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Einleitung und Zielsetzung 1

1 Einleitung und Zielsetzung

Entscheidende Bauteileigenschaften wie Festigkeit, Dauerschwingfestigkeit
und Korrosionsverhalten werden wesentlich durch Eigenspannungsvertei-
lung im Randschichtbereich sowie im Werkstoffinneren bestimmt. Dabei
kann sich der Einfluss von Eigenspannungen sowohl negativ als auch positiv
auswirken. Beispielsweise führen Druckeigenspannungen im Randschichtbe-
reich von Bauteilen zu einer Erhöhung der Schwingfestigkeit und damit
der Lebensdauer, während Zugeigenspannungen die Festigkeit herabsetzen,
Rissbildung begünstigen und folglich versagenskritisch wirken.

Eigenspannungen sind als eine grundsätzliche Begleiterscheinung bei
Herstellungs- und Bearbeitungsprozessen zu verstehen. Ein aus technischer
Sicht diesbezüglich interessantes Gebiet ist die Oberflächenbearbeitung [1].
Durch Kugelstrahlen und Schleifen lassen sich beispielsweise hohe Druckei-
genspannungen mit ausgeprägten Tiefengradienten in den oberflächennahen
Bereich einbringen, die einen erheblichen Einfluss auf die mechanische Bau-
teilbeschaffenheit ausüben. Daraus ergibt sich einerseits die Möglichkeit,
Eigenspannungen im Sinne eines „Stress Engineering“-Prozesses gezielt ein-
zustellen, um definierte Werkstoffeigenschaften zu erzielen und andererseits
die Notwendigkeit sie hinsichtlich Betrag und Verteilung zu analysieren.

Da die Simulation von Eigenspannungsverteilungen aufgrund der kom-
plexen mathematischen Bedingungen und mangelnder Verfügbarkeit me-
chanischer Kennwerte oftmals schwierig ist, kommt dem experimentellen
Nachweis eine besondere Bedeutung zu.

Unter den experimentellen Methoden nimmt die diffraktometrische Span-
nungsanalyse eine Schlüsselposition ein. Erstens erlaubt sie durch die Zer-
störungsfreiheit weiterführende Untersuchungen an denselben Proben. Zwei-
tens trägt sie durch Trennbarkeit von Mikro- und Makrospannungen der
Mehrphasigkeit vieler Werkstoffe Rechnung, indem sie phasenselektive Er-
gebnisse liefert. Drittens ermöglicht sie wegen der hohen Ortsauflösung die
Abbildung steiler Gradienten.

Die große Anzahl an diffraktometrischen Methoden [2, 3], die unter
Einsatz von Röntgen-, Synchrotron- und Neutronenstrahlung für die Lö-
sung verschiedener Fragestellungen bis heute entwickelt wurden, zeigt, dass
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es sich bezüglich der tiefenauflösenden Verfahren als zweckmäßig erwie-
sen hat, unabhängig von der Strahlungsart eine Einteilung in sogenannte
„Laplace“- und „Ortsraum“-verfahren vorzunehmen.

Die Laplace-Methoden erlauben die Erfassung oberflächennaher Eigen-
spannungsverteilungen mit einer hohen Auflösung. Die „natürliche“ Tiefen-
auflösung τ resultiert in diesem Fall aus der exponentiellen Strahlschwä-
chung aufgrund der Probenabsorption in der Reflexionsanordnung. Diese
bewirkt die unterschiedliche Wichtung einzelner Subschichten parallel zur
Oberfläche, in die man sich das Material zerlegt denken kann. So lassen sich
mit herkömmlichen Röntgenquellen üblicherweise Eindringtiefen von eini-
gen zehn Mikrometern und mittels hochenergetischer Synchrotronstrahlung
von einigen hundert Mikrometern erzielen.

Die mit den Laplace-Methoden erhaltenen Ergebnisse gestatten zu-
nächst nur eine vergleichende Bewertung der Eigenspannungen σ(τ) in ähn-
lichen Proben bezüglich des Laplace-Raumes. In vielen Fällen zielen die
Fragestellungen der Ingenieure aber auf die Eigenspannungsverteilungen
σ(z) im Ortsraum ab. Die bisherige Vorgehensweise, aus den bestimmten
Laplace-Verteilungen die Ortsraumverteilungen zu berechnen, indem die
experimentell ermittelten Datenpunkte durch geeignete Funktionen ange-
passt und anschließend durch inverse Laplace-Transformation (ILT) in
den Ortsraum überführt werden, ist aufgrund der Streuungen der Daten
mit Unsicherheiten behaftet und führt oftmals zu instabilen Lösungen.

Die Ortsraummethoden hingegen liefern bei Nutzung von Sonden hoher
Eindringtiefe, wie Neutronen- oder Synchrotronstrahlung, Dehnungsvertei-
lungen ε(z) im Werkstoffvolumen. Dabei werden die Messvolumina durch
ortsfeste Blenden im primären und sekundären Strahlengang begrenzt und
die Probe relativ zum Volumenelement (VE) unter verschiedenen Orientie-
rungen translatiert („Strain-Scanning“). Die Form und Ausdehnung des VE
bestimmt die Ortsauflösung, die bei Neutronen im Bereich von Millimetern
liegt und im Falle von Synchrotronstrahlung einige hundert Mikrometer be-
trägt. Randschichtnahe Bereiche können nur durch sukzessives Eintauchen
des VE („Through-Surface-Strain-Scanning“) erschlossen werden. Da dieses
Vorgehen mit einer Vielzahl von experimentell bedingten Korrekturfakto-
ren verbunden ist, kann es nur begrenzt verwendet werden. Hinzu kommt,
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dass die Berechnung der Spannungen σ(z) aus den experimentell zugängli-
chen Dehnungsverläufen ε(z) an eine Reihe einschränkender Voraussetzun-
gen hinsichtlich des Spannungszustandes - beispielsweise Rotationssymme-
trie - gebunden ist.

Das Ziel der vorliegenden Arbeit ist die Entwicklung eines neuartigen
Verfahrens zur selbstkonsistenten Ermittlung randschichtnaher Eigenspan-
nungsverteilungen σ(z) im Ortsraum im Sinne eines „Stress-Scanning“. Zum
einen sollen gemäß Abbildung 1.1 erstmalig gleiche Tiefenbereiche mit
Laplace− und mit Ortsraummethode zerstörungsfrei analysiert werden,
um so einen experimentellen Zugang zur Problematik der ILT zu gewin-
nen. Als Ergebnis soll die Verzahnung von Laplace- und Ortsraumme-
thoden die Möglichkeit einer zerstörungsfreien Eigenspannungsanalyse über
einen weiten Tiefenbereich ermöglichen. Zum anderen soll das Verfahren
auf Werkstoffsysteme angewendet werden, die durch andere Verfahren nicht
untersucht werden können, wie beispielsweise mehrlagige Schichtsysteme.

Die Arbeit beginnt mit einem Überblick über die Zusammenhänge bei
der Ermittlung von Eigenspannungen und Eigenspannungsverteilungen in
Kap. 2. In die dargestellte Klassifizierung der bestehenden Methoden wird
im nächsten Schritt das zu entwickelnde Verfahren eingeordnet.

Die im Vergleich zu den etablierten, d.h. auf winkeldispersiver Diffrak-
tion basierenden Verfahren, noch wenig eingesetzte Methode der energiedi-
spersiven Beugung erforderte grundlegende Untersuchungen zu den Detek-
toreigenschaften, die in Kap. 3 ausgeführt sind. Anhand von Laplace- sowie
Ortsraummessungen wird verdeutlicht, dass das Einbeziehen der Detektorei-
genschaften in die Auswertung der RSA einen signifikanten Qualitätsgewinn
bedeutet. Der Grundgedanke und die auf Simulationsrechnungen basieren-
de experimentelle Umsetzung des Verfahrens werden in Kap. 4 beschrieben.
Die Bewertung der Ergebnisse im Laplace- und Ortsraum mit Hilfe kom-
plementärer Abtragsmessungen [4] wird in Kap. 5 vorgenommen und es
werden offene Fragestellungen hinsichtlich der analytischen ILT diskutiert.
Abschließend werden anhand von Messungen an Viellagenschichtsystemen
die besonderen Vorzüge und Einsatzmöglichkeiten des entwickelten Verfah-
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Abbildung 1.1: Vorgehensweise bei der Entwicklung des Messverfahrens zur
Analyse von Eigenspannungsverteilungen in der Randzone vielkristalliner
Werkstoffe (I(N)LT - Inverse (Numerische) Laplace-Transformation).

rens verdeutlicht.

2 Stand der Erkenntnisse

2.1 Grundlagen der röntgenographischen Eigenspannungs-
analyse (RSA)

2.1.1 Definition und Einteilung von Eigenspannungen

Mechanische Spannungen von Bauteilen lassen sich in Last- und Eigenspan-
nungen unterteilen. Lastspannungen werden durch äußere Kräfte verursacht,
während Eigenspannungen als diejenigen Spannungen zu verstehen sind, die
in einem abgeschlossenen System vorliegen, auf das keine äußeren Kräfte
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und Momente einwirken [5]. Demnach befinden sich die mit den Eigenspan-
nungen verbundenen Kräfte und Momente im mechanischen Gleichgewicht.

Eigenspannungen lassen sich nach verschiedenen Kriterien klassifizie-
ren. Führt man die Entstehungsursachen aus werkstoffwissenschaftlicher
Sicht an, so erweist sich eine Einteilung in thermische Eigenspannungen,
Umwandlungseigenspannungen, Biegeeigenspannungen usw. als sinnvoll [6].
Aus technologischer Sicht lassen sich die Eigenspannungen nach der Ursache
beispielsweise als Bearbeitungs-, Füge- und Wärmebehandlungseigenspan-
nungen einteilen [1].

Aus Sicht der röntgenographischen Messtechnik zweckmäßiger ist die
Definition nach der Reichweite [5]. Demnach werden Eigenspannungen, die
über größere Werkstoffbereiche (viele Körner) homogen sind, als Eigenspan-
nungen I. Art bezeichnet. Davon abweichende Eigenspannungen, die über
kleinere Werkstoffbereiche (ein Korn oder Kornbereiche) nahezu homogen
verteilt vorliegen, werden als Eigenspannungen II. Art bezeichnet. Eigen-
spannungen III. Art erstrecken sich als die Abweichungen von den ES II. Art
über kleinste Werkstoffbereiche (Atomabstände). Ein Eingriff in das Kräfte-
und Momentegleichgewicht führt bei ES I. Art stets zu makroskopischen
Formänderungen, im Falle der ES II. Art kann es zu solchen Formände-
rungen kommen und bei ES III. Art sind makroskopische Formänderungen
ausgeschlossen. Die Eigenspannung σ(x,y,z) an einem beliebigen Punkt er-
gibt sich aus der Summe der Einzelbeiträge.

Da die Definitionen der Eigenspannungen I., II. und III. Art zunächst
keine getrennte Betrachtung der Phasen beinhalten, wurde in Hinblick auf
die Phasenselektivität der röntgenographischen Eigenspannungsanalyse eine
Erweiterung des Eigenspannungsbegriffs vorgenommen [7]. Die phasenspe-
zifischen Mittelwerte

〈
σII

〉α und
〈
σIII

〉α (Abb. 2.1) werden herangezogen,
um die phasenhomogenen Eigenspannungen 〈σ〉α zu definieren [2]:

〈σ〉α = σI +
〈
σII

〉α
+

〈
σIII

〉α
. (2.1)

Die phasenspezifischen mittleren Eigenspannungen II. Art
〈
σII

〉α kön-
nen als Maß für die gegenseitige Verspannung der einzelnen Phasenbestand-
teile betrachtet werden, die auf deren unterschiedliche thermische und me-
chanische Eigenschaften zurückgehen. Sie kompensieren sich gemäß ihrer
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Abbildung 2.1: Zur Definition von Eigenspannungen in mehrphasigen Werk-
stoffen nach [7].

Volumenanteile fα über alle Phasen α:

N∑
α=1

fα
〈
σII

〉α
= 0. (2.2)

Definitionsgemäß summieren sich die phasenhomogenen Eigenspannun-
gen zur Eigenspannung I. Art [8]:

N∑
α=1

fα 〈σ〉α = σI . (2.3)

Im angelsächsischen Sprachgebrauch ist die Unterscheidung der Eigen-
spannungen nach Makro-, Mikro- und Pseudo-Makroeigenspannungen (PM)
üblich (macro/micro stresses, pseudo macro stresses [9]). Im Sinne der ein-
geführten Definitionen lassen sich folgende Zuordnungen treffen [5]:
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σMakro = σI , (2.4)

σMikro = σII bzw. σIII , (2.5)

σPM,α = 〈σ〉α . (2.6)

Die Nachweismöglichkeit von Eigenspannungen auf den verschiedenen
Längenskalen ist von der Strahlung bzw. Sonde abhängig. Mittels konventio-
neller Röntgendiffraktometrie, Hochenergiesynchrotronstrahlung oder Neu-
tronenbeugung lassen sich bei einphasigen Stoffen Eigenspannungen I. Art
σI und bei mehrphasigen Stoffen phasenhomogene Eigenspannungen 〈σ〉α

bestimmen.

2.1.2 Gleichgewichts- und Randbedingungen

Aus Gründen des makroskopischen Gleichgewichts müssen in einem abge-
schlossenen System, auf das keine äußeren Kräfte und Momente wirken, die
resultierenden Kräfte und Momente bezüglicher jeder Querschnittsfläche A
mit dem Flächenvektor A bzw. bezüglich jeder Achse durch den gesamten
Körper verschwinden. Es gilt ∫

A

σijdA = 0 (2.7)

und ∫
A

~MijdA =
∫
A

~ri ×
~n
σjdA = 0 . (2.8)

Die kontinuumsmechanischen Gleichgewichts- und Randbedingungen der
Eigenspannungen auf Mikro- und Makroebene werden in der linearen Ela-
stizitätstheorie [10] formuliert. Ausgangspunkt ist die mathematische Be-
dingung, dass Eigenspannungen definitionsgemäß quellfrei sind, d.h. die Di-
vergenz des Spannungstensors in jedem Punkt des Körpers null sein muss
(divσ = 0). Daraus ergeben sich die differentiellen Gleichgewichtsbedingun-
gen:

∂σ11

∂x
+
∂σ12

∂y
+
∂σ13

∂z
= 0 , (2.9a)
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∂σ12

∂x
+
∂σ22

∂y
+
∂σ23

∂z
= 0 , (2.9b)

∂σ13

∂x
+
∂σ23

∂y
+
∂σ33

∂z
= 0 . (2.9c)

Neben den Gleichgewichtsbedingungen können differentielle Randbedin-
gungen für die freie Oberfläche formuliert werden. Da keine Kraftkompo-
nente an der Oberfläche aus dem Körper heraus wirkt, gilt für eine beliebige
Spannungskomponente σij (i,j = 1,2,3):

3∑
j=1

σijnj = 0 (i = 1, 2, 3) (2.10)

wobei ni (i,j = 1,2,3) die Komponenten des äußeren Normaleneinheitsvek-
tors n bezeichnen. Aus den Gleichungen 2.9 und 2.10 lassen sich wichti-
ge Schlussfolgerungen für den Spannungszustand ableiten. Zunächst ist zu
bemerken, dass Eigenspannungen in einem abgeschlossenen System prinzi-
piell als Gradienten auftreten, deren Ausprägungen von der Vorgeschichte
des Werkstoffs abhängen. Die Eigenspannungsfelder im oberflächennahen
Bereich können eine komplexe Form annehmen, wobei zwischen ein- und
mehrphasigen Werkstoffen unterschieden werden muss. Geht man von ei-
nem probenfesten Bezugskoordinatensystem aus, dessen x-y-Ebene mit der
als eben angenommenen Probenoberfläche zusammenfällt, lässt sich aus den
elastizitätstheoretischen Bedingungen schlussfolgern, dass an jedem Punkt
der freien Oberfläche (z = 0)

- die Komponenten σi3 (i = 1, 2, 3) verschwinden müssen und

- die Ableitung der Normalspannung senkrecht zur Oberfläche σ33,3 null
sein muss.

