the ergodic capacity

is upper bounded for a fixed 
inp when the number of transmit and receive

antennas increases.





Chapter 4.

Non-Ergodic RSM Performance

While in Chapt. 3 the ergodic capacity of RSM has been examined, this

chapter focuses on the non-ergodic performance of the approach. We

point out that the recursive nature of the RSM transmitter/receiver ar-

chitecture, as described in Sect. 2.4.3, makes it impossible to guarantee

a maximal delay. Since the instantaneous capacity at the time when

transmitting the ℓth frame depends on the active as well as on the pre-

vious MIMO channel state, a measure of the performance per frame is

unreasonable. This aspect becomes apparent recalling that the RSM con-

strained capacity gain is attained by supporting preceding frames through

the retransmission of backup signals.

For this reason, the RSM constrained capacity for a limited number of

frames is investigated. Further, for the purpose of assessing an appropri-

ate frame group size, we estimate the mean delay expressed in number

of frames of an RSM communication system with no frame limitation.

Thereafter, optimal strategies for slowly time-varying MIMO channels

are introduced, which have been found by means of reinforcement learn-

ing.

4.1. Limited Number of Frames

A simple yet efficient method to guarantee a maximal delay for trans-

mitting the information of a specific frame is to send data with a lim-

ited number of frames. That is, the RSM architecture in Sect. 2.4.3

is changed in a way that the transmitter always sends information in

groups of frames. Thus, the delay is limited to a maximum of the num-

ber of frames in a transmission group. In the following, we examine two

different approaches on how to process the frames in a group.
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One system approach to guarantee a maximal delay is to simply inter-

rupt the receiver’s requests for backup signals after a maximum number

of frames have been involved in the recursive process. When the receiver

processes the last frame of a group, no retransmission will be requested

regardless of the current CSI and applied policy. Having received the

last frame of a group, the receiver immediately starts to decode, i.e., the

linear signal reconstruction. Doubtlessly, this potential violation of the

policy at the last frame leads to a backward error propagation, because

the SNR 
dec at this very frame and with it the SNR of the backup signal

for the previously received frame cannot be lower bounded.

Note that the previously described transmission in groups of frames

does not exclude the occurrence of frames within this group with mℓ = 0,

i.e., the receiver might experience frames which start the decoding pro-

cess (since mℓ = 0) before the last frame of the group. Despite of these

incidences, the recursive multiplexing starts every Lth frame, with L

the number of frames in a group. Fig. 4.1 depicts the RSM constrained
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Figure 4.1 RSM constrained ergodic capacity in bits per channel use with
limited number of frames in an 8 × 8 Rayleigh channel with

inp = 30dB.
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capacity with limited number of frames L and the aforementioned poten-

tial violation as results of multiple Monte-Carlo simulations for different

values L. The 8× 8 MIMO channel is assumed to have zero-mean inde-

pendent Gaussian distributed entries with � = 0 and 
inp = 30dB.

It is apparent that the previously described strategy violates policy

'3, since an SNR 
dec ≥ 
inp/%̌ cannot be assured. However, a lower

bound of the system capacity can be provided by a slight change in the

aforementioned approach. This second method described below does not

violate a given policy at the last frame of a group.

Instead of starting to decode and possibly neglecting a given policy

after a maximum number of transmitted frames, the number of consec-

utive non-decodable frames F is considered as a criterion. According to

policy '3, the decoding process only starts if no retransmission is re-

quested. That is, to provide a guaranteed SNR at the decoder, outages

may occur, if a frame still requires a backup while the maximum number

of non-decodable frames is reached. Fig. 4.2 and Fig. 4.3 show the lower

bound of the RSM constrained capacity for varying number of limited

frames versus the SNR in a 4× 4 and 8× 8 MIMO channel, respectively.

It can be seen that a reduction of the allowed number of retransmissions

leads to a dramatic decrease of the achievable capacity. Even for large

values of possible retransmissions, e.g. F = 50 in a 4× 4 MIMO channel,

a clear gap of ≈ 2 dB to the performance of an unrestricted system

(F → ∞) remains in the low SNR region.

For increasing number of signal layers, the performance gap between

transmissions with a small number of allowed retransmissions and trans-

missions with unlimited retransmission increases massively, as illustrated

in Fig. 4.3 for an 8×8 MIMO channel. Comparing these results with the

capacities depicted in Fig. 3.8 it becomes apparent that an LMMSE/ARQ

based 8×8 MIMO system outperforms RSM with F = 50 and even RSM

with F = 150 for 
inp ≤ 13 dB. In the following section a simple approxi-

mation of the transmission delay in an unrestricted RSM system is given.

Thereafter, a possible solution is suggested to overcome the massive per-

formance degradation when the delay/memory in an RSM architecture

is limited.
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Figure 4.2 RSM constrained capacity per channel use with limited num-
ber of retransmissions in 4× 4 MIMO Rayleigh channel.
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Č
('3)
RSM with F = 10

ca
p
ac
it
y
in

b
it
s
p
er

ch
an

n
el

u
se

mean SNR 
inp [dB]

Figure 4.3 RSM constrained capacity per channel use with limited num-
ber of retransmissions in 8× 8 MIMO Rayleigh channel.
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4.2. Estimating the Delay

As explained in Sect. 2.4.3, the decoding process starts as soon as a

received frame does not need a backup, which could be provided by a

subsequent frame. Since it is assumed in the system approach that the

channel is varying arbitrarily from frame to frame, the case of mℓ = 0

is unpredictable. That is, the instance of starting the decoding process

cannot be forseen and the transmission delay1 is a random variable.

In case of a fixed threshold based policy, e.g. policy '2, an expec-

tation of the mean delay can be calculated as follows. Still, the MIMO

channel is considered as a non-zero random matrix with independent

zero-mean complex Gaussian elements. The estimate of the mean delay

is based on the PDF of the smallest eigenvalue �2
1(Hℓ) for a complex

valued central Wishart matrix H
†
ℓHℓ given in [72] as

f�2
1
(z) =

M

2
e−

M
2 z . (4.1)

Again, we focus on policy '2 for simplicity. The probability of receiving

a frame in a situation, where no retransmission is necessary, is equivalent

to the probability that the smallest eigenvalue �2
1(Hℓ) ≥ �. This can be

easily calculated by

Pr
[
�2
1(Hℓ) ≥ �

]
=

∫ ∞

�

M

2
e−

M
2 �2

1 d�2
1 = e−

M
2 � . (4.2)

The transmission delay depending on the threshold � to maximize the

capacity and expressed in number of received frames can be calculated by

applying the following Bernoulli experiment. Denoting X as the number

of events when �2
1(Hℓ) ≥ �, the probability Pr [X ≥ 1] = 1 − Pr [X = 0]

can be calculated with

Pr [X ≤ x] =
∑

i≤x

(
L

i

)
pi(1− p)L−i (4.3)

1 The transmission delay is defined as the time from receiving a frame to the instance
of decoding the content of this very frame.
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denoting the binomial distribution and p the probability of each event

�2
1(Hℓ) ≥ � as denoted in (4.2). Referring to (4.2) the probability for at

least one occurring event in a group of L frames can be defined as

Pr [X ≥ 1] = 1− Pr [X = 0] = 1− (1− e−
M
2 �)L. (4.4)

The latter part Pr [X = 0] of (4.4) is the outage probability Pout for a

given threshold � and a given frame group size L. Fig. 4.4 and 4.5 show

contour plots of the three-dimensional function given in (4.4) for a 4× 4

and 8 × 8 MIMO system, respectively. Each line represents an example

for a required probability Pr [X ≥ 1], that is, the probability to decode

the message within a group of L frames. Referring to Fig. 4.4, for a given

threshold � = 1 at least 21 frames have to be transmitted to ensure an

outage probability Pout ≤ 0.05.

Rearranging (4.4), different cost functions depending on the given pa-

rameters can be defined, where

�′ ≤ − 2

M
ln
(
1− L

√
Pout

)
(4.5)

provides an upper border of the threshold for a chosen maximal outage

probability Pout and a predefined maximum delay in number of trans-

mitted frames. If � is fixed, e.g. it is only defined for maximizing the

capacity and thus independent of the delay, the maximum delay L′ can

be estimated by

L′ =
ln(Pout)

ln
(
1− e−

M
2 �
) . (4.6)

Clearly, the choice of � determines the available postprocessing SNR


dec = 
inp� (cf. Sect. 3.1).
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Figure 4.4 Expected number of frames versus threshold � for given outage
probabilities Pout for a 4× 4 MIMO channel.
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Figure 4.5 Expected number of frames versus threshold � for given outage
probabilities Pout for an 8× 8 MIMO channel.
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4.3. Antenna Selection Strategies

The distribution of the smallest eigenvalue of a Wishart matrix is sen-

sitive to the ratio of (M/N) ≤ 1 [72]. The lower this ratio, the higher

the probability that the smallest eigenvalue is greater than a considered

threshold. In the case of RSM this yields mℓ = 0, i.e., no retransmis-

sion in the subsequent frame is necessary. Exploiting this fact leads to

an approach where the transmitter may use only aℓ out of M transmit

antennas for the ℓth frame transmission as shown in Fig. 4.6. The rest

of the transmitter/receiver architecture corresponds to the RSM system

with limited number of frames as described in Sect. 4.1. Hence, aℓ−mℓ−1

layers are provided for serial/parallel converted signals from the SISO en-

coder, while mℓ−1 dimensions are used for the transmission of the backup

of the previous frame.