Unterhalb der Oberfläche (z 6= 0) liegt ein dreiachsiger inhomogener Ei-
genspannungszustand vor, für den ausschließlich das Gleichungssystem 2.9
gilt. In Bezug auf den möglichen Eigenspannungszustand lassen sich zwei
Fälle unterscheiden:
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1. Im betrachteten Oberflächenbereich liegen keine signifikanten Gradi-
enten der oberflächenparallelen Spannungskomponenten σIij (i, j = 1, 2)
in x-, bzw. y-Richtung vor. Die Ableitungen der Scherkomponenten
σ13 und σ23 nach z verschwinden auf makroskopischer Ebene, d.h.
es dürfen keine Eigenspannungen I. Art σIi3(i = 1, 2, 3) in z-Richtung
auftreten. In mehrphasigen Gefügen können sich Pseudomakroeigen-
spannungen ausbilden, die sich jedoch in jeder Tiefe gemäß Gleichung
2.3 zwischen den Phasen kompensieren müssen.

2. Es treten Gradienten der Komponenten σIij(i, j = 1, 2) in x-, bzw. y-
Richtung auf, mit denen Makroeigenspannungen σIi3(i = 1, 2, 3) ver-
bunden sind. Entsprechende Gradienten treten beispielsweise in der
Nähe von Kanten und makroskopischen Oberflächeninhomogenitäten
auf, so dass dort mit besonders komplexen Eigenspannungsverhältnis-
sen zu rechnen ist.

Im Falle mehrphasiger Gefüge können sich unter der unmittelbaren Ober-
fläche pseudomakroskopische Eigenspannungsgradienten 〈σi3〉α ausbilden,
wenn unterschiedliche phasenhomogene Eigenspannungen

〈
σIIii

〉α (i = 1, 2)
in x- und y-Richtung vorliegen. Der Übergangsbereich, in dem der zweiachsi-
ge Eigenspannungszustand mit σi3 = 0 für jede Phase an der freien Oberflä-
che z = 0 zu einem dreiachsigen Zustand mit σi3 6= 0 übergeht, muss in der
röntgenographischen RSA entsprechende Berücksichtigung finden [8, 11]. In
[12] wird gezeigt, dass die Dreiachsigkeit immer dann signifikanten Einfluss
auf die Messergebnisse zeigt, wenn die periodisch angenommenen Vertei-
lungen von

〈
σIIii

〉α (i = 1, 2) entlang von x bzw. y eine kleinere Wellenlänge
aufweisen als der Betrag der Eindringtiefe der zur Messung benutzten Rönt-
genstrahlung ist.

2.1.3 Grundgleichung der RSA für quasiisotrope vielkristalline
Werkstoffe

Die röntgenographische Analyse von elastischen Spannungen wird in ei-
ner Vielzahl von Lehrbüchern ausführlich beschrieben, z.B. [2, 3, 9]. Das
Prinzip besteht in der Berechnung von Spannungen aus den experimentell
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ermittelten richtungsabhängigen Dehnungen mittels des Hookeschen Ge-
setzes. Dazu werden die Dehnungen aus den Netzebenenabständen d(hkl)
ermittelt, die im winkeldispersiven Beugungsversuch aus dem Glanz- bzw.
Braggwinkel θ gemäß der Braggschen Gleichung

d (hkl) =
nλ

2
· 1
sin θ

(2.11)

bestimmt werden (n = Beugungsordnung der Interferenz, λ = Wellenlänge
der Strahlung, hkl = Miller-Indizes). Im energiedispersiven Modus lassen
sich analog zu Gleichung 2.11 die Netzebenenabstände bei einem gewählten
Beugungswinkel θ′ aus der Energieposition E(hkl) gemäß

d (hkl) =
hc

2 sin θ′
· 1
E (hkl)

(2.12)

mit E = hν = h cλ (h = Plancksche Konstante, ν = Frequenz, c = Licht-
geschwindigkeit) bestimmen1.

Die Gitterdehnungen εϕψ(hkl) in einer Messrichtung (definiert durch
den Azimuthwinkel φ und den Neigungswinkel ψ) bezüglich eines vorgege-
benen Probensystems {P} berechnet sich bei Kenntnis des dehnungsfreien
Gitterparameters d0(hkl) aus

εϕψ(hkl) =
dϕψ(hkl)− d0(hkl)

d0(hkl)
. (2.13)

Die ermittelten Gitterdehnungen und die zu berechnenden Spannungen
werden durch Tensoren beschrieben. Dabei wird der Zusammenhang zwi-
schen der in einer Messrichtung L3 innerhalb eines laborfesten Koordinaten-

1Bei der winkeldispersiven Beugung beschreibt der Glanzwinkel θ den physikalisch
definierten Winkel unter dem es bei einer gegebenen Wellenlänge λ bezüglich einer Git-
terebene hkl zur konstruktiven Interferenz kommt. Im energiedispersiven Fall ist es um-
gekehrt: Bei einem gegebenen, aber prinzipiell frei wählbaren Beugungswinkel θ′ tritt bei
physikalisch bestimmten diskreten Energien E(hkl) konstruktive Interferenz auf. Da in
vielen Fällen, insbesondere bei beugungsgeometrischen Überlegungen, keine Unterschei-
dung bezüglich θ und θ′ notwendig ist, wird im weiteren Verlauf an gegebenen Stellen
zwar vom Bragg- bzw. Glanzwinkel auf der einen Seite und vom Beugungswinkel auf
der anderen Seite gesprochen aber die einheitliche Bezeichnung θ genutzt.
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ϕ 

Abbildung 2.2: Festlegung von Probensystem P3 und Laborsystem L in der
RSA. L3 bezeichnet die Messrichtung.

systems {L} (Laborsystem) bestimmten Dehnung εL33 und dem Probenkoor-
dinatonssystem {P}mittels einer Transformationsmatrix hergestellt (Abbil-
dung 2.2). Die Verknüpfung der Gitterdehnungen mit den zugehörigen Span-
nungen in einem isotropen Körper erfolgt dann durch das Hookesche Ge-
setz. Den gesuchten Zusammenhang zwischen den experimentell bestimm-
ten Gitterdehnungen εφψ und den Komponenten des Spannungstensors im
Probensystem σPij beschreibt die Grundgleichung der RSA:

εφψ(hkl) =
(

1 + ν

E

)
hkl

[ (
σP11 cos2 ϕ+ σP22 sin2 ϕ+ σP12 sin 2ϕ

)
sin2 ψ

+
(
σP13 cosϕ+ σP23 sinϕ

)
sin 2ψ + σP33 cos2 ψ

]
+

(
− ν

E

)
hkl

(
σP11 + σP22 + σP33

) .

(2.14)

(E = Elastizitätsmodul und ν = Querkontraktionszahl)2. Im Gegensatz zu
2Auf den Index P zur Kennzeichnung des Probensystems wird im weiteren verzichtet,
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mechanischen Verfahren muss dem zumeist anisotropen Verhalten der Kri-
stallite im vielkristallinen Werkstoff Rechnung getragen werden. Abhängig
von den zur Beugung beitragenden Kristalliten werden die richtungsabhän-
gigen elastischen Konstanten Ehkl und νhkl verwendet. Abkürzend werden
die diffraktionselastischen Konstanten (DEK)

s1(hkl) =
(
− ν

E

)
hkl

und
1
2
s2(hkl) =

(
1 + ν

E

)
hkl

(2.15)

eingeführt. Die DEK lassen sich im Zug- oder Biegeversuch ermitteln [13, 14]
oder aus den Einkristallkonstanten berechnen. Dabei kommen Modelle nach
Voigt [15], Reuss [16] und Eshelby/Kröner [17, 18] zur Anwendung, die
auf unterschiedlichen Annahmen zur Kristallitkopplung im vielkristallinen
Verbund beruhen.

Im Prinzip kann der Dehnungstensor durch Messung in sechs wechsel-
seitig nicht koplanaren Richtungen nach Gl. 2.14 bestimmt und mittels
Hookeschen Gesetzes der Spannungstensor berechnet werden. Allerdings
erfordert diese Vorgehensweise die genaue Kenntnis der spannungsfreien
Ebenenabstände d0 zur Berechnung der Dehnungen, und sie ist wie alle
Verfahren der dreiachsigen Spannungsanalyse gegenüber Messfehlern anfäl-
lig.

In der Praxis wird daher ein Verfahren genutzt, bei dem eine schrittweise
Kippung der Probe um ψ bei unterschiedlichen, konstanten Probendrehun-
gen ϕ erfolgt. Bezeichnet man die Richtungen (ϕ+180◦, ψ) als (ϕ, -ψ), so
lassen sich die Kombinationen

d+ =
d(ϕ,ψ) + d(ϕ,−ψ)

2
und d− =

d(ϕ,ψ)− d(ϕ,−ψ)
2

(2.16)

bilden. Dabei hängt nach Gl. 2.14 die Größe d+ linear von sin2 ψ und d−

linear von sin 2ψ ab, so dass bei entsprechender Auftragung die Spannungs-
komponenten den Steigungen und Achsenabschnitten entnommen werden

wenn Verwechslungen auszuschließen sind.
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können [19, 20]:

σ11 − σ33 =
1
d0

1
1/2s2

∂d+(ϕ = 0◦, ψ)
∂ sin2 ψ

,

σ22 − σ33 =
1
d0

1
1/2s2

∂d+(ϕ = 90◦, ψ)
∂ sin2 ψ

,

(2.17a)

σ13 =
1
d0

1
1/2s2

∂d−(ϕ = 0◦, ψ)
∂ sin 2ψ

,

σ23 =
1
d0

1
1/2s2

∂d−(ϕ = 90◦, ψ)
∂ sin 2ψ

.

(2.17b)

Unter der Annahme, dass σ33 innerhalb der Messtiefe zu vernachlässi-
gen ist, ergeben sich die anderen Hauptspannungen aus den Gleichungen
2.17a. Bei der Bestimmung der Spannungskomponenten kann der Wert für
d0 aus Tabellenwerken entnommen oder aus den Messdaten als Mittelwert
bestimmt werden, da die Spannungswerte bei der Berechnung unempfindli-
cher gegenüber Fehlern in d0 sind.3 Im Falle eines zweiachsigen Spannungs-
zustandes (σ33 = 0) kann d0 zusätzlich in der dehnungsfreien Richtung ψ∗

gemäß

sin2 ψ∗ =
−s1(hkl)

1/2s2(hkl)

(
σ22

σ11
+ 1

)
(2.18)

unter ϕ = 0 bestimmt werden. Die Auswertung des vollständigen Span-
nungstensors wird als Dölle-Hauk-Methode [20] bezeichnet, während die
Auswertung der Spannungskomponenten, die durch Auftragung über sin2 ψ

gewonnen werden (Gl. 2.17a), als sin2 ψ-Verfahren bekannt ist [19].
3Dies lässt sich durch Reihenentwicklung von Gl. 2.17 zeigen. Sei m der Anstieg der

dϕψ-sin2 ψ-Geraden, dann ist nach [21]

σϕ =
m

1/2s2

1

d0 + ∆d0
=

m

1/2s2

„
1

d0
−

∆d0

d20 + ...

«
≈

m

1/2s2d0

„
1−

∆d0

d0

«
.

Ein mit einem Fehler ∆d0 behaftetes d0 führt also lediglich zu einer Verschiebung der
Verläufe entlang der Ordinatenachse dϕψ , der Anstieg ändert sich hingegen kaum.
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Abbildung 2.3: Mögliche Gitterdehnungsverteilungen bei der Auftragung
über sin2ψ nach [22]: (a) linear, (b) ψ-Aufspaltung als Folge von Scher-
spannungskomponenten, (c) Oszillationen in Folge von Textur (elastische
Anisotropie) und vorangegangener plastischer Verformung, (d) Krümmun-
gen durch signifikante Spannungsgradienten innerhalb der Messtiefe

Das sin2 ψ-Verfahren ist an bestimmte Voraussetzungen in Bezug auf
den oberflächennahen Werkstoffzustand gebunden. Wie in Abb. 2.3 darge-
stellt, sind lineare dϕψ(hkl)-sin2 ψ -Verteilungen nur dann zu beobachten,
wenn weder Textur noch plastische Deformation vorliegen, die sich beide in
oszillierenden Gitterdehnungsverteilungen äußern. Scherspannungskompo-
nenten und Spannungsgradienten innerhalb der Messtiefe führen ebenfalls
zu Nichtlinearitäten der Verläufe in Form von Aufspaltungen der ψ-Äste
bzw. gekrümmten sin2ψ-Verteilungen. Folglich müssen bei der Bestimmung
der hier interessierenden Spannungsgradienten andere Methoden angewen-
det werden, die der Tiefenabhängigkeit der röntgenographisch ermittelten
Größen Rechnung tragen.
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2.2 Diffraktometrische Methoden zur Analyse von Span-
nungsgradienten senkrecht zur Oberfläche

2.2.1 Einteilung der Methoden

Es gibt eine Vielzahl von zerstörungsfreien diffraktometrischen Verfahren,
die die Bestimmung von Spannungs- bzw. Dehnungsgradienten senkrecht
zur Oberfläche ermöglichen. Um einen Überblick zu gewinnen und die in
dieser Arbeit vorgestellte neue Methode gegenüber existierenden Verfahren
einzuordnen, ist zunächst eine Einteilung nach der Informationstiefe sinnvoll
(Abb. 2.4). Da die Informationstiefen prinzipiell von einer Reihe von Para-
metern wie Strahlungsart, Probe und Messparameter abhängen, orientiert
sich die Darstellung an Stahl als Probenmaterial unter Berücksichtigung
üblicher experimenteller Bedingungen.

Die Variation der Informationstiefe erfolgt in der klassischen Eigenspan-
nungsanalyse durch Berücksichtigung der Strahlgeometrie auf die effekti-
ve Strahleindringtiefe 〈z〉 (vgl. Gleichung 2.22). Unter streifendem Einfall
können so minimale Eindringtiefen von einigen zehn Nanometern erreicht
werden. Die maximale Eindringtiefe wird durch die Targetmaterialien der
verwendeten Röntgenröhren bestimmt. So wird, abhängig von Werkstoff und
geometrischen Verhältnissen, ein Tiefenbereich bis zu einigen Mikrometern
erfasst (z.B. [7, 23]).

Deutlich aufwendiger als die Labormessungen sind Experimente mit mo-
nochromatischer Synchrotronstrahlung. Die Vorteile bestehen in einem um
mehrere Größenordnungen höheren Fluss, der kürzere Messzeiten ermög-
licht, sowie einer Durchstimmbarkeit der Wellenlängen. Wendet man die
im Labor üblichen Beugungsmethoden in Reflexionsanordnung an, werden
bei Energien bis zu einigen 10 keV Tiefenbereiche von bis zu einigen zehn
Mikrometern erfasst (z.B.[24]).

Höhere Energien sind im energiedispersiven Experiment nutzbar. Dabei
wird das von den Photonenquellen (Undulatoren, Wiggler) bereitgestellte
weiße Spektrum vollständig zur Beugung genutzt. Entsprechend höhere Ein-
dringtiefen von bis zu wenigen 100 µm werden so möglich (z.B.[25, 26, 27]).

Bei Beugungsexperimenten in Reflektion ist die maximale Eindringtiefe
durch Photonenenergie und Probenabsorption physikalisch begrenzt. Grö-
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Abbildung 2.4: Einteilung zerstörungsfreier diffraktometrischer Methoden
zur Eigenspannungsanalyse nach der Informationstiefe und Verfahrenszuge-
hörigkeit sowie Einordnung der entwickelten Ortsraummethode zur direkten
Bestimmung von σ(z).

ßere Tiefenbereiche erschließen sich bei Synchrotron- und Neutronenexpe-
rimenten in Transmissionsanordnung [28]. Ortsfeste Blendensysteme be-
schränken dabei den primären- und sekundären Strahlengang, die Probe
wird relativ zu dem so definierten Messvolumen translatiert. Die sogenann-
ten Ortsraumverfahren lassen sich in zwei Verfahren unterteilen. Die erste
Gruppe bildet diejenigen Verfahren, bei denen das Volumenelement lediglich
in die Werkstoffoberfläche eintaucht und unter Beachtung der komplizierten
strahlgeometrischen Bedingungen Dehnungsverteilungen bestimmt werden
(„Through-Surface-Strain-Scanning“ [29]). Ist das Volumenelement vollstän-
dig in die Werkstoffoberfläche eingetaucht, können im Ortsraum prinzipiell
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von jedem Bereich durch entsprechende Probenpositionierung Beugungsin-
formationen erhalten werden („Strain-Scanning“[30]). Die Beschränkung der
erzielbaren Informationstiefe besteht bei gegebener Auflösung nur in der ge-
ringen Beugungsintensität bzw. den langen Messzeiten. Typische maximale
Informationstiefen liegen bei Nutzung von hochenergetischer Synchrotron-
strahlung bei einigen Millimetern in Stahl und bei Neutronenstrahlung bis
zu einigen Zentimetern [28].