Since the MIMO channel is considered as an N × aℓ matrix Hℓ, the

dimension of the backup signal addressing matrix Q
†
ℓ changes to mℓ ×

aℓ. A vertical interleaving and deinterleaving (cf. Sect. 3.4) is applied,

represented by Π and Π−1, respectively. Therefore, it is sufficient to

multiply the backup by a scalar factor
√
�ℓ, adapting the variance of the

additive noise terms in the backup to #noise. Further, due to the transmit

antenna selection, the backup size policy '3 described in (3.7) results to

mℓ = min {m ∈ {0, . . . , aℓ} : %ℓ (m, a) ≤ %̌} (4.7)

SISO
encoder

demultiplexer

S/P
Π

relay to
next frame

MIMO

feedback

channel

channel

×Hℓ

aℓ

mℓ−1

×Q
†
ℓ−1

Figure 4.6 RSM transmitter with antenna selection strategies.
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with the noise amplification %ℓ (m, a), also depending from the number

of used transmit antennas a, defined as

%ℓ (m, a) =
1

aℓ

(
m∑

i=1

1

�i (Hℓ) + �ℓ
+

aℓ∑

i=m+1

1

�i (Hℓ)

)
. (4.8)

The entries of Hℓ are considered as independent, zero-mean complex

Gaussian distributed random values with variance 1/aℓ, which results in

independent Rayleigh fading. The normalization by 1/aℓ accounts for

a uniform allotment of the fixed total transmit power to the aℓ active

transmit antennas, with the result that 
inp reflects the mean SNR at

every receive antenna. Regarding H1,H2, . . . as independent random

matrices, pmℓ
(m; a, %̌) denotes the probability of (mℓ = m) given that

(aℓ = a) transmit antennas are actively used, as determined by (4.7). As

an example, Tab. 4.1 shows the incidence of the backup signal dimension

mℓ for the case of N = 8 and %̌ = 2, i.e., assuming the SISO decoder

requires an SNR of 
dec ≥ 
inp/2. The probabilities as found in Monte-

Carlo simulations are rounded to two decimal places.

aℓ : 1 2 3 4 5 6 7 8
pmℓ

(0; aℓ, %̌) : 1.00 1.00 1.00 0.98 0.78 0.26 0.01 0.00
pmℓ

(1; aℓ, %̌) : 0.00 0.00 0.00 0.02 0.22 0.72 0.66 0.10
pmℓ

(2; aℓ, %̌) : 0.00 0.00 0.00 0.00 0.02 0.33 0.81
pmℓ

(3; aℓ, %̌) : 0.00 0.00 0.00 0.00 0.00 0.09
pmℓ

(4; aℓ, %̌) : 0.00 0.00 0.00 0.00 0.00

Table 4.1. Distribution of the number of signal dimensions mℓ to be cov-
ered by the backup for limiting the noise amplification to a
factor %̌ = 2 in the case of Gaussian 8×aℓ MIMO channels.

The results in Tab. 4.1 suggest that the probability of achieving


dec ≥ 
inp/%̌ without backup (i.e. mℓ = 0) with only up to three trans-

mit antennas is close to 1, which is due to the diversity order. On the

other hand, using all eight transmit antennas yields a request for a two-

dimensional backup in most cases, while the chances for attaining the

target SNR without backup is poor. Without delay and memory restric-
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tions, the optimal policy with respect to the data rate is to always use

all available transmit antennas (i.e. aℓ = M), as examined in Sect. 3.2.

However, the results in Sect. 4.2 suggest that in most applications the

memory requirements of this policy are unacceptably large. Hence, the

focus of this section is on finding adequate policies for choosing aℓ in

RSM transmission systems with limited memory.

To this end, the triplet sℓ = (mℓ, bℓ, fℓ) shall represent the state of

the multiplexer after reception of the ℓth frame and the processing steps

possible at this time (see also Fig. 2.7). The two latter variables of

the triplet reflect parameters of the LIFO in Fig. 2.7. The accumulated

amount of transmitted signals waiting to be decoded is denoted by bℓ.

The number of frame signal observations stored in the memory is given by

fℓ, which is also a gauge for the ”charging level” of the LIFO memory. If

no backup is required, the processing of the current frame and all stored

signal observations can be completed, hence, mℓ = 0 implies bℓ = 0 and

fℓ = 0. Otherwise, if mℓ > 0,

bℓ =

{
bℓ−1 + aℓ −mℓ−1 if fℓ−1 < F

aℓ −mℓ−1 if fℓ−1 = F
, (4.9)

fℓ =

{
fℓ−1 + 1 if fℓ−1 < F

1 if fℓ−1 = F
, (4.10)

with F the number of frames that can be stored in the memory. In the

case fℓ−1 < F , i.e., the memory still offers space for capturing the ℓth

frame, the amount of signals waiting to be decoded increases by aℓ−mℓ−1

signal layers, corresponding to the number of layers transmitting new

data from the SISO encoders. If the memory has reached its capacity,

such that fℓ−1 = F , and mℓ > 0, the memory is cleared before processing

the ℓth frame, in which case the data encoded in all previously stored

signals is lost and thus bℓ = aℓ −mℓ and fℓ = 1. Fig. 4.7 illustrates the

various states and possible transitions described above.

According to Tab. 4.1, a reasonable choice of the number of active

transmit antennas aℓ depends on the state sℓ−1. Thus, the information

aℓ is fed back from the receiver to the transmitter based on the strategy

� : sℓ−1 7→ aℓ = �(sℓ−1) ∈ {1, . . . ,M} . (4.11)
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single state

ensemble of
states

sℓ = (0, 0, 0)

sℓ = (mℓ, bℓ, 1)

sℓ = (mℓ, bℓ, 2)

sℓ = (mℓ, bℓ, F )

mℓ ∈ {1, . . . ,M}

mℓ ∈ {1, . . . ,M}

mℓ ∈ {1, . . . ,M}
bℓ ∈ {0, . . . ,M}

bℓ ∈ {0, . . . , 2M − 1}

bℓ ∈ {0, . . . , F (M − 1) + 1}

Figure 4.7 Finite-state machine representation of the Markov decision
process. Some of the plotted state transitions, which repre-
sent the possible actions, may not appear under an optimal
policy.

Defining such an antenna strategy � yields the random process s1, s2, . . .

which represents a Markov chain. The necessary state transition proba-

bilities for this Markov chain can be found by Monte-Carlo simulations,

as shown in Tab. 4.1. For instance, the probability of a state transition

sℓ−1 7→ sℓ can be found in row mℓ + 1 and column �(sℓ−1) of Tab. 4.1.

We emphasize that the Markov chain s1, s2, . . . is the result of a random

process in combination with a controlling element �. Finding an optimal

antenna strategy, thus, equals solving an optimal control problem.

A promising concept for this problem is the theory of Markov decision

processes (MDPs) introduced in [33]. The finite set of states, defined in

(4.9) and (4.10), and the finite set of actions, given by (4.11) are two

major components of a finite MDP. Further, the probability for a state

transition from a current state s to a next state s′ following the action
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�(sℓ) = a is denoted by [32]

Pa
ss′ = Pr [sℓ+1 = s′ ∣sℓ = s, �(sℓ) = a ] . (4.12)

In the present RSM setup sketched in Fig. 4.6, the transition probability

depends on the MIMO channel, more precisely on the occurrence of mℓ,

thus Pa
ss′ = pmℓ

(m; a, %̌). The basic idea of an MDP is to define an

immediate reward for any state transition, such that the expected value

of the next reward is [32]

ℛa
ss′ = E [R(sℓ, sℓ+1; a) ∣sℓ = s, �(sℓ) = a, sℓ+1 = s′ ] , (4.13)

where in the present case the reward is quantified by

R(sℓ−1, sℓ; a) =

{
bℓ−1 + a −mℓ−1 if mℓ = 0

0 if mℓ > 0
(4.14)

and reflects the number of signal layers (in the LIFO) that can be decoded

after the reception of the ℓth frame. If the current frame necessitates a

backup, the reward is zero. Bellman’s principle of optimality [76] provides

a method for computing strategies with maximal expected long term

reward denoted as a value function for each possible state. We define the

expected reward V �(s) of state s for the strategy �, such that

V (s) = E

[
∞∑

i=0

�iR(sℓ+i, sℓ+1+i; a)

∣∣∣∣∣ sℓ = s

]
, (4.15)

where � is the discount rate, with 0 ≤ � ≤ 1, which determines the

present value of future rewards. If � = 0 the controller tries to maximize

the immediate reward R(s, s′, aℓ) only. The closer � to one, the more

farsighted the controller becomes and takes future rewards into account

more intensely [32]. Finding an optimal strategy is equivalent to search-

ing for a strategy that maximizes the long term reward in (4.15). The
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corresponding strategy can be easily obtained as shown below. Since

(4.15) is a recursive function, an iterative procedure helps solving it. The

field of dynamic programming [76] provides standard iterative procedures

for these problems. Here, the value iteration algorithm is applied by suc-

cessively solving

Vi+1(s) = max
a

∑

s′

Pa
ss′

(
ℛa

ss′ + �Vi(s
′)
)

(4.16)

for all s in the set defined by (4.9) and (4.10). It can be shown that

the sequence V0, V1, . . . converges to an optimal value function for an

arbitrary starting value V0. Applied to the present RSM problem, for a

required SNR 
inp/%̌ at the decoder input and a given memory size F , the

resulting optimal strategy �
(%̌,F )
opt maximizes the signal rate at the decoder

input. Choosing � close to 1, the expected long term reward achieved by

�
(%̌,F )
opt corresponds to the multiplexing gain of the RSM system, which is

therefore denoted as g(�
(%̌,F )
opt ).