Die Einteilung nach der Informationstiefe berücksichtigt nicht die prinzi-
piellen Unterschiede in den Ergebnissen der Laplace- und Ortsraummetho-
den, auf die in den nächsten Kapiteln detailliert eingegangen werden soll. An
dieser Stelle sei lediglich darauf hingewiesen, dass die Laplace-Methoden
auf Basis des sin2ψ-Verfahrens zunächst einen Spannungstiefenverlauf σ(τ)
im Laplace-Raum liefern, während die Ortsraummethoden die Bestim-
mung eines Dehnungsverlaufs ε(z) im Ortsraum erlauben (Abb. 2.5). Die
in dieser Arbeit entwickelte Methode soll die Charakteristika beider Verfah-
ren aufgreifen, so dass die unmittelbare Bestimmung des Spannungsverlaufs
σ(z) möglich wird. Ziel ist die Verzahnung der unterschiedlichen Verfahren.

2.2.2 Tiefenabhängigkeit röntgenographisch ermittelter Größen
in Reflexionsgeometrie ohne strahlbegrenzende Optiken

Die Schwächung der primären Intensität I0 des einfallenden Strahls im In-
neren eines Werkstoffs mit „ideal imperfekter“ Kristallstruktur [31], d.h.
mit regellos orientierten Kristallitblöcken, kann in guter Näherung mit dem
Beerschen Gesetz beschrieben werden. Es gilt für die Intensität I der Strah-
lung nach Durchlaufen einer Strecke t innerhalb eines Werkstoffs

I = I0e
−µ(E)t , (2.19)

wobei der materialspezifische, von der Photonenenergie E abhängige lineare
Schwächungskoeffizient µ(E) Tabellenwerken entnommen werden kann.

In Reflexionsgeometrie lässt sich das Verhältnis von durchlaufenem Ge-
samtweg des gebeugten Strahls zum Abstand zur Werkstoffoberfläche mit
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dem Geometriefaktor k

k =
t

z
=

sinα+ sinβ
sinα sinβ

(2.20)

beschreiben, wobei α und β die Winkel bezeichnen, die der Primär- bzw.
Sekundärstrahl mit der Probenoberfläche einschließt (Abb. 2.6).

Unter Berücksichtigung der Strahlschwächung können die im Beugungs-
experiment ermittelten Interferenzen einer gemittelten Eindringtiefe 〈z〉 ge-
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Abbildung 2.5: Einteilung der diffraktometrischen Verfahren zur Eigenspan-
nungsanalyse nach integralen Laplace- und Ortsraum-Methoden.
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mäß

〈z〉 =

∫ D

0

ze−µkzdz∫ D

0

e−µkzdz

(2.21)

zugeordnet werden. Ist die Probendicke D gegenüber dem Durchdringungs-
vermögen der Strahlung groß (D� 1/µk), so läßt sich die Strahleindringtiefe
mit

〈z〉 = τ =
1

µ (E) k
(2.22)

angeben. Physikalisch lässt sich die Eindringtiefe τ als der Tiefenbereich
interpretieren, aus dem 63% des Gesamtintensität stammt, die zum Beu-
gungssignal beiträgt. Gleichung 2.22 ist ferner zu entnehmen, dass die Ein-
dringtiefe nicht nur materialspezifischen Charakter hat, sondern auch von
der Wellenlänge λ(E) und der Beugungsgeometrie abhängt.

Alle ortsabhängigen Werkstoffeigenschaften g(x,y,z) gehen aus dem In-
terferenzprofil entsprechend der exponentiellen Strahlschwächung als ge-
wichtete Mittelwerte bezüglich der Tiefe z hervor [32]. Wird lateral eine
hinreichend große Fläche A erfasst, und trägt so eine statistisch genügen-
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Abbildung 2.6: Strahlgeometrische Beziehungen zur Veranschaulichung von
Strahlweg t und Eindringtiefe z
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de Anzahl von Kristalliten zur Beugung bei, ergibt sich für das ermittelte
Tiefenprofil

〈g(τ)〉 =

D∫
0


∫∫
A

g(x, y, z)dxdy/
∫∫
A

dxdy

 e−z/τ
 dz

D∫
0

e−z/τdz

. (2.23)

Mit D � 1/µk entsprechen die im Experiment ermittelten Tiefenprofile
g(τ) der Laplace-Transformierten der Tiefenverläufe im Ortsraum g(z)
bezüglich der reziproken Eindringtiefe 1/τ gemäß

〈g(τ)〉 =
1
τ

∞∫
0

g(z)e−z/τdz =
1
τ
L

[
g(z);

1
τ

]
. (2.24)

Der durch die RSA ermittelte Tiefenverlauf g(τ) stellt aus mathemati-
scher Sicht den geglätteten Verlauf der Ortsraumeigenspannung dar. Insbe-
sondere im Falle von steilen, nichtlinearen Eigenspannungsgradienten wei-
chen die Verläufe in Laplace- und Ortsraum deutlich voneinander ab, so
dass eine Rücktransformation vielfach erforderlich ist.

2.2.3 Laplace-Methoden zur Bestimmung randschichtnaher Ei-
genspannungsgradienten σ(τ)

Unter „randschichtnahem“ Bereich soll im Folgenden derjenige Werkstoffbe-
reich verstanden werden, der mittels Röntgenbeugung in Reflexionsanord-
nung erfasst wird und sich - unter Berücksichtigung der Eindringtiefe hoch-
energetischer Synchrotronstrahlung - von der Oberfläche bis in eine Tiefe
von einigen hundert Mikrometern erstreckt. So wird auch der Tiefenbereich
mit eingeschlossen, der in der Literatur bisweilen als „intermediär“ [26, 33]
bezeichnet wird. Aus technologischer Sicht ist es der Bereich, in dem vor-
wiegend Bearbeitungseigenspannungen und Beschichtungseigenspannungen
vorliegen können.
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Bei der Analyse von Gradienten werden die Spannungskomponenten tie-
fenaufgelöst ermittelt. Unter Berücksichtigung der Variation der Eindring-
tiefe mit den strahlgeometrischen Bedingungen nach Gl. 2.22 lässt sich die
Grundgleichung der RSA (Gl. 2.14) erweitern:

εφψ(hkl, τ) =
1
2
s2(hkl)

[ (
σ11(τ) cos2 ϕ+ σ22(τ) sin2 ϕ+ σ12(τ) sin 2ϕ

)
sin2 ψ

+ (σ13(τ) cosϕ+ σ23(τ) sinϕ) sin 2ψ + σ33(τ) cos2 ψ

]
+ s1(hkl) (σ11(τ) + σ22(τ) + σ33(τ)) .

(2.25)

Die ermittelten Dehnungen εϕψ(hkl, τ) bzw. Spannungen σ(τ) stehen
mit den Ortsraumverteilungen gemäß Gleichung 2.24 in Beziehung; es ist

εφψ(hkl, τ) =
1
τ
L

[
εφψ(hkl, z);

1
τ

]
bzw. σij(τ) =

1
τ
L

[
σij(z);

1
τ

]
. (2.26)

Eine Änderung der Messrichtung (ϕ,ψ) ist mit einer Variation der Ein-
dringtiefe verbunden. Die in Gleichung 2.22 aufgestellte Beziehung von Strahl-
geometrie und Eindringtiefe nimmt unter Verwendung der entsprechenden
Winkelbeziehungen die Form [34]

τ =
sin2 θ − sin2 ψ + cos2 θ sin2 ψ sin2 η

2µ(E) sin θ cosψ
(2.27)

an, wobei der Winkel η die Drehung der Probe um den Streuvektor bei
einer gegebenen Messrichtung (ϕ, ψ) beschreibt. Die Eindringtiefe hängt
demnach von einer Reihe von Parametern ab, die in Tabelle 2.1 aufgelistet
sind. So können neben der kontinuierlichen Variation der Eindringtiefe durch
Probenkippung ψ und -drehung η im winkeldispersiven Fall unterschiedli-
che Wellenlängen zur diskontinuierlichen Variation beitragen. Im Falle der
energiedispersiven Beugung ist mit der Variation des Beugungswinkels θ′

nach Gl. 2.12 eine Änderung der Energielagen der Interferenzen und folglich
des Eindringungsvermögens der Strahlung verbunden. Die Berücksichtigung
mehrerer Interferenzen (hkl) bietet dabei zusätzliche Tiefeninformationen.
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Tabelle 2.1: Parameter der Eindringtiefe τ in Abhängigkeit der angewandten
Beugungsmethoden

experimentell physikalisch vorgegebene

festgelegte Parameter Parameter

methodenunabhängig ψ, η µ(E)

winkeldispersiv λ(E) θ(hkl,λ)

energiedispersiv θ’ E(hkl,θ’)

In beiden Fällen wird durch den Streuwinkel θ (bzw. θ’) die Eindringtiefe
aus geometrischen Gründen beeinflusst (Gl. 2.27).

Bei der Mehrwellenlängenmethode [35] werden ungeachtet eventuell auf-
tretender Nichtlinearitäten (vgl. Abb. 2.3) zunächst die oberflächenparalle-
len Spannungskomponenten σij(hkl) (i,j = 1,2) nach dem sin2 ψ-Verfahren
(Kap. 2.1.3) ermittelt und dann entsprechend der eingesetzten Strahlungs-
quellen und vermessenen Interferenzen einer mittleren Eindringtiefe τ bei
sin2 ψ = 0,5 zugeordnet. Über eine Übertragung der Mehrwellenlängenme-
thode auf den energiedispersiven Fall der Beugung wird erstmals in [36] be-
richtet. Dabei wird ausgenutzt, dass die einzelnen Interferenzen E(hkl) im
Spektrum unterschiedlichen mittleren Informationstiefen zuzuordnen sind,
für die die Autoren die Größe 〈τ〉 = 1/2 (τψmin

+ τψmax
) einführen.

Der Nachteil der Methode besteht darin, dass bei stark gekrümmten
Dehnungsverläufen nur eine näherungsweise Auswertung der einzelnen Span-
nungswerte nach dem sin2 ψ-Verfahren möglich ist. Hinzu kommt, dass die
Festlegung der Eindringtiefe willkürlich ist und von dem gewählten Messbe-
reich abhängt, so dass der Spannungsverlauf im Laplace-raum nur in gro-
ber Näherung beschrieben werden kann. Zudem erfordert die Methode im
winkeldispersiven Fall einen erhöhten Justageaufwand, der sich durch das
Wechseln des Targetmaterials ergibt.

Bei Nutzung des Universalplotverfahrens [24] kommt es zu einer detail-
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lierteren Abbildung des Tiefenverlaufs der oberflächenparallelen Spannung
σij(τ) (i = 1, 2). Dabei wird von der Annahme σ33 = 0 ausgegangen, wäh-
rend sich die Scherkomponenten σi3 (i = 1,2) in den Auswerteformalismus
einbeziehen lassen. Aus Gleichung 2.25 lassen sich dann die folgenden Grö-
ßen berechnen:

f+(τ) =
1/4 [ε0ψ(τ) + ε90ψ(τ) + ε180ψ(τ) + ε270ψ(τ)]

1/2s2 sin2 ψ + 2s1

=
1
2

[σ11(τ) + σ22(τ)] ,

f−(τ) =
1/4 {[ε0ψ(τ) + ε180ψ(τ)]− [ε90ψ(τ) + ε270ψ(τ)]}

1/2s2 sin2 ψ

=
1
2

[σ11(τ)− σ22(τ)] ,

(2.28a)

f13(τ) =
1/2 [ε0ψ(τ)− ε180ψ(τ)]

1/2s2 sin |2ψ|
= σ13(τ) ,

f23(τ) =
1/2 [ε90ψ(τ)− ε270ψ(τ)]

1/2s2 sin |2ψ|
= σ23(τ) .

(2.28b)

Daraus erhält man für die Tiefenverteilungen der Spannungskomponen-
ten

σ11(τ) = f+(τ) + f−(τ) ,

σ22(τ) = f+(τ)− f−(τ) ,

σ13(τ) = f13(τ) und

σ23(τ) = f23(τ) .

(2.29)

Die aufgestellten Gleichungen erlauben das Auftragen der Spannungs-
komponenten σij(τ) unabhängig von den experimentellen Bedingungen (In-
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terferenz, Strahlung, geometrische Anordnung) in einem einzigen „Univer-
salplot“. Es ist zu beachten, dass die Spannungskomponenten σ11 und σ22

in der Nähe der dehnungsfreien Richtung ψ∗ hohe Streuungen aufweisen.
Das lässt sich darauf zurückführen, dass der Nenner von f+(τ) in Gl. 2.28a
gemäß Gl. 2.18 sehr kleine Werte annimmt. Gleiches gilt für große Eindring-
tiefen (ψ → 0) und σ11 6= σ22. In diesem Falle kommt es zu Singularitäten
im f−(τ)-Term für ψ = 0.

Beim Streuvektorverfahren [21, 34, 37] wird die Variation der Eindring-
tiefe unter konstantem Neigungswinkel ψ und Azimuth ϕ durch sukzessi-
ve Drehung um den Streuvektor η gemäß Gleichung 2.27 erreicht. Durch
Messung in weiteren Orientierungen des Streuvektors (ϕ,ψ) lässt sich der
dehnungsfreie Gitterparameter d0 in einer Optimierungsroutine bestimmen.
Weiterhin lässt sich die Spannungskomponente σ33 in einer iterativen Be-
rechnung selbstkonsistent berechnen. Zugrunde liegt die Bestimmung des
Dehnungsprofils d+

ψ∗ in der dehnungsfreien Richtung des zweiachsigen Span-
nungszustandes und der Ansatz [21]

σ33 (τ) =
d+
ψ∗ (hkl, τ)− d0 (hkl)

d0 (hkl) [1/2s2 (hkl) + 3s1 (hkl)]
. (2.30)

Da die Orientierung des Streuvektors während der Messung konstant
bleibt, eignet sich diese Methode in der Praxis insbesondere bei stark tex-
turierten Proben und dünnen Schichten.

2.2.4 Möglichkeiten zur Übertragung der Laplace-Verteilungen
σ(τ) in den Ortsraum

Die mit Hilfe der Universalplotauftragung in diskreten Stützstellen τk er-
haltenen Eigenspannungstiefenverteilungen σij(τk) weisen aufgrund der ex-
perimentell bedingten Messunsicherheiten oftmals starke Streuungen auf.
Da das Signal im Laplace-Raum jedoch definitionsgemäß die exponen-
tiell gedämpfte und damit geglättete Information der Ortsraumverteilung
σij(z) darstellt, erweist sich die numerische Rücktransformation als schwie-
rig. So gehen die meisten Verfahren der inversen numerischen Laplace-
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Transformation (INLT) von glatten Bildraumverteilungen aus und versagen
immer dann, wenn die entsprechenden Verteilungen verrauscht sind [38].

In [39] wird beispielsweise die Ausgangsfunktion σ(z) durch eine Sum-
me von Dreiecksfunktionen approximiert und anschließend in den τ -Raum
überführt, wo sie an den berechneten Verlauf angepasst wird. Aus der Rück-
transformation ergeben sich die Datenpunkte im Ortsraum, die bei Verrau-
schung von σ(τ) ausgeprägte Oszillationen aufweisen. In einer Weiterfüh-
rung in [40, 41, 42] wird daher neben der Verwendung linearer Splines zur
Approximation der Messkurve ein Dämpfungsfaktor λ eingeführt. Die Un-
sicherheit des Verfahrens liegt in der empirischen Festlegung von λ in einem
„trial-and-error“-Prozess. Wird ein zu kleiner Wert festgelegt, kommt es zu
Überschwingungen; bei einem zu hohen Wert nähert sich das z-Profil der
Form einer Geraden.

Die Folgen einer beschränkten Belegung der σ(τ)-Tiefenverteilung mit
Datenpunkten zeigen sich bei einem etwas anderen Ansatz in [43], bei dem
die Ortsraumfunktion durch eine Reihe von orthogonalen Polynomen appro-
ximiert wird [44, 45, 46]. So lässt sich die vorgegebene Ortsraumfunktion
nur dann korrekt wiedergeben, wenn charakteristische Bereiche, in denen
besonders starke Änderungen (d. h. Gradienten) vorliegen, mit hinreichend
vielen Datenpunkten belegt sind. Da diese Bereiche bei einer Messung un-
bekannt sind, erfährt die praktische Anwendbarkeit an dieser Stelle bereits
eine Einschränkung.