According to the incidences of backup dimensions displayed in Tab. 4.1,

a subsequence of actions aℓ = �
(%̌,F )
opt (sℓ−1) along with the correspond-

ing states and rewards resulting from an optimal strategy is provided in

Tab. 4.2.

ℓ : 1 2 3 4 5 6 7 8 9 10

aℓ = �
(2,4)
opt (sℓ−1) : 8 8 8 5 8 8 8 5 4 8

sℓ =

⎧
⎨
⎩

mℓ :
bℓ :
fℓ :

2
8
1

2
14
2

1
20
3

0
0
0

2
8
1

2
14
2

1
20
3

1
24
4

0
0
0

2
8
1

R(sℓ−1, sℓ; aℓ) : 0 0 0 24 0 0 0 0 27 0

Table 4.2. Actions aℓ, states (mℓ, bℓ, fℓ), and immediate rewards
R(sℓ−1, sℓ; aℓ) observed in a configuration with an incidence
of mℓ as displayed in Tab. 4.1 and F = 4.

It can be seen that all transmit antennas are in use at the beginning

of a group of frames. However, the chosen number of active transmit

antennas decreases as the frame index ℓ approaches the memory limit F ,



82 Chapter 4. Non-Ergodic RSM Performance

0 2 4 6 8 10 12
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

 

 
m
u
lt
ip
le
x
in
g
ga
in

g
( �

(%̌
,F

)
o
p
t

)

F

%̌ = 1
%̌ = 2
%̌ = 4

Figure 4.8 Achievable multiplexing gain over a Gaussian 8×8 MIMO chan-
nel versus the number F of frames that can be accommodated
in the memory, for different noise amplifications %̌.

in order to reduce the probability of losing information.

The performance of RSM when applying �
(%̌,F )
opt is investigated by nu-

merical simulations. The present RSM architecture is compared to a

similar spatial multiplexing system relying on a conventional ARQ pro-

tocol, where the latter may be regarded as a special case of RSM with

F = 0. In this case, the incidence of the noise power amplification

1

aℓ

aℓ∑

i=1

(
�i

(
H

†
ℓHℓ

))−1

> %̌, (4.17)

yields an outage, i.e., the information of the frame is completely lost

if the SNR after the ZF is below 
inp/%̌, due to the lack of a backup.

As a consequence, the receiver requests a retransmission of the entire

frame. Obviously, the probability of an outage in an ARQ-based MIMO

architecture is determined by the first row of Tab. 4.1, considering a

Gaussian MIMO channel as previously described. Hence, the optimal



4.3. Antenna Selection Strategies 83

0 5 10 15 20 25 30
0

5

10

15

20

25

30

 

 
C̄MIMO : ergodic MIMO capacity
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Figure 4.9 Achievable capacities with RSM, under optimal choice of noise
amplification %̌, over a Gaussian 4 × 4 MIMO channel as
compared to conventional spatial multiplexing schemes with
ZF/MMSE and ARQ, and theoretical unconstrained ergodic
MIMO channel capacity.

number of transmit antennas for F = 0 leads to a multiplexing gain of

g
(
�
(%̌,0)
opt

)
= max

a∈{1,...,M}
apmℓ

(0; a, %̌). (4.18)

The multiplexing gain by the optimal policies versus F Gaussian 8 × 8

MIMO channel and various %̌ considered above is depicted in Fig. 4.8.

The results have been obtained by applying the optimal strategies in

Monte-Carlo simulations. As easily seen, RSM increases the performance

substantially even at a limited maximal number of recursions.

As shown for the ergodic performance examination in Sect. 3.2, the

RSM constrained capacity depends on the choice of %̌. Increasing %̌ re-

sults in an increasing multiplexing gain, but reduces the SNR 
dec at the

SISO decoder input. Again using appropriate numerical methods, the



84 Chapter 4. Non-Ergodic RSM Performance

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

55

 

 
C̄MIMO : ergodic MIMO capacity
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Figure 4.10 Achievable capacities with RSM, under optimal choice of
noise amplification %̌, over a Gaussian 8×8 MIMO channel as
compared to conventional spatial multiplexing schemes with
ZF/MMSE and ARQ, and theoretical unconstrained ergodic
MIMO channel capacity.

achievable capacity per MIMO channel use for the proposed architecture

can be calculated by

CRSM (
inp) = max
%̌>0

g
(
�
(%̌,F )
opt

)
log2

(
1 +


inp
%̌

)
. (4.19)

Considering the Gaussian 4 × 4 and 8 × 8 MIMO channel, Fig. 4.9 and

Fig. 4.10 show the achievable capacities for different values F . Addition-

ally, the constrained capacity of the aforementioned ARQ protocol for a

ZF (F = 0) and an LMMSE (CMMSE(
inp)) based linear signal recon-

struction are plotted. Further, the corresponding ergodic MIMO channel

capacity CMIMO(
inp) as derived in [11] and the RSM constrained ergodic

capacity for unlimited memory (F → ∞, ref. Sect. 3.2) are shown in the

figures.
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4.4. Strategy Adaptation

Finding an optimal strategy by means of the previously described dy-

namic programming method necessitates the accurate knowledge of the

distribution of mℓ for all possible values aℓ. Usually, this assump-

tion is unrealistic, in particular, in mobile transmitter/receiver sce-

narios, where the channel statistics are time-variant. Thus, the en-

vironment of the reinforcement learning problem, i.e., the distribution

of mℓ, has to be modeled by suitable means. In the following, an

adaptive RSM procedure building on a simple unsupervised learning of

{pmℓ
(m; a, %̌) : m = 0, . . . ,M ; a = 1, . . . ,M} is introduced.

We assume that each frame contains a preamble which enables the

receiver to estimate the N × M MIMO channel matrix. Further, this

preamble (of the ℓth frame) facilitates the computation ofmℓ,1, . . . ,mℓ,M ,

where mℓ,a denotes the necessary backup size for the case a active an-

tennas are used for signal transmission. We point out that the preamble

always uses all available transmit antennas regardless of the choice of aℓ.

Let p̂
(ℓ)
mℓ(m; a, %̌) represent an estimate of pmℓ

(m; a, %̌) computed by the

receiver while processing the ℓth frame. Using a simple exponential mov-

ing average algorithm, the receiver updates the estimated probabilities

according to

⎡
⎢⎢⎣

p̂
(ℓ)
mℓ(0; a, %̌)

...

p̂
(ℓ)
mℓ(M ; a, %̌)

⎤
⎥⎥⎦=(1− �)

⎡
⎢⎢⎣

p̂
(ℓ−1)
mℓ (0; a, %̌)

...

p̂
(ℓ−1)
mℓ (M ; a, %̌)

⎤
⎥⎥⎦+ �

⎡
⎢⎣
1{mℓ,a=0}

...

1{mℓ,a=M}

⎤
⎥⎦ (4.20)

for a = 1, . . . ,M , where the parameter � ∈ (0, 1) denotes the learning

rate. The indicator function 1{⋅} equals 1 if the boolean expression in

the subscript is true, and otherwise 0. For ℓ = 1, the learning process

starts from some properly chosen initial estimates {p̂(0)mℓ(m; a, %̌) : m =

0, . . . ,M ; a = 1, . . . ,m}. The result of (4.20) is then used by the receiver

to attempt computing an optimal policy, for instance by means of dy-

namic programming. Since the underlying distribution is only estimated,

this may, of course, lead to suboptimal strategies.

The adaptability of this approach is tested in a scenario with time-

variant MIMO channel statistics. We simulate the proposed adaptive

RSM architecture, while we alternately change the transmission channel
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Figure 4.11 Multiplexing gain by suboptimal strategies obtained from the
learning method proposed in (4.20), for a Gaussian 8× 8
MIMO channel alternating between independent and max-
imally correlated fading at the receiver side, compared to the
multiplexing gain by the respective optimal strategies.

model from the above considered Gaussian MIMO channel with indepen-

dent fading to a second channel exhibiting fully correlated gain values

at the receiver end. The latter MIMO channel is described by a ran-

dom channel matrix Hℓ = 1Mh
†
ℓ, where 1M denotes the M×1 vector

composed of 1’s and h
†
ℓ a random 1×aℓ vector containing independent

zero-mean complex Gaussian distributed random variables with variance

1/aℓ. The channel statistics change from one model to the other every

200 frame transmissions. Fig. 4.11 shows the multiplexing gain achieved

by the adapted strategies under the actual channel statistics over 800

frames. It can be seen, only about 20 frames after the switch from one to

the other channel model the learning method adapts the system to the

new conditions.



Chapter 5.

Verification

While the previously derived results are based on simulations considering

a Rayleigh fading MIMO channel, this chapter deals with testing RSM in

measured MIMO transmission channels. In the following, a novel flexible

MIMO testbed is introduced, which facilitates a fast channel sounding

while the impact of phase noise, usually experienced in similar systems

[50], is reduced. The measured transmission scenarios are described and

briefly characterized. Finally, several simulation results from the previous

chapters are compared to the results when applying the according RSM

architectures to the measured MIMO transmission channels.

5.1. Radio Channel Sounder

The radio channel sounding system (RaCS) provides a hardware and soft-

ware solution for channel sounding in an indoor or outdoor environment.

The system supports two different configurations: A SISO configuration

with up to 4 transceiver stations, each consisting of a vector signal genera-

tor (VSG) and a vector signal analyzer (VSA), or a MIMO configuration,

with one MIMO transmitter consisting of up to 4 VSGs, and one MIMO

receiver embedding up to 4 VSAs. All stations can be synchronized while

connected via cable and then moved apart before starting a measurement.

The frequency response and time domain impulse response of the chan-

nels are calculated off-line by a software application.

5.1.1. Technical Description

RaCS basically consists of off-the-shelf vector signal generators VSG2920

and vector signal analyzers VSA2820A from Keithley Instruments. The
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VSG2920 contains an Arbitrary Waveform (ARB) generator, i.e., a fast

memory for user-defined discrete baseband signal representations, which

then modulate a radio frequency (RF) carrier. This enables a flexible

generation of signals. The size of the occupied memory at the VSG and

the adjusted sample rate define the cycle period of the signal, since the

stored transmit baseband signal is periodically fed to the modulator and

transmitted in an infinite loop.

The counterpart of this ARB generator is implemented in the

VSA2820A. Having demodulated the received RF signal, a discrete base-

band signal representation is stored in an ARB memory and can be ac-

cessed by the user after having finished the measurement. The size of the

ARB memory in the analyzer and the appropriate sample rate define the

maximum time duration of the captured receive baseband signal.

A special property of the VSG and the VSA is to interconnect these

instruments to create a MIMO set-up. Therefore, the local oscillator (LO)

of a so-called master instrument is shared by all slave instruments, e.g.

the first VSG’s LO is connected to the three remaining VSGs to create

a 4 × 4 MIMO transmitter. Thus, the connected instruments operate

frequency-coherently. Since this synchronization is restricted to the same

type of instrument only, no frequency coherence between generators and

analyzers can be assured. A frequency synchronization among different

types of stations, namely VSGs and VSAs, is attempted by the usage of

Rubidium frequency standards [77] providing a 10 MHz reference clock.

The initial phase of each VSG (or VSA) is arbitrary, but stable for a

certain time period, depending on the stability of the 10 MHz Rubidium

VSG2920 VSA2820A
frequency range 10 MHz - 6 GHz 400 MHz - 6 GHz
output power range −125 . . .+ 13 dBm
measurement range −146 . . .+ 35 dBm
max. sample rate 100 MHz 50 MHz
max. bandwidth 80 MHz 40 MHz
max. ARB memory 100 Msamples 115 Msamples
max. ARB memory 32 ksamples 32 ksamples
per sweep (CS)

Table 5.1. Technical key parameters of VSG2920 and VSA2820A.
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standard. A phase coherence of the four carrier frequencies of the VSGs

or VSAs, respectively, can be provided by a software controlled calibra-

tion routine, which has not been implemented yet. This will extend the

transceiving properties to beamforming protocols.

Table 5.1 summarizes the basic key parameters of the VSG2920 and

the VSA2820A.

5.1.2. MIMO Set-up

As mentioned before, the VSG2920 and VSA2820A instruments can be

easily interconnected to build a MIMO transmission system. For this,

the synchronization unit 2895 (SU) from Keithley Instruments is needed.

The SU is fed by the 10 MHz reference signal of the Rubidium standard

and generates a 100 MHz reference signal for all connected instruments.

The LO signal of the master instrument is split to up to four copies of

this signal and then fed to the LO inputs of each connected instrument.

In a MIMO transmitter, the separate ARB generators have to be well

synchronized. This is done by interconnecting the synchronization inputs

2920
VSG

Slave

VSG
2920

Slave

2895 Sync Unit

Master

Slave
VSG
2920

VSG
2920

Rb freq. ref. 

10 MHz

Master

VSA
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trigger
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LO
out
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ref.
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in

ref.

LO
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ref.

LO
out

LO
in

ref.

Figure 5.1 Hardware set-up for MIMO measurements.
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and outputs EvenSec-In and EvenSec-Out of the instruments. The ab-

breviation of these connectors denotes Even Second Clock, i.e., the period

of this rectangular synchronization signal is equal to two seconds. The

same refers to the VSAs for synchronizing the sampling of the receive

baseband signals.

The hardware set-up is shown in Fig. 5.1. MIMO signal transmissions

can be performed by creating the ARB data files for the appropriate

baseband signals for the signal generators. MATLAB is one possible tool

to create and upload these files to the instruments. Further, MATLAB

can also be used to access the VSAs after the transmission to copy the

captured receive baseband signals to a PC. While the LABView based

software Sounder (described in Sect. 5.1.3) also offers the possibility to

manage these tasks, the MATLAB solution created for this thesis is the

more flexible solution.

5.1.3. Channel Sounder Software Application

The user interface and the instruments’ control for performing channel

sounding campaigns are provided by a software application. This software

is divided into a PC-based part and a firmware part of the connected

instruments. These two parts interact to facilitate a real-time system

control.

A measurement campaign can be summarized as follows. The ARB

generator memory of the VSG contains a user-defined transmit baseband

signal, which is then modulated to RF. Having started the ARB genera-

tor, the transmit baseband signal feeding the RF modulator is repeated

periodically. At the analyzer side, the received RF signal is demodulated

and the resulting receive baseband signal is saved in the VSA’s ARB

memory.

The off-the-shelf VSA features a memory access after each measure-

ment. So, the recorded data has to be transfered to a PC before the next

measurement is started. Otherwise the data is overwritten and lost. The

data transfer from the VSAs to a PC is is performed via Ethernet connec-

tions, which turns out to be too slow for an appropriate real-time channel

sounding. The effective data rate of approx. 10 ksamples/s would yield a

maximum detectable Doppler shift of approx. 6 Hz, which is insufficient

for the examination of fast time-variant channels. Further, testing adap-
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Figure 5.2 Channel sounding timing schedule.

tive transmission systems, which adapt to the present CSI in real-time

for instance, requires a sufficiently fast testbed. However, high speed test

equipment often lacks in flexibility. In order to verify a broad variety of

even highly sophisticated algorithms and complex system architectures,

RaCS follows a different approach.

In most cases the developed transmission schemes will be tested in a

simulation environment (e.g. MATLAB). Therefore, the testbed is uti-

lized as a channel sounder, which measures the channel properties of a

certain environment or situation. The measured and analyzed CSI is then

applied in the simulation tool. The previously applied channel model is

then replaced by the measured CSI. The major advantage of this method

is the irrelevant delay caused by the PC and its connection to the in-

struments. Furthermore, different transmission algorithms can be tested

compared to each other for exactly the same CSI.

The channel sounding software controlled protocol is basically de-

scribed in Fig. 5.2. The time period when all possible SISO transmission

channels1 are measured once is called a sweep. A sweep is divided in as

many time intervals as VSGs exist in the setup, i.e., a time division mul-

tiple access (TDMA) scheme is used for the channel sounding. For each

time interval, one VSG transmits a predefined training sequence while

all VSAs are capturing this very signal. Each broadcast of the different

generators is assigned to a distinct time slot to avoid interference. The

1 The SISO transmission channels from each VSG to each VSA form the MIMO chan-
nel.
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active capture duration of each VSA is printed in different colors. The

sweep is repeated after a specified time called repetition interval to in-

vestigate the time variance of the channel. The choice of the repetition

interval depends on the expected time variations of the examined chan-

nel. Note that the VSGs are also transmitting during the break between

two sweeps, while the VSAs capture the received signal only during a

sweep to save ARB memory space.

The channel sounder software application collects the measured data in

the VSAs’ memory until the measurement campaign is finished, that is,

the considered number of sweeps has been performed. Then, the content

of the memory is transfered to the PC at once. This change in the

VSA’s firmware allows to massively decrease the measurement interval.

Depending on the chosen signal bandwidth and the sweep length, the

measurement interval can be as small as 250 �s, i.e., a Doppler shift up

to 2 kHz (considering the Nyquist theorem) can be detected.

The maximum sweep length is limited to 32 ksamples, but the total

ARB memory size of the VSA is approx. 115 Msamples. For instance,

considering a bandwidth of 40 MHz (this yields a 50 MHz sample rate, due

to the instruments constraints), a sweep length of 15 � s (750 samples)

and a repetition interval of 250 �s leads to a maximum of 155,000 sweeps,

or an equivalent measurement time of approx. 38 s, respectively.

The channel characterization is performed off-line using the transmit

training sequences and the captured data of each VSA, when these have

been downloaded after the measurement campaign.

5.2. Transmission Scenarios

Many different measurements have been taken to evaluate the usability

of RSM in real environments. Although, RaCS can also provide results

for outdoor measurements, we focus on indoor scenarios in this work. In

the following, two examples of these transmission scenarios are introduced

which can be considered typical application environments for e.g. wireless

LAN, Bluetooth or Zigbee wireless transmission systems.
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5.2.1. System Set-up

The measurements in both scenarios have been taken by using the 4× 4

MIMO equipment described above. The center frequency fc = 2.45 GHz

is chosen according to an industrial scientific and medical (ISM) band

used for Wireless LAN, Bluetooth or Zigbee. Transmitter and receiver

front-ends are equipped by standard antennas of the type RD2458-5-SMA

from Laird Technologies. The antenna spacing given by the physical

measurement set-up is about 50 . . . 60 cm. In the case of fc = 2.45 GHz,

this distance corresponds a factor of 4 . . . 4.8 of the wavelength of the

electromagnetic wave in free space.