Praktikabler ist daher ein analytischer Ansatz. Als Ausgangspunkt wird
eine Beschreibung der Ortsraumverläufe σij(z) durch einfache Funktionen
wie Polynome [47, 48], gedämpfte Polynome höherer Ordnung [49, 24] (siehe
Tabelle 2.2) oder komplexere Funktionen mit Unstetigkeiten und trigonome-
trischen Anteilen [48] vorgenommen. Die Laplace-Transformierten werden
den Messpunkten mittels Fehlerquadratmethode angepasst und anschlie-
ßend die Verläufe durch Rücktransformation in den Ortsraum überführt.

Die Ortsraumfunktionen σ(z) können - trotz guter Anpassung der Da-
tenpunkte im Laplace-Raum durch verschiedene Funktionen - deutlich
unterschiedliche Verläufe aufweisen, was anhand von Abbildung 2.7 deut-
lich wird. So zeigen die mit Polynomen unterschiedlichen Grades erhaltenen
σ(z)-Verläufe bis zu einer Tiefe von z ≈ 5 µm einen ähnlichen Verlauf. In
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Tabelle 2.2: Aus [21] entnommene Ansätze zur Beschreibung Eigenspan-
nungsverläufe σ(z) im Ortsraum und deren Laplace-Transformierte.

Bezeichnung der

σ(z) σ(τ) Funktionspaare

N∑
k=1

akz
k

N∑
k=1

k!akτk

a0 + a1e
−a2z a0 + a1

a2τ+1 P0

(a0 + a1z) e−a2z a0
a2τ+1 + a1τ

(a2τ+1)2
P1(

a0 + a1z + a2z
2
)
e−a3z a0

a3τ+1 + a1τ
(a3τ+1)2

+ 2a2τ
2

(a3τ+1)3
P2

größeren Tiefen kommt es jedoch infolge eines „Aufschwingens“ der Funk-
tionen zu physikalisch unsinnigen Verteilungen.

Eine Alternative bietet das Polynomverfahren [35, 51, 52, 53] durch An-
passung geeigneter Funktionen an die 2θϕψ-sin2ψ-Verteilungen. Die Berech-
nung der Ortsraumverläufe σ(z) erfolgt aus den Koeffizienten der Anpas-
sungsfunktionen. Das Verfahren beruht auf der Abhängigkeit von τ vom
Abzissenparameter sin2ψ.4 Damit sind im Falle zweiachsiger Spannungs-
zustände die Dehnungen εφ,ψ in Gleichung 2.25 eine Funktion von sin2ψ

gemäß
εϕ,ψ(τ) = εϕ,ψ(τ [sin2ψ]).

Eine Entscheidung, welches Polynom den Ortsraumverlauf am geeignetsten
wiedergibt, erfolgt, indem mehrerer Anpassungen mit sukzessiv steigenden
Polynomgraden n vorgenommen werden. Ergeben mehrere Polynome mit

4Die Abhängigkeit τ von sin2ψ ergibt sich aus Gleichung 2.27 unter Beachtung
cosψ =

p
1− sin2ψ in der Ψ bzw. Ω-Beugungsanordnung [21, 54], bei der die Proben-

kippung ψ in der Diffraktometerebene (d. h. η = 0 in Gleichung 2.27) bzw. senkrecht zur
Diffraktometerebene (d. h. η = 90◦) erfolgt.
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Abbildung 2.7: Rücktransformation einer Eigenspannungsverteilung σ(τ)
im Oberflächenbereich einer kugelgestrahlten Al2O3-Keramik mit Polyno-

mansätzen der Form σ‖(z) =
N∑
k=1

akz
k in [50] (durchgezogene Linie = σ(τ),

gestrichelt = σ(z)).

aufeinanderfolgenden Graden einen vergleichbaren Spannungsverlauf, wird
die Lösung als stabil angesehen (vgl. Abbildung 2.8). Der Tiefenbereich, für
den die Polynome verlässliche Ergebnisse liefern, ist allerdings wiederum auf
den oberflächennahen Bereich beschränkt.

Eine Weiterführung stellt das Abschnitt-Polynom-Verfahren [55] dar, in
dem die abschnittsweise Beschreibung der Eigenspannungstiefenverteilun-
gen durch Polynome niedrigen Grades (Splines) vorgenommen wird. Ziel ist
neben der erhöhten Flexibilität in der Anpassung eine verbesserte Lösungs-
stabilität.

Vergleicht man die mittels Universalplot-Auftragung (Abb. 2.7) und
(Abschnitt-)Polynom-Verfahren (Abb. 2.8) erzielbaren Lösungen
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Abbildung 2.8: Wiedergabe eines Eigenspannungstiefenverlauf σ(z) in ei-
ner oberflächenbearbeiteten Al2O3/T iC Keramik mittels Polynomen g-ten
Grades (links) und Anpassung des 2θϕψ-sin2 ψ-Verlaufs (rechts) mit einem
Polynom 3. Grades in [51].

σii(z) (i = 1,2) miteinander, so ist festzuhalten, dass beide Verfahren mit
Unsicherheiten behaftet sind, die aus numerischen Instabilitäten resultie-
ren. Beim (Abschnitt-)Polynom-Verfahren ist ferner anzumerken, dass die
Ortsraumverläufe σ(z) in einem Schritt aus der Anpassungfunktion gegen
sin2 ψ erhalten werden und ein wichtiger Schritt quasi „übersprungen“ wird
(nämlich d-sin2 ψ → σ(z) anstatt d-sin2 ψ → σ(τ) → σ(z)), so dass eine
Beurteilung der Anpassung aufgrund des mangelnden anschaulichen Zu-
sammenhangs schwierig ist.

2.2.5 Eigenschaften der Ortsraummethoden zur Bestimmung lang-
reichweitiger Eigenspannungsgradienten σ(z)

Die diffraktometrische, zerstörungsfreie Bestimmung von Spannungsvertei-
lungen im Ortsraum erfordert eine definierte räumliche Beschränkung des
zum Beugungssignal beitragenden Streuvolumens. Der primäre Strahlen-
gang wird dazu mittels laborfester (ortsfester) Blenden begrenzt oder mit-
tels Linsen fokussiert; sekundärseitig erfolgt die Begrenzung mittels ortsfe-
ster Blendensysteme. Ausschließlich der Bereich der Überschneidung beider
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Strahlengänge trägt zum Beugungssignal bei und wird als Volumenelement
(VE) bezeichnet (vgl. Abb. 2.5). Translatiert man die Probe relativ zum
ortsfesten VE, lassen sich Beugungsinformationen in Abhängigkeit vom Pro-
benort erhalten. Eindringtiefen, die einem Mehrfachen der VE-Ausdehnung
entsprechen, die durch die Forderung nach ausreichender Kornstatistik ei-
ne (materialunabhängige) Mindestgröße nicht unterschreiten darf, werden
durch hochenergetische Neutronen- und Synchrotronstrahlung ermöglicht,
die ein hohes Durchdringungsvermögen aufweisen.

Allerdings müssen bei den Neutronenverfahren aufgrund der geringen
Wechselwirkung von Neutronen mit Materie und dem im Vergleich zu Syn-
chrotronquellen geringen Fluss große VE von mindestens 0,5 mm3 verwen-
det werden [28]. Dadurch kann kein Überlappungsbereich zu den Laplace-
Verfahren, die Synchrotronstrahlung bzw. Röntgenstrahlung nutzen, herge-
stellt werden (vgl. Abbildung 2.4). Im Weiteren wird daher auf eine detail-
lierte Betrachtung der Neutronenverfahren verzichtet.

Die in den Experimenten dieser Arbeit genutzte Synchrotronstrahlung
hingegen weist eine Reihe von positiven Eigenschaften auf, denn sie besitzt
[56, 57, 58]:

a) einen um viele Größenordnungen höheren Photonenfluss als herkömm-
liche Strahlungsquellen,

b) einen breiten Spektralbereich,

c) eine hohe Brillianz (Anzahl der Photonen, die pro Flächeneinheit der
Quelle und Sekunde in einen Einheitsraumwinkel dΩ emittiert wer-
den),

d) eine geringe Vertikaldivergenz δv ∝ 1/γ mit γ = E/E0 (E = Teilchen-
energie, E0 = Ruheenergie),

e) sowie eine geringe Horizontaldivergenz δh, bedingt durch den großen
Abstand von Quelle zum Experiment.

Bei den Ortsraumverfahren wird sowohl der durch einen Monochromator
diskret einstellbare Wellenlängenbereich genutzt (winkeldispersive Varian-
te), als auch der weiße Strahl mit einer der Synchrotronquelle typischen
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Photonenverteilung direkt verwendet (energiedispersive Variante). In bei-
den Fällen finden Photonen hoher Energien im Bereich von einigen zehn bis
einigen hundert keV Verwendung, um eine hohe Eindringtiefe zu erreichen
( >1 cm in Stahl, > 10 cm in Al). Die Zählzeiten sind im Allgemeinen um
Größenordnungen geringer als bei Neutronenexperimenten und liegen übli-
cherweise im Bereich von Sekunden [28]. Oft ist nicht der von der Quelle
bereitgestellte Photonenfluss der zeitbestimmende Faktor, sondern die Tot-
zeit des Detektors, das heißt, dessen Vermögen, eintreffende Photonen in
einer bestimmten Zeit elektronisch verarbeiten zu können.

Gemäß Gleichung 2.12 sind hohe Energien prinzipiell mit entsprechend
geringen Beugungswinkeln (2θ ≈ 4− 20◦) verbunden, so dass das Volumen-
element eine langgestreckte rautenförmige Querschnittsfläche aufweist. Das
Verhältnis von Länge wV E zu Höhe hV E des VE ist unter symmetrischen
Bedingungen (θ = ω, Blendenweite des Primärstrahls = Blendenweite des
Sekundärstrahls) durch wV E/hV E = 1/tanθ gegeben (Abb. 2.9a). Bei üb-
lichen 2θ von 2 bis 10◦ ist wV E/hV E ≈ 10 − 60, das heißt die Ortsauflösung
hängt in direkter Weise mit der Lage der Probe relativ zur Messrichtung
Nhkl zusammen (Abb. 2.9b und c).

Eine Unterscheidung in Transmissions- und Reflexionsanordnung erscheint
an dieser Stelle zweckmäßig, da das im Rahmen dieser Arbeit entwickelte
Verfahren überwiegend in Reflexionsanordnung zur Anwendung kommen
soll, während die üblicherweise verwendeten Verfahren in Transmission an-
gewendet werden.

In der Transmissionsanordnung (Abbildung 2.9b) durchdringt der Strahl
die gesamte Probe. Das Verhältniss von tatsächlichem Strahlweg s zur Mes-
stiefe z ist maximal

s/z = 2/ cos θ.

Taucht der primäre Strahl im selben spitzen Winkel θ in die Probe ein,
unter dem der gebeugte Strahl sie auch wieder verlässt (Reflexionsanord-
nung, Abbildung 2.9c), ist das Verhältnis von effektivem Strahlweg zur Mes-
stiefe durch

s/z = 2/ sin θ

gegeben und so für kleine 2θ deutlich ungünstiger als im Falle der Trans-
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Abbildung 2.9: Geometrische Beschreibung des VE (a) und Zusammenhang
von Ortsauflösung und Messrichtung (b und c). Der effektive Strahlweg s
ist bei gleichem Abstand von der Oberfläche z in Transmission (b) deutlich
geringer als in Reflexion (c).
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mission.
Als Beispiel sei die Interferenz Feα-110 (d0 = 0, 203 nm) aufgeführt,

die bei einer monochromatischen Strahlung der Energie von 50 keV unter
einem Winkel 2θ von ≈ 7◦ auftritt. In Transmission ist die durchstrahlba-
re Dicke ≈ 33 mal so groß wie in der Reflexionsanordnung. Legt man die
Laplace’sche Eindringtiefe τ(ψ = 0) gemäß Gl. 2.27 zugrunde, steht eine
Informationstiefe in Reflexion von ≈ 0,02 mm einer Messtiefe in Transmis-
sion von ≈ 0,6 mm gegenüber.

2.2.6 Strain-Scanning-Verfahren

Die für die Verfahren geprägte Bezeichnung „strain scanning“ trägt dem Um-
stand Rechnung, dass in den meisten Fällen keine Bestimmung der Span-
nungskomponenten erfolgt, sondern lediglich die Dehnungsverteilungen als
Funktion des Probenortes angegeben werden. Dazu werden in [28] mehrere
Gründe genannt. Zum einen ist eine Bestimmung von sechs unabhängigen
Richtungen aufgrund des hohen Zeitaufwandes oftmals nicht möglich, zum
anderen aber auch aus experimentellen Gründen nur eingeschränkt realisier-
bar, da sowohl die Zugänglichkeit des Probenortes als auch die Ortsauflö-
sung von der Messrichtung abhängen. Da unterschiedliche Messrichtungen
stets mit veränderten Orientierungen des VE bzgl. des Probensystems ein-
hergehen, wird im Falle komplizierter VE-Geometrien (z. B. langgestreckte
Raute) effektiv ein wesentlich größeres Messvolumen in Form einer „Korona“
um einen gewissen Kernbereich herum erfasst (Abb. 2.10).

Die Reduzierung der Anzahl von Messrichtungen erfolgt unter Berück-
sichtigung der Bauteilstruktur, -form und -vorgeschichte. So wird bei Mes-
sungen an Schicht- und Faserverbunden (z. B. in [28, 59]) sowie Schweiß-
nähten (z. B. in [60, 61]) in der Regel von der Annahme ausgegangen, dass
das Probensystem mit dem Hauptachsensystem der Spannungen überein-
stimmt. Bei der Bestimmung von Eigenspannungen im oberflächennahen
Bereich wird parallel zur Oberfläche ein zweiachsiger rotationssymmetri-
scher Eigenspannungszustand vorausgesetzt und die Spannungskomponente
σ‖ = σ11 = σ22 aus der Dehnungskomponente senkrecht zur Oberfläche ε33
mit Hilfe der elastischen Konstanten (σ‖ = −Ehklε33(z)/2νhkl) berechnet
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Abbildung 2.10: Zur Veranschaulichung des effektiven Messvolumens bei
Kippung der Probe relativ zum ortsfesten Volumenelement.

(beispielsweise in [62, 63]).
Die Bestimmung der Spannungen aus den Dehnungen erfordert die Kennt-

nis des dehnungsfreien Gitternetzabstands d0 (Gleichungen 2.13). Insbe-
sondere bei der Beschränkung der Messrichtungen auf die Richtungen des
Hauptspannungssystem ist die Kenntnis des exakten d0 der zu untersu-
chenden Probenstelle unerlässlich. In der Praxis werden zur Bestimmung
mehrere, dem Messproblem angepasste Möglichkeiten in Betracht gezogen:

a) Bei der Bestimmung von Spannungen im Werkstoffvolumen ist die
Nutzung einer spannungsfreien chemisch identischen Referenzprobe
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möglich.

b) Im Falle von lokal begrenzten Spannungsfeldern kann ein weit ent-
fernter, von der Spannung als unbeeinflusst betrachteter Bereich zur
Ermittlung von d0 herangezogen werden.

c) Bei Eigenspannungsverläufen über eine Querschnittsfläche A kann ge-
mäß der Gleichgewichtsbedingungen (Gl. 2.7) d0 aus dem Mittelwert
der gemessenen Gitterabstände d über A bestimmt werden.

Gemäß Abbildung 2.4 kann das Strain-Scanning-Verfahren in zwei Schrit-
te eingeteilt werden, die das Eintauchen des VE in die Oberfläche („through
surface strain scanning“) und das anschließende Durchscannen des Volumens
(„strain scanning“) wiedergeben.