The output signal power of the VSGs is set to -20 dBm each. Each of

the four VSG outputs is connected to an amplifier of the type ZVE-8G+

amplifying the transmit signal by approx. 30 dB. This set-up shall enable

the transmitter to apply a large signal power not exceeding the allowed

output power for the ISM band while minimizing the non-linear impact of

the external and internal amplifiers2. The remaining set-up parameters

are summarized in Tab. 5.2.

parameter scenario A scenario B

measurement interval 10 ms 10 ms
bandwidth 40 MHz 40 MHz
sample rate 50 MHz 50 MHz
FFT size 128 128
active carriers 102 102
sweep length 15 �s 15 �s
VSA reference level -40 dBm -50 dBm
VSG transmit power -20 dBm -200 dBm
measurement duration 5 min. 5 min.

Table 5.2. RaCS setup parameters for the considered scenarios

2 The directional pattern of the antennas and the cable attenuation is considered here,
too. Thus, the equivalent isotropically radiated power does not exceed +20 dBm.
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5.2.2. Scenario Description

In both considered transmission scenarios, the two parts of RaCS, namely

the transmitter and the receiver, are located in an office environment.

Walls, floor and ceiling consist of reinforced concrete or bricks, respec-

tively. Furniture and office tools, like computers, monitors and printers,

remain in the room. The blinds, made of aluminium, are closed during

a measurement. Fig. 5.3 and Fig. 5.4 show a blue print of the part of

the building where the measurements take place including the contents

of the rooms. The RaCS transmitter and receiver are marked in orange.

Figure 5.3 Floor plan for measurement A. MIMO transmitter and re-
ceiver are marked in orange.
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Figure 5.4 Floor plan for measurement B. MIMO transmitter and re-
ceiver are marked in orange. The transmitter location is fixed
at the lab, while the receiver is permanently moving in the
coffee kitchen and in the corridor, respectively.

Scenario A considers the location of RaCS transmitter and receiver as

shown in Fig. 5.3, while in the same room two persons arbitrarily move

around at usual pedestrian velocity. Note that this scenario represents a

so-called non-line-of-sight transmission.

Scenario B is depicted in Fig. 5.4. As in scenario A, the MIMO trans-

mitter is located at the lab, but at a different exact position. The receiver

is permanently moving from the corridor to the coffee kitchen, as indi-

cated by the arrows in the blueprint. Again two adult persons present in
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the environment of the receiver can be considered as additional arbitrary

moving scatterers. As can be seen from Fig. 5.4, the movement along the

corridor includes both line-of-sight and non-line-of-sight transmissions.

5.2.3. Brief Scenario Characterization

Although the different scenarios have been described in the previous sec-

tion, it remains difficult to compare the results of the measurement cam-

paigns with those of other measurements. Among other reasons, the

main problem is the lack of a quantifying characterization of the mea-

surement results. Following the theory of Wide-Sense Stationary Uncor-

related Scattering (WSSUS) channels [78], this section tries to provide

nominal parameters of the captured data for each considered scenario.

RaCS periodically captures snapshots of the channel transfer function

at equidistant time intervals. This can be interpreted as the time-variant

transfer function, one of four system functions described in [79]. Due

to the high complexity of real environments, the system functions of

practical channels are commonly considered as random processes. An

exact statistical characterization of the channel requires the knowledge

of the multidimensional joint probability density functions of all the sys-

tem functions [80]. Since this knowledge is not available in a practical

system, a statistical description based on the correlation functions of the

various system functions is suggested in [78]. In many cases, a jointly

Gaussian distribution is a sufficiently accurate model for the considered

stochastic baseband processes including, for instance, the aforementioned

time-variant transfer function T (f, t). Furthermore, normally distributed

stochastic processes are fully characterized by their first and second order

moments.

The autocorrelation function of T (f, t) is defined by

ΨT (f, f ′; t, t′) = E [T ∗ (f, t)T (f ′, t′)] , (5.1)

where f, f ′ denote two different frequencies and t, t′ are two time in-

stances. Supposing a WSSUS property of the channel, the correlation

function of the time-variant transfer function changes in the follow-

ing way. Considering the channel as a weak (or wide-sense) stationary

stochastic process, the system correlation functions are invariant under a

translation in time [78]. That is, it depends only on the time difference
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Δt = t′ − t for all t, t′. The US property of the channel is defined by

the assumption that the gain coefficients at different delays are uncorre-

lated. Referring to the duality of WSS and US system functions [81] and

their relations by Fourier transforms, as shown in [78], [79], [82], the US

property (in delay domain) corresponds to a WSS stochastic process in

frequency domain, i.e., the system correlation function depends on the

frequency difference Δf = f ′ − f and, thus, the autocorrelation function

in (5.1) results to

ΨT (f, f ′; t, t′) = ΨT (f, f +Δf ; t, t+Δt) = Ψ (Δf,Δt) (5.2)

when modeling the channel as a WSSUS system. From the simplified

time-frequency correlation function Ψ (Δf,Δt), the frequency correlation

function Ψ (Δf) and the time correlation function Ψ (Δt) can be easily

derived by setting Δt = 0 or Δf = 0, respectively.

For the estimation of the RMS delay spread �� , the delay power spec-

tral density has to be generated first by performing the inverse Fourier

transform of Ψ (Δf) with respect to Δf according to

Pℎ (�) =

∞∫

−∞

Ψ(Δf) e|2�Δf� dΔf, (5.3)

where � denotes the delay. Similarly, the definition of the Doppler spread

�� requires the Doppler power spectral density to be evaluated by the

Fourier transform of Ψ (Δt) with respect to Δt according to

PH (�) =

∞∫

−∞

Ψ(Δt) e−|2�Δt� dΔt, (5.4)

with � denoting the Doppler frequency. When normalizing (5.3) and

(5.4) by the average power of the process, the result can be interpreted

as a probability density function3 for � and �. The nominal characteriza-

tion of the taken measurements shall be expressed by the ”width” of the

normalized power spectral densities defined in (5.3) and (5.4), which can

3 In the case of discrete values for � and �, normalizing (5.3) and (5.4) represent
probability mass functions.
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be determined by the square root of the central second order moment.

Hence, the delay spread is defined as [79]

�� =

⎛
⎜⎜⎝

∞∫
−∞

(� − �� )
2
Pℎ (�) d�

∞∫
−∞

Pℎ (�) d�

⎞
⎟⎟⎠

1
2

, (5.5)

where

�� =

∞∫
−∞

�Pℎ (�) d�

∞∫
−∞

Pℎ (�) d�

(5.6)

denotes the first order moment of the normalized delay power spectral

density, the so-called mean delay. Accordingly, the Doppler spread is

given by [79]

�� =

⎛
⎜⎜⎝

∞∫
−∞

(� − ��)
2
PH (�) d�

∞∫
−∞

PH (�) d�

⎞
⎟⎟⎠

1
2

(5.7)

with

�� =

∞∫
−∞

�PH (�) d�

∞∫
−∞

PH (�) d�

, (5.8)

which is the first order moment of the normalized Doppler power spectral

density, the so-called mean Doppler frequency. The measurement cam-

paign for scenarios A and B are divided into appropriate groups of small

time intervals to improve the estimate of the power density functions

given in (5.3) and (5.4). We assume that the channel is WSS for the du-

ration of the appropriate measurement campaign. For each of the afore-

mentioned intervals the delay power spectral density and the Doppler

power spectral density are estimated. Averaging these density functions

for different groups is done using the Bartlett method [83], which helps

to lower the variance of the resulting estimate.

The Doppler spread and the RMS delay spread estimates for the two
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considered scenarios are given in Tab. 5.3, while the mean delay and the

mean Doppler frequency are not considered below. We emphasize that

the results in Tab. 5.3 shall be considered as a very rough estimate, which

is due to the resolution of captured data. Especially the limited band-

width of approximately 40 MHz is too small for an accurately resolved

delay power density function in indoor environments. The biased estima-

tion of the Doppler power density function helps reducing the variance,

but leads to inaccurate results for slowly time-varying channels, due to

the remaining bias.

parameter scenario A scenario B

Doppler spread 2.1 Hz 3.3 Hz
delay spread 28 ns 25 ns

Table 5.3. Estimated channel parameters for the considered scenarios.

5.3. Results and Comparison

Several ways exist to use the captured data of the channel sounding

measurements described above. As an intuitive approach, we simulate

an RSM MIMO system based on the recorded and calculated MIMO

channels. That is, the measured channel attenuations are considered

unchanged. The major challenge of this approach is to estimate the

present SNR.

In order to enable a full comparison of the numerical performance

results with the performance achievable in the measured scenarios, a

method is used focusing on the time-variance of each channel and the

spatial correlation of the MIMO channel. Here, the measured MIMO

channel data is normalized to a fixed total average transmit power of one,

i.e., the average attenuation experienced for each single channel (of the

MN channels) equals 1/
√
M . Furthermore, in view of the strong receive

signals and the absence of an automatic gain control at the receiver which

could increase the receiver front-end noise level in cases of a weak receive

signal, thermal noise is disregarded in the estimation.

Thus, the results of the RSM constrained capacity simulations shown

in previous chapters can be compared by the achievable capacity for a
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given (measured) scenario. In the following, the measured channel data

are used to investigate the performance of RSM in comparison to other

closed-loop MIMO systems. Since RSM is considered as a narrowband

transmission architecture, the wide band channel measures are trans-

formed to narrowband channel representations.

5.3.1. RSM vs. ARQ

First, we estimate the average capacity per MIMO channel use by ap-

plying RSM to the measured channel data. Further, the unconstrained

ergodic MIMO capacity is estimated based on the measured MIMO chan-

nel realizations. The capacity using a conventional ARQ mechanism is

examined for an optimal MIMO coding system, an LMMSE and a ZF re-

ceiver, as explained in Sect. 3.2.1. Fig. 5.5 shows the results for scenario

A.