Beim Eintauchen des VE in die Oberfläche treten eine Reihe von Ein-
flussfaktoren auf, deren Ausprägung vom individuellen experimentellen Auf-
bau und der Strahlgeometrie abhängen [29, 64, 65, 66, 67]:

a) Die Verteilung der Wellenlängen über den primären Strahlquerschnitt
und folglich über den VE-Querschnitt sind aufgrund der Eigenschaf-
ten von Quelle und Monochromator inhomogen. Bei monochromati-
schen Experimenten tragen sie daher beim Eintauchvorgang des VE
in die Oberfläche signifikant zur Interferenzverschiebung bei. Im Fal-
le der energiedispersiven Synchrotronexperimente können die Effekte
aufgrund des großen Abstands von Quelle zum Experiment in der Re-
gel vernachlässigt werden.

b) Die Eigenschaften der primären und sekundären optischen Elemen-
te, z. B. die Divergenz des Sollers und die Form der Blendenöffnun-
gen, bestimmen den Strahlengang und somit die Form des VE. Bei
der mathematischen Beschreibung der optischen Elemente werden oft
vereinfachende Ansätze gewählt, um eine analytische Lösung der geo-
metrischen Verhältnisse beim Eintauchvorgang zu ermöglichen. Bei-
spielsweise wird in [66] die winkelabhängige Intensitätsverteilung einer
Sollerblende durch eine Normalverteilung angenähert und nicht durch
eine Dreiecksfunktion entsprechend der grundlegenden Theorie in [68]
beschrieben.
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c) Wie in Abbildung 2.11 dargestellt, bestimmt beim Eintauchvorgang
nicht das gesamte durch die Blenden definierte VE die Informations-
schwerpunktlage, sondern nur der Teil des VE, der in die Oberfläche
eingetaucht ist. Dadurch kommt es beim Eintauchen zu einer suk-
zessiven Schwerpunktverschiebung, die zu einer Verschiebung des ef-
fektiven Beugungswinkels führt. Prinzipiell ist dabei der Einfluss der
Absorption zu beachten, bei Neutronenmessung wird dieser Term aber
wegen der geringen Wechselwirkung der Strahlung mit der Materie in
der Regel vernachlässigt.

d) Ein Teil des gebeugten Strahlengangs wird durch die sekundäre Blen-
de(n) beim Eintauchen des VE asymmetrisch abgeschnitten (Abb.
2.12) und so, abhängig von der Position des VE beim Eintauchvor-
gang, ein asymmetrisches, verschobenes Beugungsprofil hervorgerufen.

Bei der Herleitung der analytischen Lösung des Eintauchvorgangs wer-
den die Einzelbeiträge in einer Gewichtung f der Intensität I beim Beugungs-
prozess zusammengefasst. Der Schwerpunkt der 2θ- bzw. Energieverteilung
berechnet sich dann gemäß [69] zu

〈E〉 =
∫
E · f(E) · I(E) dE∫
f(E) · I(E) dE

.

Die Überprüfung der analytischen Beschreibungen erfolgte in [64, 67]
durch Monte Carlo Simulationen oder in [70, 64] experimentell durch die
Bestimmung der Winkel- bzw. Energieverschiebung innerhalb des VE mit
Hilfe von sehr dünnen Folien und Drähten. Es zeigt sich, dass die mathema-
tischen Ansätze die Korrektur der Messdaten innerhalb der Fehlergrenzen
erlauben.

Nach vollständigem Eintauchen des VE bleiben die geometrischen Ver-
hältnisse beim Durchscannen des Volumens unter der Voraussetzung eines
hinreichend homogenen und feinkörnigen Gefüges [71] unverändert, so dass
relative Korrekturen der Interferenzlage nicht notwendig sind. Allerdings er-
scheint die Entfaltung der gemessenen Verteilung von dem Intensitäts- und
Interferenzlagenprofil des VE in Hinblick auf eine Verbesserung der Orts-
auflösung insbesondere in den Fällen sinnvoll, bei denen die Ausdehnung
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Abbildung 2.11: Veränderung der VE-Querschnittsfläche beim schrittwei-
sen Eintauchen des VE in die Probe bei 2θ = 90◦: Der Schwerpunkt des
“effektiven” VE (◦) verschiebt sich relativ zum geometrischen Mittelpunkt
(•) [29].

des VE im Verhältnis zur Eindringtiefe groß ist. Ein entprechender Ansatz
lässt sich in [72] finden. Die mathematisch aufwendige Prozedur trägt dabei
dem Umstand Rechnung, dass die einzelnen Datenpunkte des gemessenen
Verlaufs mit Fehlern behaftet sind, obwohl aus mathematischer Sicht auf-
grund der Faltung des Dehnungsprofils mit dem VE-Profil ein „geglätteter“
Verlauf erwartet wird.
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Abbildung 2.12: Ausbildung eines asymmetrischen Beugungsprofils in Ab-
hängigkeit vom VE-Bereich bedingt durch sekundäre Strahlbegrenzung nach
[29].

Für die experimentelle Umsetzung des Strain-Scanning-Konzeptes ist
eine Vielzahl von Methoden entwickelt worden, die jeweils unterschiedliche
Strahlungsquellen und Detektorkonzepte nutzen. Nach Abb. 2.13 [28] lässt
sich eine Einteilung anhand folgender Charakteristika vornehmen:

a) Monochromatischer Strahl, θ/2θ-Scans in Reflexions- und Transmis-
sionsanordnung, mit und ohne Analysatorkristall (Abb. 2.13i),

b) Monochromatischer Strahl, Transmission, CCD Flächendetektor, mit
und ohne Fokussierung des Primärstrahls, mit und ohne sekundäre
Blendensysteme (Abb. 2.13ii),

c) Energiedispersive Methoden mit Halbleiterdetektoren (Abb. 2.13iii).

Das zuerst genannte Konzept wird beispielsweise an der ESRF (Euro-
pean Synchrotron Radiation Facility) an den Beamlines SRS 16.3 [28, 73],
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Abbildung 2.13: Einteilung der Strain-Scanning - Synchrotronmethoden in
[28].

BM16 [60, 62] und ID15 [30] zur Untersuchungen von Aluminiumwerkstof-
fen eingesetzt. Geringe Beugungswinkel zwischen 5◦ und 15◦ bei Strahlener-
gien im Bereich von 30 - 40 keV erzeugen VE mit einem Seiten-zu-Höhe-
Verhältnis von 7:1 bis 10:1. Die Blendenöffnungen betragen minimal 0,1 mm
und definieren so VE mit einer Ausdehnung von etwa 0,1 mm × 1 mm. Die
Verwendung eines sekundären Analysatorkristalls erlaubt bei den Experi-
menten eine signifikante Verringerung der zu korrigierenden Effekte beim
Eintauchvorgang [30].

Abb. 2.14 verdeutlicht die Problematik bei der Bestimmung von Eigen-
spannungen aus den im Strain-Scanning-Verfahren ermittelten Dehnungs-
verläufen [62]. Betrachtet wurden zwei unterschiedliche Fälle, die jeweils auf
den Tiefenverlauf σ‖ der in-plane-Spannungskomponente führen:

a) Wird das VE in Reflexionsanordnung unter ψ = 0 eingetaucht („nor-
mal gauge“), erfasst man gerade die Dehnungen der oberflächenparal-
lelen Netzebenen ε⊥(hkl, z) (vgl. Abb. 2.9b), und es gilt

σ‖(z) = −
(
E

2ν

)
hkl

ε⊥(hkl, z) (Querkontraktionseffekt).
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b) Taucht das VE hingegen unter dem spitzen Winkel 2θ in die Probe ein
(Transmissionsanordnung, „in-plane gauge“), erhält man die direkt von
der in-plane-Spannung beeinflussten Gitterdehnungen der senkrecht
zur Oberfläche liegenden Netzebenen ε‖(hkl, z) (vgl. Abb. 2.9a). In
diesem Fall wird:

σ‖(z) = −
(

E

1− ν

)
hkl

ε‖(hkl, z) .

Dem Vorteil der wesentlich höheren Ortsauflösung im ersten Fall steht
lediglich die um einen Faktor von etwa drei (Querkontraktion) höhere Sen-
sitivität der Messanordnung im zweiten Fall gegenüber.

Die in den „in-plane“- und „normal“-Richtungen ermittelten oberflächen-
parallelen Spannungsverteilungen zeigen im Bereich der ersten 0,3 mm deut-
liche Abweichungen, die auf die unterschiedlichen geometrischen Verhält-
nisse beim Eintauchen der VE zurückzuführen sind. Der mittels sin2 ψ-
Verfahren ermittelte Oberflächenwert spricht dafür, dass die Umrechnung
aus der Dehnung parallel zur Oberflächennormalen den tatsächlichen Ei-
genspannungsverlauf besser wiederspiegelt als die „in-plane“- und Neutro-
nenmessung. Die Anwendung der kürzlich in [72] entwickelten Methode zur
Entfaltung von Messprofilen zeigt die Schwierigkeiten, eine Übereinstim-
mung in den in unterschiedlichen Orientierungen bestimmten Verläufen zu
erreichen (kleines Bild in Abb. 2.14).

Eine Weiterentwicklung der monochromatischen Verfahren stellt der Ein-
satz von hochauflösenden CCD (charge-coupled device) Flächendetektoren
dar (Abb. 2.13ii), die in Verlängerung der Strahlachse hinter der Probe po-
sitioniert werden. Durch ausschnittsweise oder ganze Aufnahme von Debye-
Scherrer-Ringen können so richtungsabhängige Informationen innerhalb von
kurzen Aufnahmezeiten gewonnen werden, ohne das Probensystem relativ
zum Laborsystem zu kippen, was diese Methoden für in-situ-Experimente
besonders geeignet erscheinen lässt [74]. Günstig in Bezug auf die geringe zur
Verfügung stehende Detektorfläche wirkt sich dabei aus, dass die Beugungs-
information infolge der hohen Strahlenergien bzw. kurzen Wellenlängen auf
einen kleinen Raumwinkelbereich beschränkt bleibt.

Die im Detektor gesammelte Intensität wird nach einem Algorithmus
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Abbildung 2.14: Eigenspannungtiefenverläufe σ(z) ermittelt mit Strain-
Scanning-Experimenten unterschiedlicher Strahlungen und Beugungsbedin-
gungen (a) an einer einseitig gestrahlten Al7071-Platte in [62] (b). Zum
Vergleich der oberflächennahe Wert aus einer sin2ψ-Messung (M). Kleine
Abbildung: Mittels Entfaltung erhaltene Verläufe in [72].
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ausgewertet, bei dem nach geometrischen Korrekturen mit Hilfe einer Re-
ferenzprobe die geeignete Integration über entsprechende Winkelbereiche
ausgeführt wird [75]. Das Verfahren reagiert auf Dejustageeffekte empfind-
lich. Nach [76] ist bei kleinen Bragg-Winkeln der Gitterabstand

d ≈ 2λL
D

(L = Proben - Detektor - Abstand, D = Durchmesser des Beugungsrin-
ges). Daraus folgt unmittelbar, dass sich schon kleine Unsicherheiten in
der Proben- und Detektorpositionierung erheblich auf die Dehnungsbestim-
mung auswirken. Eine Vergrößerung des Proben - Detektor - Abstands ver-
ringert den Effekt deutlich [77, 78]. Darüberhinaus ist die Energiestabilität
des Synchrotronstrahls von großer Bedeutung, was entsprechende Anforde-
rungen an den Monochromator stellt.

Die Erweiterung des Verfahrens von dem zweidimensionalen Strain Scan-
ning relativ zur Oberfläche der durchleuchteten flachen Probe hin zu einem
dreidimensionalen Scanning mit hoher örtlicher Auflösung lässt sich mittels
konischer [79] und spiralförmiger [80] Blenden verwirklichen. Dabei wer-
den die Blenden variabel zwischen Probe und Detektor positioniert und
so die Ausdehnung des langgestreckten VE begrenzt. Die Fokussierung des
Primärstrahls ermöglicht dabei zwar VE geringer Ausdehnung, führte aber
andererseits zu Grobkorneffekten, die in [81] diskutiert werden. Das Verfah-
ren ist grundsätzlich auf die Transmissionsgeometrie beschränkt, da es sehr
sensibel auf Oberflächeneinflüsse reagiert. Das wird anhand der experimen-
tellen Vorgehensweise bei der Bestimmung des Oberflächeneintrags einer
kugelgestrahlten Al-Probe in [79] deutlich. Hier wurden Oberflächeneffekte
durch Aneinanderlegen zweier Proben unterdrückt und die Oberfläche „im
Volumen“ untersucht.

Seit den 70er Jahren wird Synchrotronstrahlung zur energiedispersiven
Beugung genutzt [82, 83]. Von ersten Strain-Scanning-Experimenten wird
Anfang der 80er Jahre berichtet [84, 85]. Ausgehend von systematischen Un-
tersuchungen werkstoffwissenschaftlicher Fragestellungen und methodischer
Weiterentwicklungen Ende der 90er Jahre [59, 86], die von der zunehmen-
den Verfügbarkeit hochenergetischer Synchrotronstrahlung bis zu mehreren
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100 keV (z. B. an der ESRF) profitierten, findet das ED Strain-Scanning
inzwischen als etablierte Methode Anwendung.

Neben der Bestimmung von Dehnungen aus den Energielagenpositionen
der detektierten Interferenzen lassen sich aus der Vielzahl der gleichzeitig
detektierten Interferenzen phasenspezifische Strukturen durch „scattering
intensity profiling“ [87, 88] abbilden, wobei auch Fluoreszenzlinien einbe-
zogen werden [89]. So lassen sich gezielt Bereiche innerhalb des Werkstoffs
aufspüren und untersuchen, beispielsweise Faserverbunde [59], Schichtsyste-
me [87] und Rissspitzen [90].

2.2.7 Schlussfolgerungen

In Tabelle 2.3 werden die Ortsraumverfahren den Laplace-Verfahren in
Hinblick auf ihre Anwendbarkeit im oberflächennahen Werkstoffbereich ge-
genübergestellt. Die Angabe der Messtiefe, die von der Strahlungsart, dem
Verfahren und der Probenabsorption sowie -geometrie abhängt, orientiert
sich dabei an Untersuchungen von Stahlproben mit Synchrotronstrahlung
im Energiebereich von 60 keV.

In der ersten Spalte der Tabelle wird auf die in Kapitel 2.2.3 beschrie-
benen Laplace-Verfahren Bezug genommen. Die Verfahren ermöglichen
unter wohldefinierten Voraussetzungen die Bestimmung aller Spannungs-
komponenten und komplexer Spannungsverteilungen. Der Messbereich er-
streckt sich von der unmittelbaren Oberfläche bis in eine durch Strahlungs-
art und Absorption der Probe festgelegte Tiefe. Insbesondere bei Nutzung
hochenergetischer, energiedispersiver Methoden und Auswertung mehrerer
Interferenzen kann in Abhängigkeit von der Schrittweite in der Kippung
ψ eine hohe Tiefenauflösung im Laplace-Raum erreicht werden. Die Ver-
fahren sind unter gewissen Annahmen selbstkonsistent, was heißt, dass die
Eigenspannungen ohne eine vorhergehende Bestimmung des spannungsfrei-
en Gitterparameters ermittelt werden können.

Wegen der Streuung der Messdaten ist die Überführung der Spannungs-
verläufe in den Ortsraum jedoch aus mathematischer Sicht problematisch.
Die „wahren“ Spannungsverläufe σ(z) sind mit Fehlern behaftet, so dass ein
Zusammenhang der „Ortsraum“-Eigenschaften (Inhomogenitäten, Schich-
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Tabelle 2.3: Zusammenstellung diffraktometrischer Verfahren zur Bestim-
mung von Spannungsgradienten in Hinblick auf die oberflächennahe Analy-
se.

 LAPLACE Strain-Scanning Abtrag 

Zugängliche Spannungskomponenten:   in 

Transmission 

in     

Reflexion  

 

σ11, σ22 + + - + 

σ11, σ22, σ33 + - - - 

σ13, σ23  + - - + 

Tiefe/Auflösung 

Max. Tiefe [µm] 100 >> 100 100 >> 100 

Übliche Tiefenauflösung bei der Messung [µm] 
1 > 200 >50 

je nach 

Abtragsschritt 

Verfahren/Probleme: 

Selbskonsistenz (d0-Problematik) + - - + 

Zuverlässige Bestimmung der Ortsraumverteilung - + + + 

Anwendung: 

Zerstörungsfrei + + + - 

Oberflächennaher Gradient + - (-) + 

Oberflächennahe vergrabene Schichten gleicher 

Zusammensetzung, Spannung 2-achsig und 

rotationssymmetrisch 

- (-) + (+) 

 

 

ten, Grenzflächen usw.) und Eigenspannungsverläufen im Laplace-Raum
nur schwer herzustellen ist. Daher erlaubt die Methode zunächst nur ei-
ne vergleichende Untersuchungen „ähnlicher“ Proben mit „ähnlichen“ Span-
nungsverläufen.

Die Strain-Scanning-Verfahren (zweite und dritte Spalte in Tab. 2.3) sind
auf die Bestimmung der Hauptspannungskomponenten σii(z) beschränkt, so
dass die Ausrichtung des Hauptspannungssystems als bekannt vorausgesetzt
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und das Probensystem entsprechend gewählt werden muss. Die Messungen
lassen sich entweder in Transmissions- oder Reflexionsgeometrie durchfüh-
ren.

Der Vorteil der Transmissionsanordnung, bei der die oberflächenparalle-
len Dehnungen bestimmt werden, besteht in der erreichbaren Messtiefe, die
insbesondere bei hochenergetischer Röntgenstrahlung um ein Vielfaches grö-
ßer ist als in Reflexion. Hingegen ist die Tiefenauflösung deutlich geringer,
weil das langgestreckte VE senkrecht zur Oberfläche positioniert ist (vgl.
Abb. 2.9). Wegen der komplexen Beugungsbedingungen beim Eintauchen
des VE in die Probenoberfläche ist daher selbst bei Entfaltung des Mes-
sprofils vom VE-Profil eine zuverlässige Bestimmung der oberflächennahen
Eigenspannungsverteilungen schwierig.

Zur Messung im oberlächennahen Bereich bis ca. 30 µm an die Ober-
fläche heran wird daher die Reflexionsanordnung genutzt, bei der das VE
parallel zur Oberfläche in die Probe eintaucht und so die senkrecht zur
Oberfläche verlaufenden Dehnungen wahrgenommen werden. Die Bestim-
mung der Eigenspannungen aus der Querkontraktion ist allerdings an wei-
tere Voraussetzungen, wie σ11 = σ22 = σ‖ und σ33 = 0, gebunden. Eine
Einbeziehung beider aus Transmisssions- und Reflexionsanordnung erhalte-
nen Dehnungsverläufe zur Bestimmung der Eigenspannungen ist aufgrund
der unterschiedlichen Beugungsbedingungen problematisch.

Es zeigt sich, dass die bisher existierenden zerstörungsfreien Ortsraum-
methoden aufgrund ihrer stark einschränkenden Annahmen hinsichtlich des
Spannungszustandes, der geringen Ortsauflösung und der d0-Problematik
nur unzureichend im oberflächennahen Bereich eingesetzt werden können,
in dem die Laplace-Verfahren sensitiv sind. Aus der mangelnden Ver-
zahnung beider Verfahren ergibt sich die Forderung nach einer Ortsraum-
Messmethodik, die bei einer hohen Ortsauflösung selbstkonsistent und zer-
störungsfrei zu den Laplace-Verfahren komplementäre Ergebnisse liefert.
Ziel ist dabei auf der einen Seite die Bewertung und Weiterentwicklung
der analytischen ILT und auf der anderen Seite die Erschließung komplexer
Werkstoffsysteme wie mehrlagige Schichtsysteme.

Der Ansatz der energiedispersiven Beugung bietet dabei den Vorteil,
dass zur Aufnahme des Beugungsspektrums kein „Abscannen“ des Beu-
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gunswinkels θ notwendig ist und somit die Beugungsgeometrie während
des Aufnahmevorganges unverändert bleibt. Weiterhin können bei Photo-
nenenergien an Synchrotronexperimenten zwischen 10 und 130 keV mittels
Laplace-Verfahren große Eindringtiefen erreicht werden, so dass ein weiter
Überlappungsbereich mit den Ortsraummethoden möglich wird (vgl. Abbil-
dung 2.4). Den einfachen Beugungsbedingungen stehen allerdings besondere
Anforderungen an die Eigenschaften der ED Detektoren gegenüber, deren
Stabilität entscheidend zur Qualität der Ergebnisse beitragen. Daraus er-
gibt sich die Notwendigkeit zu grundlegenden Untersuchungen, die in Kap. 3
einen entsprechenden Raum einnehmen.

Mit dem in Tab. 2.3 in Spalte vier aufgeführten (zerstörenden) Abtrags-
verfahren lassen sich die Ergebnisse der Laplace- und des in dieser Arbeit
entwickelten Verfahrens verifizieren. Dabei sind die vergleichsweise geringen
Einschränkungen hinsichtlich des Spannungszustandes, die hohe Ortsauflö-
sung und die weite Abtragstiefe von Vorteil.
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3 Grundlegende Untersuchungen zur energie-
dispersiven RSA

3.1 Motivation

Bei energiedispersiven Eigenspannungsanalysen an Standardproben war zu
beobachten, dass wiederholte Untersuchungen derselben Proben unter „na-
hezu“ identischen Bedingungen zu signifikanten Abweichungen in den Ergeb-
nissen führten. Da sich nur wenige Arbeiten ([25, 26, 33]) detailliert mit der
Analyse von Eigenspannungsgradienten mittels Laplace-Verfahren unter
Nutzung energiedispersiver Beugung beschäftigen, ließen sich keine Hinwei-
se zu den Ursachen in der Literatur finden. Mit dem vorliegenden Kapitel
wird daher die Absicht verfolgt, entscheidende, bislang aber unzureichend
beachtete Fehlerquellen zu identifizieren und so in der RSA zu berücksich-
tigen, dass eine hohe Zuverlässigkeit der ED Methoden gewährleistet ist.

Zur Bewertung möglicher Fehlerquellen wird in Abb. 3.1 ein Vergleich
der energiedispersiven mit den etablierteren winkeldispersiven Verfahren ge-
zogen. Während Fehler in den materialspezifischen Größen bei beiden Ver-
fahren in gleicher Weise die Bestimmung der Eigenspannungsverteilungen
beeinträchtigen, ist der Einfluss der geometrischen Abweichungen unter-
schiedlich zu bewerten. Auf der einen Seite wird bei der ED Beugung der
Beugungswinkel 2θ konstant gehalten, und so eine mögliche geometrische
Fehlerquelle ausgeschlossen. Durch die deutlich geringeren Beugungswinkel
im Vergleich zur WD Beugung auf der anderen Seite fällt der Kugelfehler
der Eulerwiege aber stärker ins Gewicht, der als scheinbare Dehnung εS

nach

− ∆θ
tan θ

=
∆d(hkl)
d(hkl)

= εS (3.1)

eingeht5. Hinzu kommt, dass dem Vorteil der hohen Parallelität von Syn-
chrotronstrahlung eine mangelnde Verfügbarkeit von parallelisierenden Op-
tiken im sekundären Strahlengang gegenübersteht.

5Die nach Ableitung von Gl. 2.13 erhaltene Gleichung gilt nur für geringe Änderungen
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Abbildung 3.1: Mögliche Fehlerquellen in der diffraktometrischen RSA und
Einfluss auf die Methoden der winkeldispersiven und energiedispersiven
Beugung.

Neben den geometrischen Faktoren sind die spezifischen Eigenschaften
der energiedispersiven Detektoren von Bedeutung. Diese leisten mit der
Energieauflösung den Beitrag, der im WD Experiment mittels des zeitauf-
wendigen 2θ-Scans realisiert wird. Gemäß Gl. 2.12 und Gl. 2.13 werden die
Dehnungen aus den Energielagenverschiebungen nach

εϕψ(hkl) =
∆dϕψ(hkl)
d0(hkl)

= −∆Eϕψ(hkl)
E0(hkl)

(3.2)

bestimmt. Da Schwankungen in den Energielagen als scheinbare Dehnun-
gen εS in die Berechnung der Spannungwerte eingehen, sind höchste An-
forderungen hinsichtlich der Energielagenstabilität an das Detektorsystem
zu stellen. Herstellerangaben zu der Energiestabilität der Detektorsysteme,
insbesondere als Funktion der Zählrate, in dem für die ED RSA interessan-
ten Energiebereich bis einige hundert keV sind allerdings nicht verfügbar.
Im MeV-Bereich, in dem die Detektorsysteme überwiegend zu spektroskopi-
schen Anwendungen in der Nuklearphysik genutzt werden, gibt es hingegen

∆θ.
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einige Untersuchungen, die auf eine Abhängigkeit der Energiestabilität von
der Photonenrate auch im Bereich von 10 - 150 keV hinweisen.

Das Kapitel beginnt mit der Identifikation möglicher Fehlerquellen bei
der Detektion von Photonen unterschiedlicher Energien. Diese verlangt eine
detaillierte Betrachtung der Wirkungsweise des Detektorsystems, um eine
möglichst vollständige Matrix von Einflussparametern aufzustellen und aus
dieser die für die Methoden der RSA wesentlichen Größen für eine geeignete
Untersuchung auszuwählen. Es folgt die Quantifizierung der Energielagen-
stabilität bei dem eingesetzten Detektorsystem, die im Rahmen dieser Ar-
beit erstmalig und mit hoher Auflösung durchgeführt und in [91] und [92]
hinsichtlich der Bedeutung bei der RSA dargestellt wurde.

3.2 Einfluss von Detektoreigenschaften auf das Beu-
gungsbild

3.2.1 Wirkungsweise des ED Germanium-Detektors

Die bei der γ-Spektroskopie im Energiebereich bis einige hundert keV rele-
vanten Wechselwirkungsmechanismen im Halbleiterkristall des Ge-Detektors,
der Photo- und der Compton-Effekt, werden in den Fachbüchern [93, 94, 95,
96, 97] ausführlich behandelt.

Der Photoeffekt (auch als Absorptionseffekt bezeichnet) beschreibt die
Wechselwirkung eines γ-Quants mit den Hüllenelektronen. Dabei entfernt
ein γ-Quant das Elektron aus seinem gebundenen Zustand, wenn dessen
Energie Eγ größer als die Bindungsenergie EB des Elektrons ist. Dabei
wird die gesamte Energie des γ-Quants auf das Elektron übertragen, wobei
die „überschüssige“ Energie als kinetische Energie auf das Elektron übergeht.
Das Quant wird ausgelöscht. Der freigewordene Platz in der Elektronenhülle
wird durch nachrückende Elektronen aus höheren Schalen besetzt, die bei
dem Übergang ein charakteristisches Röntgenquant erzeugen, welches den
Absorber in der Regel nicht verlässt6. Der Wirkungsquerschnitt für den
Photoeffekt σPh ist von der Kernladungszahl z und der Energie E der γ-

6gilt für Elemente z > 25
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Abbildung 3.2: Wechselwirkungsmechanismen im Halbleiterkristall.7

Quanten abhängig. Durch experimentelle Bestimmung der Extinktion erhält
man den in Abb. 3.2 gezeigten Verlauf

σPh ∝ zαEδγ (3.3)

mit 4 < α < 5 und δ ≈ -3.5 im hier betrachteten Energiebereich bis einige
hundert keV (Abb. 3.2). Ist die Quantenenergie gerade so groß wie die Bin-
dungsenergie der Elektronen ändert sich der Wirkungsquerschnitt unstetig,
man spricht von Absorptionskanten (bei Ge etwa bei 11 keV).

Der Compton-Effekt lässt sich als eine unelastiche Streuung des γ-Quants
an einem quasi ruhenden Elektron auffassen, wobei das γ-Quant einen Teil

7Canberra Application Note AN-D-8901: Compton Suppression Made Easy
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seiner Energie an das Elektron abgibt und seine Ausbreitungsrichtung än-
dert. Die abgegebene Energie ist ein variierender Bruchteil von Eγ und
daher bei der γ-Spektroskopie ein unerwünschter Effekt. Zusätzlich hängt
der Wirkungsquerschnitt in komplexer Weise von der Energie des γ-Quants
ab [98, 99]. Die maximale auf das Elektron übergehende Energie ist dabei
durch den Ausdruck

Ee,max = Eγ
2ε

1 + 2ε
mit ε =

Eγ
m0c2

(3.4)

gegeben, der einen Anstieg des Untergrundes unterhalb eines detektierten
Peaks („Comptonkante“) beschreibt.

Die Detektion der Quantenenergie erfolgt beim Germanium-Detektor in
einer Halbleiterdiode. Diese besteht aus angrenzenden p- und n-dotierten
Bereichen, zwischen denen sich eine ladungsträgerverarmte Zone ausbil-
det. Durch Anlegen einer äußeren Spannung von bis zu einigen kV wird
der durch die Raumladung erzeugte Potentialsprung beider Bereiche erhöht
und die Breite der Zone von einigen Mikrometern auf einige Millimeter ver-
größert. Der mit der Erhöhung des Feldes einhergehenden Zunahme des
Kriechstroms und der damit verbundenen Verschlechterung der Detektorei-
genschaften wird mit der Kühlung des Halbleiters durch flüssigen Stickstoff
begegnet. In diese Zone eindringende γ-Quanten setzen entsprechend dem
Photo- und Comptoneffekt energiereiche Elektronen frei. Dabei wird ein
Teil der Energie zur Erzeugung von Phononen verbraucht. Ein anderer wird
auf dem Weg der Elektronen durch den Festkörper auf Valenzelektronen
übertragen, die in das Leitungsband übergehen und Vakanzen („Löcher“)
hinterlassen, die sich wie positive Ladungsträger verhalten. Durch das ho-
he elektrische Feld der Verarmungszone wird die Trennung der Elektronen
und Löcher möglich, die als Ladungsimpulse auf den Elektroden registriert
werden. Der Betrag des Impulses ist ein Maß für die Energie des primären
Elektrons, von der wiederum unter entsprechenden Voraussetzungen auf Eγ
geschlossen werden kann.

Eine wesentliche Detektorkenngröße ist das energetische Auflösungsver-
mögen, das die zuverlässige Unterscheidung zweier Spektrallinien bestimmt.
Dieses ist zunächst durch die Wechselwirkungsmechanismen im Detektorkri-



3.2 Einfluss von Detektoreigenschaften auf das Beugungsbild 51

stall gegeben. Dabei ist von Bedeutung, dass die Freisetzung der Elektron-
Loch-Paare nur unter der Beteiligung von Phononen möglich ist, so dass
Eγ statistisch auf die Phononen- und Elektron-Loch-Paar-Erzeugung ver-
teilt wird. Die physikalische Beschreibung trägt dem durch Einführung des
Fanofaktors F [100] Rechnung, so dass für die Halbwertsbreite ∆EHWB in
erster Näherung

δEHWB =
[
(∆Eamp)2 + 5, 546FεE

]1/2 (3.5)

gilt, wobei ε die Bildungsenergie für das Elektronen-Loch-Paar ist und
∆EAmp alle elektronischen Effekte, wie beispielsweise das Rauschen des an
den Detektor angeschlossenen Verstärkers, zusammenfasst.

Eine weitere Detektorkenngröße ist die Effizienz, also die Energieabhän-
gigkeit der Nachweiswahrscheinlichkeit für ein γ-Quant. Da nur die Quanten
nachweisbar sind, die über den Photoeffekt mit den Elektronen in Wechsel-
wirkung getreten sind, fällt die Effizienz mit zunehmender Bedeutung des
Compton-Effekts mit steigender Photonenenergie ab (Abb. 3.3).

3.2.2 Zusammenhang zwischen Detektorelektronik und der Im-
pulsverarbeitung

Die im Detektor erzeugte elektrische Ladungsmenge, von der auf Eγ zurück-
zuschließen ist, wird durch die in Abb. 3.4 skizzierte Elektronik erfasst und
abgespeichert. Dazu wird zunächst im Vorverstärker mittels eines Operati-
onsverstärkers (Integrator) ein Spannungsimpuls erzeugt, dessen Höhe pro-
portional zu Eγ ist. Die Entladung des Integrationskondensators Ck erfolgt
dabei üblicherweise konitinuierlich durch einen Widerstand (RC feedback).
Da es zu Unterschwingungen kommen kann, die eine korrekte Bewertung ei-
nes nachfolgenden Impulses unmöglich machen, lässt sich eine Untergrund-
korrektur manuell vornehmen („pole/zero-compensation“). Um die Effekte
zu vermeiden, die zu einer Verminderung der Energieauflösung führen, wird

8Germanium Detectors, User’s Manual, 9231358B, Copyright 2003, Canberra Indu-
stries Inc.
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Abbildung 3.3: Detektoreffizienz nach Angaben des Herstellers.8

bei dem vorliegenden System ein aktiv rückgesetzter Vorverstärker (tran-
sisitor reset preamplifier = TRP) genutzt, bei dem eine abrupte Nullset-
zung bei Erreichen eines Schwellenwertes von 4 V erfolgt. Für die Dauer
der Nullsetzung von einigen Mikrosekunden wird vom System eine Totzeit
ausgegeben, die das Verhältnis der tatsächliche Messzeit („live time“) zur
Messdauer („real time“) angibt. Im Gegensatz zur RC-Variante sind laut
Hersteller9 keine Einstellungen für das Erreichen der Nulllinie notwendig
(“pole/zero reset”). Die Dauer zum Erreichen des Schwellenwertes und die
mit der Totzeit verbundene Nullsetzung ist dabei sowohl von der Zählrate
als auch der Photonenenergie (“Energierate”) abhängig.