Obviously, the large number of performed sweeps and the variety of

different transmission conditions facilitate an average capacity per chan-
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Figure 5.5 Capacity by the RSM-enhanced and standard ARQ-based
scheme over a 4 × 4 MIMO channel measured in scenario A
described in Sect. 5.2.2.
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Figure 5.6 Capacity by the RSM-enhanced and standard ARQ-based
scheme over a 4 × 4 MIMO channel measured in scenario B
described in Sect. 5.2.2.

nel use similar to the simulation results denoted in Fig. 3.7. Applying

the measured channel data of scenario B leads to the results depicted in

Fig. 5.6. Due to the large variance of the experienced SNR in scenario B

the average capacity decreases, according to Jensen’s law [69].

5.3.2. RSM vs. PC

Since we investigated time-variant environments, the comparison of RSM

with precoding closed-loop MIMO architectures is of great interest.

Therefore, the performance of the three MIMO transmission systems

RSM, UP (cf. Sect. 2.4.1) and UPRSM (cf. Sect. 3.5) are examined for

the two scenarios. The transmission interval, i.e., the time between two

consecutive frames, is varied by considering the measured CSI at appro-

priate time instances. Fig. 5.7 shows the comparison for a transmission

interval of 10 ms. It can be seen that UP outperforms RSM, which is due

to the accurate knowledge of CSI at the transmitter, i.e., the time-variant

channel changes only slightly within 10 ms.
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Figure 5.7 Constrained ergodic capacities with RSM, UPRSM and UP
transmission schemes for the measured scenario A and a trans-
mission interval of 10 ms.

When the transmission interval increases, e.g. due to a given TDMA

schedule that does not allow shorter intervals, it is expected that the

performance of UP decreases. Therefore, we consider the same measured

data of scenario A, but for a transmission interval of 50 ms, i.e., only

the CSI of every fifth captured MIMO channel is taken into account for

the performance simulation. The result is printed in Fig. 5.8. In this

case, RSM and UPRSM offer a higher capacity than UP, since UP uses

outdated CSI.

Scenario B provides similar results, in particular the instantaneous

capacity improvement of UPRSM versus UP. This is shown in Fig. 5.9,

where the measurements of scenario B are subdivided into groups of 3 sec.

time length each, i.e., a group comprises 60 transmitted frames.

Fig. 5.9 depicts the capacity in bits per channel use of each group

versus the total measurement duration. It can be seen that the moving

MIMO receiver results in large variations of the instantaneous capacity,

as already mentioned in Sect. 5.3.1. Further, the permanent improvement

facilitated by UPRSM is apparent.
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Figure 5.8 Constrained ergodic capacities with RSM, UPRSM and UP
transmission schemes for the measured scenario A and a trans-
mission interval of 50 ms.
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Figure 5.9 Instantaneous capacity of a UP and a UPRSM MIMO ar-
chitecture in scenario B with a fixed transmitter, while the
receiver is moving occasionally.
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5.3.3. Limited Delay

The two measured scenarios are considered with respect to a limited

number of possible retransmissions and, thus, providing an upper bound

for the transmission delay or the receiver memory space, respectively.

Therefore, we apply antenna selection strategies, as derived in Sect. 4.3.

Fig. 5.10 shows the results for scenario A. Similarly to the results in

Sect. 4.3, even a considerably small number of frames F that can be stored

in the memory enables a good performance for RSM. Fig. 5.11 depicts

the performance of RSM in scenario B for a limited memory space of

the receiver. It is apparent that larger values of F are required for the

capacities to approach the performance of RSM with unlimited memory.

As shown in Fig. 5.9, the short-term average SNR of the received signal

in scenario B is substantially time-variant. For that reason, larger values

of F are assumed to offer a possible averaging of CSI in good and bad

conditions, which facilitates a performance improvement.
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Figure 5.10 Assessed capacities in scenario A with antenna selection
strategies derived from Gaussian channel model compared
to the ergodic MIMO capacity.



5.3. Results and Comparison 105

0 5 10 15 20 25 30
0

5

10

15

20

25

 

 
C̄MIMO
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Figure 5.11 Assessed capacities in scenario B with antenna selection
strategies derived from Gaussian channel model compared
to the ergodic MIMO capacity.

The antenna selection strategies used in scenario A and B have been

derived on the basis of transition probabilities of a random Gaussian 4×aℓ
MIMO channel (ref. Sect. 4.3). Interestingly, the performance difference

is only marginal, if the antenna selection strategies are derived from the

measured channel data.





Chapter 6.

Conclusions and Outlook

This chapter concludes the thesis and summarizes tasks left open for

future investigation.

6.1. Conclusions

Motivated by the need for simple but efficient MIMO transmission ar-

chitectures RSM has been suggested as a new approach. RSM is based

on linear signal processing techniques, such as LMMSE or ZF receivers.

The usage of SISO encoders and decoders at the transmitter and receiver,

respectively, punctuate the simplicity of this new approach. Like other

closed-loop MIMO systems an RSM receiver returns information to the

transmitter. In contrast, though, to commonly used precoding MIMO ar-

chitectures, the returned information focuses on the last received signal

frame and not on the CSI anticipated for the coming frame. The RSM

receiver requests a retransmission of signal layers that are in bad channel

conditions. The RSM transmitter addresses these requested signal layers

from the last transmitted frame and embeds this backup signal in the

present frame waiting to be sent. Due to the combination of new data

and backup signal in one frame, an economic exploitation of the MIMO

resources can be considered.

Several retransmission policies have been studied in this thesis. It has

turned out that a simple retransmission of the signal layer according to

the weakest eigenvalue (policy '1) is an efficient scheme for MIMO sys-

tems with few transmit/receive antennas. However, aiming at a certain

target SNR as pursued by policy '3 with a flexible number of retrans-

mitted layers is convenient for MIMO architectures of greater dimension

and outperforms policy '1. In contrast to policy '3, the threshold-based
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policy '2 has low applicability in a practical scenario, but offers the same

RSM constrained ergodic capacity as policy '3.

RSM has been compared to convenient MIMO ARQ and precoding sys-

tems in terms of the constrained throughput in Rayleigh fading MIMO

channels. Optimal MIMO precoding outperforms RSM, but it necessi-

tates accurate knowledge of CSI, while the capacity of RSM is indepen-

dent of this information. It has been shown that precoding, as for instance

a UP MIMO architecture, can be easily extended by RSM features with

a minimal effort. Both systems take advantage of this symbiosis, since

RSM only changes the transmitted signal if a signal layer is in bad con-

dition. For practical considerations, the performance degradation caused

by a limited feedback channel has been studied in this thesis. It could

be shown that even feedback channels with low capacity decrease the

performance of RSM only slightly.

Although the aforementioned advantages indicate the potential of

RSM, still some drawbacks of the system approach remain. The trade-off

of lowering the multiplexing gain for limiting the noise amplification usu-

ally caused by linear signal reconstruction is not easy to find. Optimal

policy thresholds or target SNR, depending on the MIMO dimension and

the SNR at the receiver input, were derived numerically.

A significant penalty of RSM is its potentially unlimited recursion

depth. Since the decoding of a frame, which is in need for a retrans-

mission, is postponed to the arrival of the backup signal (which in turn

can be embedded in a frame that again requires a backup), the delay

of the transmitted information data can increase extensively. Further,

memory restrictions at the receiver prohibit the storage of many frames

for a later decoding. A simple limitation of the maximum number of

retransmitted backup signals has turned out to significantly decrease the

performance of RSM.

Since the probability for the need of a retransmission can be consid-

erably lowered by reducing the number of transmit antennas, while the

quantity of receive antennas stays constant, an antenna selection strategy

has proposed in this thesis. By means of machine learning optimal strate-

gies for slowly time-variant MIMO channels have been derived. These

strategies facilitate to decrease the transmission delay substantially, while

the performance degradation is limited only slightly.

Different aspects of RSM have been verified in practical transmission
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scenarios. Therefore, a new MIMO testbed has been introduced in this

thesis. The flexible test equipment offers MIMO and wireless network

channel sounding, but does not allow for real-time signal processing in

highly sophisticated transmission protocols. Thus, the testbed capabili-

ties focus on an accurate channel sounding, with limited influence of phase

noise compared to switching-antenna solutions in this field. Complex

system architectures are then applied by means of simulations performed

off-line and the usage of the captured CSI. Several properties of RSM

schemes expected from qualitative considerations of considered scenarios

could be quantified for two scenarios of indoor wireless communication

systems.

6.2. Outlook

Due to the property that the performance of RSM does not depend

on accurate CSI, RSM is a candidate for MIMO systems operating in

ISM bands and, thus, experiencing unpredictable interference from other

users. An extensive consideration of applying RSM as an interference

mitigating technique is necessary, even though a first examination has

been introduced in [84]. Especially the verification by means of the ex-

isting testbed is a challenge, since interference has to be identified in the

measurement results.

The existing transmission policies shall be investigated for their perfor-

mance sensitivity when applying non-optimal thresholds or target SNRs,

respectively. The search for additional retransmission policies seems to

be a promising task. Different approaches from wideband signaling, like

the famous water pouring, can be applied to the backup signal to even

increase the efficiency of the backup. The same holds for strategies for

limiting the transmission delay. For instance, lowering the target SNR

and in turn the throughput after a maximum number of retransmissions

can also decrease the need for a backup signal.

In the field of MDPs, an open task is how to deal with fast fading

MIMO channels, since the suggested learning method for adapting the

antenna selection strategy requires a sufficiently slow channel variation.