In dem verwendeten System erfolgt die Digitalisierung der Spannungs-
impulse nicht erst am Ende der analogen Bearbeitung vor der Speicherung
im MCA, sondern unmittelbar nach der Vorverstärkung und anschließender
Differentiation. Die Vorteile bestehen in einem erhöhten Durchsatz insbe-
sondere bei hohen Zählraten durch die digitale Verarbeitung unter Nutzung

9Model 2060 Digital Signal Processor, User’s Manual, 12/1999 und Canberra Appli-
cation Note Basic “Basic Counting Systems”, 06/2006
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Abbildung 3.4: Prinzipieller Aufbau und Wirkungsweise eines energiedisper-
siven LEGe Detektorsystems mit aktiv rückgesetztem Vorverstärker (TRP)
und digitaler Signalverarbeitung (DSP).

verschiedener anpassbarer Algorithmen10 und der Reduzierung zeit- und
temperaturabhängiger Drifts in den elektronischen Komponenten.

Das den Vorverstärker verlassende Signal wird im DSP zunächst diffe-
renziert (Abbildung 3.4) bevor es mittels eines trapezförmigen Filters digi-
talisiert wird. Die Verarbeitungsdauer des Impulses lässt sich dabei durch
Einstellung der Flanken (“rise time/fall time”11) und des Plateaus (“flat
top”) vornehmen. Dabei gilt, dass das Signal/Rausch-Verhältnis um so bes-

10Canberra Application Note Basic “Performance of Digital Signal Processors for Gam-
ma Spectrometry”, 11/1999

11Im Weiteren wird der Kürze wegen ausschließlich von der “rise time” die Rede sein.
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ser ist, je länger die Verarbeitungszeit Tp mit

Tp = 2TRiseT ime + TFlatTop

gewählt wird. Das bedeutet, dass der Photonendurchsatz im Detektor prin-
zipiell auf Kosten der Energieauflösung steigt.

Die weitere Signalverarbeitung erfolgt auf digitalem Wege. Das ist zu-
nächst die Wiederherstellung der Nulllinie („baseline“), für die verschiedene
manuelle Einstellmöglichkeiten gegeben sind (“baseline restorer”). Bei die-
sem Schritt ist Sorge zu tragen, dass die Nulllinie nach jedem Impuls wieder
zuverlässig erreicht wird. Die Korrektur der Baseline hat nach [101] einen
maßgeblichen Einfluss auf die Peaklagenstabilität und Energieauflösung bei
erhöhten Zählraten.

Ein weiterer Schritt ist die Korrektur der Pulsaufstockung („pile up“).
Folgen die Impulse in einem so kurzen Zeitintervall, dass die Nulllinie zwi-
schendurch nicht erreicht wird, kommt es zur Aufstockung der Pulse, was
eine Zuordnung eines deutlich zu hohen Energiewertes zur Folge hat. Um
die Fehlmessung zu verhindern, wird daher die Aufstockung digital über-
wacht, untrennbare Pulse verworfen („pile up rejection“, PUR), und ein ent-
sprechender Wert für die Totzeit ausgegeben. Die Variation des zulässigen
maximalen Zeitintervalls aufeinanderfolgender Impulse erfolgt durch Ein-
stellung der Variable x am DSP zwischen 1.1 und 2.5 (“PUR guard”) gemäß
Tp = x · TRiseT ime + TFlatTop.

Die im Ge-Halbleiter erzeugten Ladungsträger wandern zu den Elek-
troden mit einer Geschwindigkeit von etwa 1 mm/10 ns. Erhöht sich der
Driftweg der Ladungsträger durch Einfall der Photonen unter verschiede-
nen Winkeln oder bei Verwendung größerer Halbleiterkristalle, muss die
Erhöhung der durchschnittlichen Driftzeit bei der Impulsverarbeitungszeit
Tp berücksichtigt werden. Das erfolgt durch Anpassung der Prozesszeit mit
dem “flat top”-Parameter. Dazu bietet das eingesetzte System eine Automa-
tik an, die eingehende Signale analysiert und den Parameter entsprechend
setzt (“automatic ballistic deficit correction”). Ist die Verarbeitungszeit zu
kurz, kommt es zur Verminderung der Energieauflösung und einem Ver-
schmieren des Spektrums.

Die Impulse werden der Höhe und der Anzahl nach im MCA mit 16k
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Kanälen gespeichert. Dabei ist zu beachten, dass während der Speicherung
eines Impulses jeder andere eintreffende Impuls nicht verarbeitet werden
kann. Der entsprechende Beitrag zur Systemtotzeit ist also unabhängig da-
von, ob tatsächlich ein Impuls ankommt.

3.2.3 Mögliche Ursachen der Energielagenverschiebung und Fol-
gerungen für die experimentelle Untersuchung

Die Arbeiten [102, 103, 104, 105] zur analytischen Bestimmung der ener-
giedispersiven Profilformen zeigen, dass Asymmetrien einerseits im Detek-
torkristall entstehen und andererseits durch fehlerhafte Verarbeitung bei
erhöhtem Durchsatz in der Elektronik verursacht werden. Daraus folgt die
Vermutung, dass sich bei zunehmender Energie- und Zählrate mit Ausbil-
dung der Asymmetrie nicht nur die Peakbreiten, sondern auch die Peaklagen
verschieben, was in Untersuchungen der Detektorhersteller zur Demonstra-
tion der Peaklagenstabilität [106, 107] Bestätigung findet. Die vergleichen-
den Studien [108, 109] zeigen, dass bei allen Systemen gängiger Hersteller
Peaklagenverschiebungen vorliegen, unabhängig davon, ob die Impulsver-
arbeitung digital oder analog erfolgt. In [110] wird eine Größenordnung
von ∆E/E = 9 · 10−4 beobachtet, das entspricht ∆E = 85 eV bei 122 keV
(Abb. 3.5a).

Hinzu kommen zeitabhängige Peaklagenverschiebungen12 bis zu
∆E/E = 1, 2 · 10−4 (∆E = 15 eV bei 122 keV) (Abb. 3.5b) und eine von der
(Tages-)Temperatur abhängige Energielagenverschiebung im Bereich von
∆E/E = 0, 5 · 10−4 (∆E = 6 eV bei E = 122 keV) [111]. Der Hersteller
des in dieser Arbeit verwendeten Systems geht von einer linearen Verschie-
bung von 1,4 keV/50◦C aus.13

Die Untersuchungen in [110] belegen, dass die relativen Verschiebungen
eines 1,3 MeV Peaks deutlich geringer sind als die eines 122 keV Peaks, was
eine absolute (d. h. energieunabhängige) Peaklagenverschiebung vermuten
lässt. Daraus ergibt sich im Umkehrschluss eine deutlich höhere relative
Verschiebung im Energiebereich bis 100 keV, der bei den Untersuchungen

12Bei der Untersuchung wird die Raumtemperatur im Bereich ∆TRaum < 2◦ konstant
gehalten.

13Canberra: Digital Signal Processing Introduction, 6/06
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(a) Energielagenstabilität als Funktion der
Zählrate

(b) Energielagenstabilität als Funktion der
Messdauer

Abbildung 3.5: Einflussfaktoren auf die Energielagenstabilität in der Stu-
die [110] anhand des 122 keV Peaks von 57Co für verschiedene Detektorsy-
steme.

in dieser Arbeit genutzt wird. Die RSA verlangt hingegen die Bestimmung
von Dehnungen im Bereich von ε = 10−4, das entspricht nach Gl. 2.13 einer
Genauigkeit in der Energielagenbestimmung von 1 - 10 eV im Energiebereich
von 10 - 100 keV. Dabei muss gefordert werden, dass sich selbst unter stark
schwankenden (Strahl-)bedingungen das Detektorsystem stabil verhält bzw.
die Energielagenverschiebungen als Funktion der Strahlbedingungen durch
Untersuchungen des individuellen Systems mit hinreichender Genauigkeit
bestimmt werden.

Zur Bestimmung der Untersuchungsparameter ist der Zusammenhang
von Strahleigenschaften und möglichen Fehlerquellen bei der Photonende-
tektion von Bedeutung und soll daher anhand von Abb. 3.6 erläutert werden.

Während der Messung kommt es zu einer Variation der Zählrate (A) von
mehreren Größenordnungen. Die Hauptursache liegt in der abnehmenden
Streuintensität bei sukzessiver Kippung der Probe in Reflexionsgeometrie
oder in dem schrittweisen Eintauchen des Volumenelements in die Probe.
Die durch die „Zählrate“ bezeichnete Strahleigenschaft berücksichtigt nicht
die Energieverteilung der Photonen und unterscheidet sich so von der „Ener-
gierate“ (B). Dies trägt dem Umstand Rechnung, dass sich das im Detektor
aufgenommene Spektrum beispielsweise durch Textur oder Grobkorn in der
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Probe sowie inhomogene Bereiche während einer Messung deutlich ändern
kann. Je nach Art des Experiments kann die Dauer einer Messung einige
Sekunden oder viele Stunden betragen. Da sich während der Dauer einer
Messung das Detektorsystem stabil verhalten muss, stellt die Zeitstruktur
(C) ein wesentliches Kriterium dar. Bei der im Rahmen dieser Arbeit ent-
wickelten Methode wird der Detektor translatiert, so dass der Photonen-
strahl unter unterschiedlichen Winkeln auf den Germaniumkristall auftrifft.
Aus diesem Grund wird der Raumwinkel (D) als weitere „Strahleigenschaft“
aufgeführt.

Im Halbleiter des Detektors tritt das Photon mit den Elektronen in
Wechselwirkung; eine der Photonenenergie proportionale Anzahl von La-
dungsträgern wird ausgelöst und durch die Elektroden „abgesaugt“. Dabei
sind nur die durch den Photoeffekt ausgelösten Ladungsträger von Inter-
esse, Comptonstreuung im Kristall und in der Detektorumgebung tragen
zum Untergrund im Diffraktogramm bei. Systematische Fehlerquellen sind
zu erwarten, wenn sich Einfallswinkel oder -ort im Detektor während der
Messung ändern. Ein veränderter Abstand zu den Elektroden, sowie Ver-
unreinigungen bzw. Defekte im Ge-Kristall und eine inhomogene Feldver-
teilung können die mittlere Dauer zwischen Ladungsträgererzeugung und
-sammlung deutlich verändern und Fehlmessungen (“ballistic deficit”) her-
vorrufen. Ein weiterer Effekt ist die in der unmittelbaren Detektorumge-
bung auftretende Rückstreuung einzelner Photonen in den Detektor. Än-
dert sich die Abschirmung oder der Einfallswinkel kann es so zu deutlichen
Änderungen im Untergrund des Diffraktogramms und zum Auftreten von
„Rückstreupeaks“ kommen. Ein weiterer, zeitabhängiger Faktor kann durch
die Verringerung des Vakuums im Kühlsystem verursacht werden, was sich
durch das Verschmieren des Spektrums ankündigt14. Dabei werden die Mo-
lekularsiebe zugesetzt und das Signal durch herangetragene Ladungsträger
gestört.

Bei der elektronischen Datenverarbeitung im Vorverstärker und vor der
Digitalisierung im DSP sind als mögliche Fehlerquellen vor allem die oben
genannten Effekte der Verfehlung der Nulllinien zu nennen. Entsprechen-
de Parameter sind zwar im DSP einstellbar, hängen aber von sowohl der

14Der Effekt tritt etwa halbjährlich bei den eingesetzten Detektoren auf.
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Abbildung 3.6: Mögliche Einflussfaktoren auf die Energielagenstabilität
beim energiedispersiven Ge-Detektorsystem.

Energie- als auch der Zählrate ab. Schwankende Bedingungen während der
Messungen können so – abhängig von der individuellen Einstellung – zu sy-
stematischen Schwankungen in der Energielage führen. Darüber hinaus kön-
nen die elektronischen Komponenten zeit- und temperaturabhängige Eigen-
schaften aufweisen, die die Detektorperformance beeinflussen. Eine Ursache
der zeitabhängigen Energielagenverschiebungen können dabei auftretende
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elektrische und magnetische Wechselfelder in umgebenden elektronischen
Geräten sein, auf die die Detektorelektronik erfahrungsgemäß sensibel rea-
giert.

Aufgabe der digitalen Signalverarbeitung ist es, bei möglichst hohem
Durchsatz manipulierende Einflüsse auf die Daten zu erkennen und zu eli-
minieren. Zur Verarbeitung der Datenimpulse werden mathematische Al-
gorithmen verwendet, für die von dem Anwender über die externen DSP-
Einstellungen Parameter gesetzt werden können, die aber nicht einsehbar
sind. So fällt die Beurteilung der korrekten Parameter schwer, und die Aus-
wahl „schlechter“ Parameter stellt eine Fehlerquelle für die korrekte Ener-
giedetektion dar. Hinzu kommt, dass die DSP-Einstellungen laut Handbuch
in Abhängigkeit von Energie- und Zählrate zu tätigen sind, diese während
der Messung allerdings erheblich schwanken können.

Bei der Datenanalyse muss darauf geachtet werden, dass das Diffrak-
togramm nicht nur aus Beugungslinien besteht, sondern Fluoreszenzlinien
von der Probe enthält sowie Artefakte des Detektors (Abbildung 3.7). Das
sind zum einen Escape Peaks [112], bei denen das eingehende Photon um
den Betrag der Anregungsenergie der GeKα und der Kβ Kante zu gering
analysiert wird und die entsprechend 9.88 keV und 10.98 keV unterhalb
der eigentlichen Photonenenergie in Erscheinung treten. Zum anderen tre-
ten bei doppelter Energielage die aufgrund von pile-up-Effekten fehlerhaft
analysierten Peaks auf, die sich in der Regel mit den Beugungsinterferen-
zen höherer Ordnung überlagern. Die durch Comptonstreuung verursachten
Schwankungen im Untergrund (Comptonkante, Comptonpeak) sind in dem
hier betrachteten Energiebereich bis zu 100 keV zu vernachlässigen.

Grundsätzlich hängt die Performance eines Detektorsystems von allen
Komponenten ab. Dabei ist die Matrix, bestehend aus den Eigenschaften
des Photonenstrahls und den (realen) Eigenschaften des Detektors und der
Elektronik so komplex (vgl. Abb. 3.6), dass sich die Detektoreigenschaften
im Rahmen dieser Arbeit nicht vollständig untersuchen lassen.

Daher erscheint eine Prioritätensetzung der Einflussparameter auf die
RSA notwendig. Als entscheidender Faktor wird der Einfluss der Zählra-
te bzw. Detektortotzeit auf die Energiestabilität als Funktion der absolu-
te Energielagen angesehen. Die Untersuchungen beziehen dabei die unter-
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Abbildung 3.7: Energiedispersives Spektrum von W-Pulver bei 2θ = 14◦.
Neben den Beugungslinien treten W- und Ge-Fluoreszenzlinien sowie Esca-
pelinien (Esc.) auf.

schiedlichen DSP-Einstellungen mit ein.
Unberücksichtigt bleiben folgende, als weniger bedeutend erachtete Ein-

flussfaktoren auf die Energielagen:

• Temperaturschwankungen, die durch Klimatisierung der Experimen-
tierhalle auf ein Minimum beschränkt werden

• Veränderungen in äußeren elektrischen und magnetischen Wechselfel-
dern

• der Einstrahlwinkel in den Detektor und die Rückstreuung an der
Abschirmung
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• Schwankungen in der Energierate (Photonenverteilung im Diffrakto-
gramm).

3.2.4 Experimenteller Aufbau und Vorgehensweise

Die Untersuchung des Detektorsystems wurde am Strahlrohr für energiedi-
spersive Diffraktion (EDDI) am BESSY durchgeführt. Der Versuchsaufbau
ist in Abb. 3.8 skizziert. Der weiße Primärstrahl, der experimentell nutzbare
Energien bis ca. 130 keV enthält, wird durch ein Doppelspaltsystem S1/S2
auf ca. 1 mm2 ausgeblendet bevor er auf die Probe trifft. Sekundärseitig
sorgt das Doppelspaltsystem S3/S4 für die entsprechende Kollimation bei
einem gegebenen Streuwinkel 2θ.

Die Einzelkomponenten des untersuchten Detektorsystems wurden von
Canberra Industry im Jahr 2000 geliefert. Es besteht aus einem „Low Energy
Germanium“(LEGe)-Detektor mit einem 10 mm dicken, scheibenförmigen
Ge-Kristall (� 11,3 mm), an dem eine Hochspannung von 1 kV anliegt, ei-
nem Vorverstärker (Typ TRP), einem DSP und einem Vielkanalanalysator
(MCA) mit 16k Kanälen. Die Typenbezeichnungen sind in Tab. 3.1 zusam-
mengestellt.

Bei den Untersuchungen erfolgte die Variation der DSP-Verarbeitungs-
zeiten TP durch Wahl der Parameter „flat top“ und „rise time“, alle anderen
Einstellungen, die als Standardeinstellungen gemäß Tab. 3.2 betrachtet wer-
den, blieben unverändert.