Reinforcement learning offers several solution methods, which have to

be analyzed and verified for their practicability in RSM systems. Com-

pared to the introduced dynamic programming approach, reinforcement
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learning methods can provide solutions with a substantial decrease of the

computational effort.

RSM has been introduced as a narrowband system in this thesis. Con-

sidering each subcarrier of an OFDM system with appropriate coding

as an (independent) narrowband system, RSM is also applicable in the

wideband regime. A subcarrier interleaving over different frames could

induce an artificial time-variance. However, practical implementations of

such an approach are not available, in particular an efficient exploitation

of the feedback channel in this case.

Clearly, regarding the verification of RSM and related approaches, a

real-time testing of the protocol shall be considered and the simulation

results for larger MIMO dimensions shall be investigated by extending

the existing testbed to a MIMO system larger than 4× 4.



Nomenclature

Operators

Π . . . . . . . . . . . . interleaving, p. 22

Symbols

a . . . . . . . . . . . . MDP action, p. 80

aℓ . . . . . . . . . . . . number of used transmit antennas for antenna selection

in frame ℓ, p. 76

bℓ . . . . . . . . . . . . accumulated amount of transmitted signals waiting to be

decoded, p. 78

b̂ℓ,k . . . . . . . . . . kth reconstructed signal vector of the ℓth received frame

fed to SISO decoder, p. 24

bℓ,k . . . . . . . . . . kth signal vector of the ℓth frame generated by SISO

encoder, p. 21

Cm . . . . . . . . . . . codebook of m-dimensional subspaces of ℂM , p. 47

C̄ARQ . . . . . . . . ARQ constrained ergodic MIMO channel capacity, p. 37

CLMMSE . . . . . LMMSE constrained capacity, p. 38

C̄LMMSE . . . . . LMMSE constrained ergodic capacity, p. 38

CMIMO . . . . . . . MIMO channel capacity, p. 36

C̄MIMO . . . . . . . ergodic MIMO channel capacity, p. 37

C̄RSM . . . . . . . . RSM constrained ergodic capacity, p. 40

C̄UP . . . . . . . . . UP constrained ergodic capacity, p. 58

C̄UPRSM . . . . . UPRSM constrained ergodic capacity, p. 58

CZF . . . . . . . . . . ZF constrained capacity, p. 37

C̄ZF . . . . . . . . . . ZF constrained ergodic capacity, p. 37

dchord . . . . . . . . chordal distance, p. 47

dmax,ℓ . . . . . . . . maximal distance between Q̄ℓ and its nearest neighbor

Q̂ℓ ∈ Cm , p. 48

Dℓ . . . . . . . . . . . eigenvalue deviation vector of the (L−ℓ)th frame caused

by Q̂L−ℓ in Markov chain, p. 48
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Dℓ,m . . . . . . . . . mth eigenvalue deviation of the (L − ℓ)th frame caused

by Q̂L−ℓ in Markov chain, p. 48

Eℓ . . . . . . . . . . . error introduced by chosing Q̂ℓ, p. 47

f . . . . . . . . . . . . frequency, p. 96

fc . . . . . . . . . . . . center frequency, p. 93

fℓ . . . . . . . . . . . . frame signal observations in memory, p. 78

F . . . . . . . . . . . . number of frames that can be stored in memory, p. 71

gℓ . . . . . . . . . . . . multiplexing gain at the ℓth frame, p. 32

Gℓ . . . . . . . . . . . linear signal estimator matrix of the ℓth frame, p. 14

G
(LMMSE)
ℓ . . . LMMSE based signal estimator matrix of the ℓth frame,

p. 16

Hℓ . . . . . . . . . . . N×M MIMO channel matrix of the ℓth frame transmis-

sion, p. 11

Hℓ . . . . . . . . . . . composite MIMO channel matrix including precoding,

p. 18

H̃ℓ . . . . . . . . . . . (N + mℓ) × M MIMO channel matrix of the ℓth frame

transmission extended by backup signal dimensions, p. 23

H̄ℓ . . . . . . . . . . . time-correlated MIMO channel matrix of the ℓth frame

transmission, p. 56

K . . . . . . . . . . . . number of signal vectors per frame, p. 10

ℓ . . . . . . . . . . . . . frame index, p. 10

L . . . . . . . . . . . . number of transmitted frames, p. 10

ℳ . . . . . . . . . . . family of retransmission policies, p. 40

mℓ . . . . . . . . . . . number of layers requested for retransmission in frame ℓ,

p. 21

m̄ . . . . . . . . . . . . average number of layers requested for retransmission,

p. 62

M . . . . . . . . . . . number of transmit antennas, p. 10

nℓ,k . . . . . . . . . . kth noise vector of the ℓth received frame, p. 11

n′
ℓ,k . . . . . . . . . kth noise vector of the ℓth backup signal, p. 23

ñℓ,k . . . . . . . . . . kth noise vector of the ℓth frame at the input of the linear

estimator, p. 23

N . . . . . . . . . . . . number of receive antennas, p. 10

Pa
ss′ . . . . . . . . . . MDP transition probability, p. 80

pmℓ
(m; a, �) . probability of (mℓ = m) given that (aℓ = a), p. 77

p̂
(ℓ)
mℓ(m; a, �) . estimate of pmℓ

(m; a, �), p. 85

Pℓ . . . . . . . . . . . unitary precoding matrix of the ℓth frame, p. 17
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Pℎ . . . . . . . . . . . delay power spectral density, p. 97

PH . . . . . . . . . . . Doppler power spectral density, p. 97

qℓ . . . . . . . . . . . any column vector of Qℓ, p. 27

Qℓ . . . . . . . . . . . retransmission subspace selector of the ℓth frame, p. 22

Q̄ℓ . . . . . . . . . . . optimal retransmission subspace selector of the ℓth

frame, p. 27

Q̂ℓ . . . . . . . . . . . retransmission subspace selector from finite codebook,

p. 47

rℓ,k . . . . . . . . . . kth backup signal vector of the ℓth frame, p. 23

R . . . . . . . . . . . . MDP reward, p. 80

ℛa
ss′ . . . . . . . . . MDP next expected reward, p. 80

s . . . . . . . . . . . . . MDP current state, p. 79

s′ . . . . . . . . . . . . MDP next state, p. 79

sℓ . . . . . . . . . . . . MDP state of multiplexer after reception of ℓth frame,

p. 78

S (M,m) . . . . . Stiefel manifold of all (M×m) matrices with orthonormal

columns, p. 47

S(') . . . . . . . . . average noise amplification in Markov chain, p. 39

Sℓ . . . . . . . . . . . diagonal singular value matrix of Hℓ, p. 11

S̃ℓ . . . . . . . . . . . diagonal singular value matrix of H̃ℓ, p. 58

Sℓ . . . . . . . . . . . diagonal singular value matrix of Hℓ, p. 19

t . . . . . . . . . . . . . time, p. 96

T . . . . . . . . . . . . transfer function, p. 96

Uℓ . . . . . . . . . . . orthonormal output basis of Hℓ, p. 12

Uℓ . . . . . . . . . . . orthonormal output basis of Hℓ, p. 19

V . . . . . . . . . . . . MDP state constrained expected reward, p. 80

Vi . . . . . . . . . . . . MDP iterative state constrained expected reward, p. 81

Vℓ . . . . . . . . . . . orthonormal input basis of Hℓ, p. 12

Vℓ . . . . . . . . . . . orthonormal input basis of Hℓ, p. 19

wℓ,k . . . . . . . . . kth noise vector of the ℓth frame at the output of the

linear estimator, p. 24

Wℓ . . . . . . . . . . . noise amplification of the (L − ℓ)th frame in Markov

chain, p. 39

W̃ℓ . . . . . . . . . . . noise power propagation of the (L − ℓ)th frame caused

by Q̂L−ℓ in Markov chain, p. 48

xℓ,k . . . . . . . . . . kth transmitted signal vector of the ℓth frame, p. 10

x̂ℓ,k . . . . . . . . . . kth signal vector of the ℓth frame at the output of the
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linear estimator, p. 14

x̂
(ZF)
ℓ,k . . . . . . . . . kth signal vector of the ℓth frame at the output of the

linear zero forcing estimator, p. 14

yℓ,k . . . . . . . . . . kth signal vector of the ℓth frame at the receiver input,

p. 10

ỹℓ,k . . . . . . . . . . kth signal vector of the ℓth frame at the input of the

linear estimator, p. 23

zℓ . . . . . . . . . . . . vector of eigenvalues of HL−ℓ in Markov chain, p. 39

zℓ,i . . . . . . . . . . . ith eigenvalue of HL−ℓ in Markov chain, p. 39

�ℓ . . . . . . . . . . . backup scaling factor for the ℓth frame, p. 23

� . . . . . . . . . . . . . lag of two frames, p. 57

Δf . . . . . . . . . . frequency lag, p. 97

Δt . . . . . . . . . . . time lag, p. 97

� . . . . . . . . . . . . . outage probability, p. 37

"sig . . . . . . . . . . variance of the transmit signal xℓ,k, p. 11

�
(�,F )
opt . . . . . . . . optimal antenna selection strategy, p. 81

� . . . . . . . . . . . . antenna selection strategy, p. 78

' . . . . . . . . . . . . retransmission policy, p. 32


dec . . . . . . . . . . RSM constrained postprocessing SNR at the SISO de-

coder input, p. 33


inp . . . . . . . . . . SNR at receiver input, p. 11


target . . . . . . . . target postprocessing SNR at the SISO decoder input for

RSM policies '2 or '3, p. 44


ℓ,m . . . . . . . . . UPRSM constrained postprocessing SNR of the mth

layer in the ℓth frame, p. 57



(UP)
ℓ,m . . . . . . . . UP constrained postprocessing SNR of the mth layer in

the ℓth frame, p. 57



(ZF)
ℓ,m . . . . . . . . . ZF constrained postprocessing SNR of the mth layer in

the ℓth frame, p. 15

� . . . . . . . . . . . . MDP discount rate, p. 80

� . . . . . . . . . . . . . learning rate, p. 85

�ℓ,m . . . . . . . . . LMMSE constrained postprocessing SINR of the mth

layer in the ℓth frame, p. 16

�2
m . . . . . . . . . . . eigenvalue of the mth layer, p. 12

Λℓ . . . . . . . . . . . column vector constituted by the eigenvalues of H†
ℓHℓ,

p. 32

� . . . . . . . . . . . . MSE of wℓ,k, p. 27
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� . . . . . . . . . . . . Doppler frequency, p. 97

�� . . . . . . . . . . . mean Doppler frequency, p. 98

�� . . . . . . . . . . . mean delay, p. 98

#noise . . . . . . . . variance of the received noise vector nℓ,k, p. 11

#
(ℓ)
backup . . . . . . . variance of the backup noise vector nℓ,k, p. 23

Θ
(ZF)
noise . . . . . . . . variance of the noise vector wℓ,k when using ZF, p. 15

%ℓ . . . . . . . . . . . . noise amplification caused by linear estimation in the ℓth

frame, p. 32

%̌ . . . . . . . . . . . . . noise amplification limit as applied for policy '3, p. 32

� . . . . . . . . . . . . . correlation coefficient of the elements of adjacent frames,

p. 57

�� . . . . . . . . . . . RMS Doppler spread, p. 97

�� . . . . . . . . . . . RMS delay spread, p. 97

� . . . . . . . . . . . . delay, p. 97

Ωℓ . . . . . . . . . . . backup scaling matrix for the ℓth frame, p. 54

� . . . . . . . . . . . . . threshold used in policy '1 and '2, p. 33

Ψ . . . . . . . . . . . . ΨT in a WSSUS system, p. 97

ΨT . . . . . . . . . . time-frequency autocorrelation of the time-variant trans-

fer function, p. 96

Ψ(') . . . . . . . . . probability measure in Markov chain, p. 39

�ℓ,m . . . . . . . . . . mth eigenvalue deviation introduced by chosing Q̂ℓ, p. 48

Abbreviations

ARQ . . . . . . . . . automatic repeat request, p. 4

BLAST . . . . . . Bell Lab Layered Space-Time, p. 2

BPSK . . . . . . . . binary phase-shift keying, p. 12

CSI . . . . . . . . . . channel state information, p. 1

D-BLAST . . . . Diagonal Bell Lab Layered Space-Time, p. 3

DSP . . . . . . . . . digital signal processor, p. 5

FEC . . . . . . . . . forward error correction, p. 19

FPGA . . . . . . . field programmable gate array, p. 5

HARQ . . . . . . . Hybrid-ARQ, p. 4

ISI . . . . . . . . . . . inter symbol interference, p. 14

ISM . . . . . . . . . . industrial scientific and medical, p. 93

LIFO . . . . . . . . last-in first-out, p. 24

LMMSE . . . . . linear minimum mean-square error, p. 2

LO . . . . . . . . . . . local oscillator, p. 88
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LTE . . . . . . . . . Long Term Evolution, p. 5

MDP . . . . . . . . Markov decision process, p. 4

MIMO . . . . . . . multiple-input multiple-output, p. 1

ML . . . . . . . . . . maximum likelihood, p. 3

MSE . . . . . . . . . mean squared error, p. 16

MSI . . . . . . . . . . multistream interference, p. 14

OFDM . . . . . . . Orthogonal Frequency Division Multiplex, p. 5

QAM . . . . . . . . quadrature amplitude modulation, p. 12

RaCS . . . . . . . . Radio applications and Channel Sounding, p. 87

RF . . . . . . . . . . . radio frequency, p. 88

RSM . . . . . . . . . recursive spatial multiplexing, p. 6

SIC . . . . . . . . . . successive interference cancellation, p. 2

SINR . . . . . . . . signal to interference and noise ratio, p. 16

SISO . . . . . . . . . single input single output, p. 1

SNR . . . . . . . . . signal-to-noise ratio, p. 11

T-BLAST . . . . Turbo Bell Lab Layered Space-Time, p. 3

UP . . . . . . . . . . unitary precoding, p. 17

UPRSM . . . . . UP supported by RSM, p. 56

US . . . . . . . . . . . Uncorrelated Scattering, p. 97

V-BLAST . . . . Vertical Bell Lab Layered Space-Time, p. 2

VE . . . . . . . . . . vertical encoding, p. 2

VoD . . . . . . . . . Video on Demand, p. 1

VoIP . . . . . . . . . Voice over Internet Protocol, p. 1

WSS . . . . . . . . . Wide-Sense Stationary, p. 97

WSSUS . . . . . . Wide-Sense Stationary Uncorrelated Scattering, p. 96

ZF . . . . . . . . . . . zero forcing, p. 2
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Appendix

A.1. Banach Fixed Point Theorem

Solving (3.61) and, hence, deriving a unique function W(�) offers a

method to estimate �opt(
inp), which in turn maximizes the RSM con-

strained ergodic capacity for the case that M,N → ∞ with M = N .

There are several numeric methods to cope with this problem, the Ba-

nach fixed point theorem [75] is applied here, since (3.61) equals the

structure of a contraction mapping [85].

First, the considered interval is limited to 0 < W < ∞ supposing

it represents a complete metric space (B, dB) and fB : B → B is the

contraction map corresponding to the right hand side of (3.61). To fulfil

the theorem, for each 0 < � < 4 there is a nonnegative real number � < 1

such that the Lipschitz condition

dB (fB(b), fB(b
′)) ≤ � ⋅ dB (b, b′) (A.1)

holds for all b, b′ ∈ B. Then the function fB allows only one fixed point

b̂ ∈ B, i.e., fB(̂b) = b̂.

In the present case with b = W ∈ ℝ
+, a suitable metric is given by the

derivative of fB

dfB
dW

=
2

�

(
1

4

√
�(4− �)

(1 + �W)2
+

1√
1 + 4W

arctan

(√
�(1 + 4W)

4− �

))
.

(A.2)

It can be easily seen that (A.2) decreases for increasing W. If W → 0

(while this is already outside the considered interval), the maximum value

of dfB/dW → 1 if � = 4, as can be seen in Fig. A.1 for the interval
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0 < W < 4.

Thus, the condition in (A.1) is satisfied and, therefore, a unique fixed

point can be found in the given interval by interpreting (3.61) as an

iterative sequence

bn = fB(bn−1) for n = 1, 2, 3, . . . , (A.3)

where this sequence converges to b̂ for any start value b0 ∈ B. The

result of this numerical iteration can be demonstrated by a graphical

interpretation of (3.61) shown in Fig. A.2. While fB is depicted by a

”bended” plane depending on W and �, the left hand side of (3.61) is

represented by a ”straight plane”, which is independent of � and its slope

in W direction equals 1. The computational result b̂ = W(�) is marked

by the crossing line of the two previously described planes.

�

dfB
dW

W

Figure A.1 dfB
dW for 0 < � < 4 and 0 < W < 4.
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Figure A.2 Graphical interpretation of (3.61). Both figures depict the
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planes represents the values of W solving (3.61) for different
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anhand ihrer System- und Korrelationsfunktionen. Shaker Verlag,

1997.

[83] M. S. Bartlett, “Smoothing periodograms from time series with con-

tinuous spectra,” Nature, vol. 161, pp. 686–687, May 1948.

[84] I. Shah, T. Hunziker, T. Edlich, and D. Dahlhaus, “Recursive spa-

tial multiplexing in the presence of time-variant co-channel interfer-

ence,” in 17th IEEE Symposium on Communications and Vehicular

Technology in the Benelux (SCVT), Nov. 2010, pp. 1–5.

[85] V. I. Istratescu, Fixed Point Theory, An Introduction. Dordrecht,

Holland: D. Reidel Publishing Company, 1981.



Th
om

as
 E

dl
ic

h 
   

   
   

   
  R

ec
ur

si
ve

 S
pa

tia
l M

ul
tip

le
xi

ng

ISBN 978-3-86219-608-1

In wireless transmissions great capacity gains can be realized by using multi-
ple-input multiple-output (MIMO) systems. We introduce a closed-loop MIMO 
architecture with linear array signal processing. The novel architecture uses 
the feedback channel to request a retransmission of signal parts in critical sub-
spaces. The requested backup subsequently helps the receiver to evade exces-
sive noise amplification in the linear signal reconstruction. Since the backup 
signal is embedded in the successive transmission frame, which may require yet 
another backup, the procedure results in a recursive spatial multiplexing (RSM) 
scheme. We compare the performance of RSM with other closed-loop MIMO 
systems by means of the system constrained ergodic capacities. The recursive 
nature of RSM makes it impossible to guarantee a maximum delay. Exploiting 
receive diversity in MIMO systems, a reduction of the transmit signal dimensions 
for a constant number of receive antennas leads to less frequent retransmission 
requests. For that reason, we introduce optimal transmit antenna selection strat-
egies, which are found by means of machine learning methods. 

Thomas Edlich 
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