Tabelle 3.1: Herstellerbezeichnungen des Detektorsystems

Detektor Canberra Model GL0110

Cryostat Canberra Model 7935-7F

Vorverstärker Canberra Model HRR

DSP Canberra Model 2060

MCA Canberra MPT-EXE

Hochspannung Canberra Model 3106D
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Abbildung 3.8: Versuchsaufbau zur Untersuchung schwankender Detek-
tortotzeiten auf die Energielagenstabilität bei unterschiedlichen DSP-
Einstellungen.

Aus Gründen der Übersichtlichkeit werden die Spektren und die Ergeb-
nisse der Auswertung nicht bezüglich der Kanalnummer des MCA angege-
ben, sondern auf die Energieskala überführt. Dabei wird die Kalibrierfunkti-
on E(ch)=a+b×ch+c×ch2 mit a = 0,146382, b = 0,00823545 und
c = 8,5497×10-10 verwendet.

Die Untersuchungen der Detektoreigenschaften wurden nicht anhand der
γ-Linien radioaktiver Proben durchgeführt [113], sondern mittels Fluores-
zenzlinien, die physikalisch in ihrer Lage und Breite ausreichend definiert
sind, um Kalibriermessungen durchzuführen [114, 115]. Der Vorteil besteht,
neben dem Wegfall der Vorsichtsmaßnahmen im Umgang mit radioaktiven
Proben, in der einfachen Variation der Zählraten durch Veränderung der
Blendenöffnungen, ohne den Abstand der Proben vom Detektor zu verän-
dern, der den Raumwinkel der einfallenden Strahlung im Detektorkristall
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Tabelle 3.3: Verwendete Elemente und zugehörige Energiepositionen der
Fluoreszenzlinien nach [116].

Element E [keV] Element E [keV] Element E [keV]

Zr/ Kβ1 17,6678 Ho/ Kα2 46,6997 W/ Kα2 57,9817

Mo/ Kβ1 19,6083 Ho/ Kα1 47,5467 W/ Kα1 59,31824

Ag/ Kβ1 24,9424 Ho/ Kβ1 53,877 W/ Kβ1 67,2443

Cd/ Kβ1 26,0955 Pb/ Kα2 72,8042

Te/ Kβ1 30,9957 Pb/ Kα1 74,9694

bestimmt (vgl. Aspekt D in Abb.3.6).

Bei den Untersuchungen wurden Proben unterschiedlicher Elemente dem
Weißstrahl ausgesetzt und die Fluoreszenzlinien detektiert, die einen Ener-
giebereich zwischen 17,7 keV und 75 keV (Tab. 3.3) abdeckten. Bei den Ele-
menten niedriger Ordnungszahl, bei denen die Kα1- und Kα2-Linien nicht
zu trennen sind, erfolgte ausschließlich eine Auswertung der Kβ1/3-Linien.
Nach Abzug des Untergrunds erfolgte die Anpassung der Einzellinien durch
eine Pseudo-Voigt-Funktion und der Doppellinien durch eine Gaußfunktion.
Probenabsorption, Wigglerspektrum und Ringstrom wurden bei der Daten-
auswertung berücksichtigt.

Durch Variation der Zählrate ließen sich Detektortotzeiten zwischen
0.1% und 100% erreichen. Dazu wurden bei jeder Probe Blendenweiten
von einigen Millimetern verwendet und 2θ zwischen 1◦ und 10◦ so einge-
stellt, dass Beugungslinien im Spektrum zwar erscheinen, aber nicht mit den
Fluoreszenzlinien überlappen. Abb. 3.9 zeigt ein typisches Spektrum eines
Wolframpulvers, in dem neben den Fluoreszenzlinen aufgrund der weiten
Sekundärblenden breite Beugungslinien auftreten. Bei einigen Versuchsrei-
hen wurde zusätzlich die radioaktive Probe 133Ba nahe des Detektors an-
gebracht, um unabhängig vom Synchrotronstrahl eine Referenzlinie [117]
zu erhalten. So konnten hohe Detektortotzeiten erreicht werden, die durch
Einbringen eines Aluminiumabsorbers (effektive Dicke bis 100 mm) in den
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Abbildung 3.9: Spektrum einer Wolframprobe bei dem beschriebenen Ver-
suchsaufbau in [91].

sekundären Strahlengang sukzessive verringert wurden.

3.2.5 Quantifizierung der Detektorauflösung und der Energiela-
genverschiebungen

Abb. 3.10 demonstriert den Einfluss der DSP-Einstellungen auf den Detek-
tordurchsatz als Funktion der ausgegebenen Totzeit des Detektorsystems
(DT) anhand der Intensität der W-Kα2-Fluoreszenzlinie. Es wird deutlich,
dass durch Wahl der Prozesszeit TP der Detektordurchsatz um mehr als ei-
ne Größenordnung gesteigert werden kann. Dies ist insbesondere im Bereich
DT < 10% der Fall, in dem in der Regel die sin2 ψ-Messungen durchgeführt
werden.

Allerdings ist mit dem gesteigerten Durchsatz eine Verringerung der
Auflösung verbunden. Abb. 3.11a zeigt die Halbwertsbreiten der W-Kα2-
Fluoreszenzlinien nach Abzug der der eigenen natürlichen Breite [118] und



66 Grundlegende Untersuchungen zur energiedispersiven RSA

0 20 40 60 80
0

200

400

600

800

1000

1200

1400  12/0.8
 4.8/0.5
 5.6/0.6
 2.8/0.6
 1.2/0.6
 0.8/0.2

 

 

In
te

gr
al

 in
te

ns
ity

 [a
rb

. u
ni

ts
]

Dead time [%]

 

Abbildung 3.10: Integralintensität der W-Kα2-Fluoreszenzlinie in Abhän-
gigkeit der DSP Einstellungen rise time / flat top und der Detektortotzeit
in [91].

Mittelung über einen DT-Bereich von ±10% um den angegebenen Wert. Es
wird deutlich, dass mit steigender TP auch die Auflösung steigt, so dass die
Differenz zu geringeren TP bis zu 50 eV betragen kann. Mit zunehmender
DT nimmt die Auflösung ab, und der Einfluss der verwendeten TP wird
geringer.

Gibt man die Detektorauflösung als Funktion der Energie an, so muss
folglich der Einfluss der DT berücksichtigt werden. Abb.3.11b gibt die Auf-
lösung bei einer DT von 5% anhand der in Tab. 3.3 dargestellten Fluores-
zenzlinien wieder. Neben den Eigenbreiten der Kα1/2-Linien wurden dabei
die Überlagerung der Kβ1/3-Linien [116] berücksichtigt. Der Verlauf wurde
nach [119] gemäß

δEHWB =
[
(∆Eamp)2 + 5, 546FεE

]1/2 (3.6)

bestimmt. Die ermittelten Werte für ∆Eamp = 106,3 eV und F = 0.113
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(a) Detektorauflösung bei verschiedenen
TP gemittelt über einen DT-Bereich von
±10% als Funktion der DT.
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(b) Detektorauflösung bei rise ti-
me / flat top = 5.6 / 0.6 als Funktion
der Energie bei einer DT von 5%.

Abbildung 3.11: Detektorauflösung als Funktion der Systemtotzeit und der
Energie in [91]. Details siehe Text.

entsprechen dabei weitgehend denen in [119] mit ∆Eamp = 108 eV und
F = 0.11. Die Ergebnisse bestätigen bei den geringen DT die Spezifikatio-
nen des Detektors, die der Hersteller mittels Standardmessungen15 mit den
Präparaten 55Fe und 57Co in zwei Messpunkten erzielt.

Der für die RSA signifikantere Einflussfaktor ist die Energielagenstabili-
tät der Detektoren, da Energielagenverschiebungen in direkter Weise in die
Bestimmung der Spannungen eingehen. Abb. 3.12 zeigt die zu Abb. 3.10
gehörigen Energiepositionen der W-Kα2-Fluoreszenzlinien als Funktion der
DT. Zunächst fällt auf, dass sich die Energiepositionen mit dem Wechseln
der DSP-Einstellungen auf der Energieachse um bis zu 2 keV willkürlich ver-
schieben. Daraus folgt unmittelbar, dass eine Veränderung der Prozesspara-
meter immer mit einer Überprüfung bzw. Änderung der MCA-Kalibrierung

15Die Auflösung wird vom Hersteller nach IEEE Standard ANSI/IEEE std325-1996
ermittelt.
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Abbildung 3.12: Energielage der W-Kα2-Fluoreszenzlinie in Abhängigkeit
der DSP-Einstellungen rise time / flat top und der Detektortotzeit in [91].

verbunden sein muss.

Von besonderer Bedeutung ist der Verlauf der Energiepositionen mit der
DT. Hier zeigt sich bei allen Einstellungen ein Abfall der Energie innerhalb
der ersten 10%. Dieser ist um so stärker ausgeprägt, um so geringer TP ist.
Im weiteren Verlauf bis DT = 80% zeigt sich eine geringere Abnahme, die
bei höheren TP vergleichsweise stärker ausgeprägt ist.

Bei einer mittleren TP (rise time / flat top = 4.8 µs / 0,5 µs) wur-
den bei allen in Tab. 3.3 aufgeführten Proben die Positionen der Fluores-
zenzlinien in Abhängigkeit der DT bestimmt und mit einer exponentiellen
Funktion angepasst. Die absoluten Energielagenverschiebungen sind in Abb.
3.13 zusammengefasst, wobei die individuellen Verläufe parallel zur Ordi-
nate so verschoben wurden, dass der Nulldurchgang der Anpassungskurven
bei DT = 5% erfolgt. In der Abbildung wird der Bereich bis DT = 35%
abgedeckt, der bei üblichen Beugungsexperimenten zur RSA nicht über-
schritten wird. Aus Gründen der Übersichtlichkeit wurden die Ergebnisse
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Abbildung 3.13: Absolute Verschiebung der Fluoreszenzlinien als Funktion
der Detektortotzeit (rise time = 4.8 µs, flat top = 0.5 µs) in [91].

der Einzellinien nicht gekennzeichnet, sondern nur die Ergebnisse der nied-
rigsten (ZrKβ1 bei 17,7 keV) und der höchsten Energiepositionen (PbKα1

bei 75,0 keV) hervorgehoben. Es zeigen sich keine systematischen Abwei-
chungen von der Verteilung, so dass von einer absoluten, d. h. energieun-
abhängigen, Verschiebung ausgegangen werden kann. Der Verlauf lässt sich
mit einer doppelten Exponentialfunktion

y = y0 +A1e
−x/t1 +A2e

−x/t2 (3.7)

beschreiben mit y0 = -0,0350, A1 = 0,020, t1 = 2,5, A2 = 0,044 und t2 =
14,0. Diese Parameter dienen im weiteren Verlauf der Arbeit zur Korrektur
der Messdaten.
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3.3 Bedeutung der Detektoreigenschaften für die RSA

3.3.1 Anwendung der Korrekturfunktion

Die folgenden exemplarischen Messungen zur Demonstration der Bedeutung
von Energielagenkorrekturen bei der ED RSA wurden am EDDI-Strahlrohr
mit den in Tab. 3.1 aufgeführten Systemkomponenten unter Verwendung
der in Tab. 3.2 verzeichneten DSP-Einstellungen durchgeführt. Die Totzeit-
korrektur erfolgte unter Nutzung von Gl. 3.7 und den angegebenen Werten
für die Parameter. Die Ergebnisse lassen sich in zwei unterschiedliche Ver-
fahren unterteilen. Zuerst werden Messungen in Reflexion auf Basis der
sin2ψ-Methode betrachtet (Laplace-Verfahren), es folgen die Ergebnisse
der Strain-Scanning-Experimente (Ortsraumverfahren).

Bei der Ausführung von sin2ψ-Messungen vermindert sich die im Detek-
tor „gesammelte“ Intensität kontinuierlich mit zunehmenden Kippwinkel ψ.
Die Abnahme der Intensität ist mit einer Verringerung der Detektortotzeit
verbunden. Unter ψ = 0◦ wird üblicherweise mittels Absorber eine Detek-
tortotzeit von 10% eingestellt, um die Anforderungen an das Detektorsystem
gering zu halten. Während der Messung sinkt die Totzeit auf ≈ 0, 1% bei
hohen Kippwinkeln ψ nahe 90◦. Abb. 3.14a zeigt die kontinuierliche Verrin-
gerung der Totzeit während einer sin2ψ-Messung an einem W-Pulver, das
auf der Makroskala als textur- und spannungsfrei betrachtet werden kann,
sich zudem elastisch isotrop verhält und daher als Standardprobe verwendet
wird.

Die Ergebnisse der Spannungsanalyse sind in Abb. 3.14b anhand einer
sin2ψ-Auftragung dargestellt. Der Gitterabstand d ist dabei unter Beach-
tung der Flächenhäufigkeit aus der Mittelung der Reflexe 110, 200, 211,
220, 310 und 321 bestimmt worden. Der Anstieg einer angepassten Gera-
den an die unkorrigierten Werte von ∆d/d = 3, 5 × 10−4 weist auf eine
(Schein-)Spannung von −94 ± 10 MPa hin, während der Anstieg bei den
korrigierten Daten von ∆d/d = 1, 0 × 10−4 zu −18 ± 10 MPa führt und
unter Beachtung der Datenstreuung nahezu vernachlässigbar ist.

Generell gilt, dass die Scheinspannungen aufgrund der absoluten Ener-
gieverschiebungen um so stärker ausfallen, um so geringer die Energie der
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(a) Detektortotzeit und norm. Inte-
gralintensität der W-110-Interferenz

(b) Gemittelter Gitterparameter von korrigierten und unkorrigierten
Datenpunkten

Abbildung 3.14: ED sin2ψ Standardmessung an W-Pulver (2θ = 16◦) nach
[91].
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Beugungslinien ist (σ ∝ ∆E/E)und je weiter das DT-Intervall gewählt ist.
Es ist darauf hinzuweisen, dass die Absolutwerte der Scheinspannungen in
direkter Weise mit den DEK zusammenhängen. Das bedeutet, dass die aus
der totzeitbedingten Verschiebung in Abb. 3.14b resultierenden Scheinspan-
nungen für Stahl etwa die Hälfte betragen. Weiterhin macht der korrigierte
Verlauf deutlich, dass bei der gewählten äquatorialen16 Kollimation des Se-
kundärstrahls auf 0,005◦ der Einfluss von geometrischen Faktoren so gering
ist, das er in der Regel vernachlässigt werden kann.

Das Beispiel in Abb. 3.15 zeigt die Totzeitverteilung über sin2ψ einer
texturierten, spannungsbehafteten Stahlprobe, die sich signifikant von der
einer Pulverprobe unterscheidet. Dabei bestimmt im Wesentlichen die In-
tensität der 110 Beugungslinie (rechte Skala in Abb. 3.15a) bei 59 keV
(2θ = 16◦) die Detektortotzeit. Alle anderen Beugungslinien liegen bei hö-
heren Energien, deren Intensitäten wegen der Photonenverteilung der Quel-
le um Größenordnungen geringer sind. Die Korrektur der totzeitbedingten
Energielagenverschiebungen vermindert die Steigung der angepassten Gera-
den um einen Betrag, der für die oberflächenparallele Spannungskomponente
einem Wert von 60 MPa entspricht.

Entsprechend der Korrektur der einzelnen sin2ψ-Verläufe kommt es bei
der Auswertung von ED sin2ψ-Messungen mittels der Mehrwellenlängen-
methode zu Verschiebungen der gesamten Spannungsverteilungen. Abb. 3.16
zeigt den Spannungsverlauf einer spannungsarm geglühten Stahlprobe
S690QL, deren Oberfläche nach der Wärmebehandlung mechanisch poliert
wurde. Die Anwendung der Energielagenkorrektur in Abhängigkeit der DT
zeigt eine signifikante Verschiebung des Spannungsverlaufs. Dabei werden
die Spannungswerte innerhalb der Probe τ > 40 µm von etwa -65 MPa auf
-5 MPa reduziert, so dass die Probe ab dieser Tiefe als makroskopisch span-
nungsfrei betrachtet werden kann. Noch deutlicher zeigt sich die Verschie-
bung der Spannungen bei geringeren Tiefen, d.h. bei den Reflexen geringerer
Energie. Der korrigierte Wert von ≈ -120 MPa an der Oberfläche, der mit

16Gemäß der Definition nach Wilson in [68] wird die Richtung als „äquatorial“ be-
zeichnet, die in der Beugungsebene liegt, während „axial“ die Richtung senkrecht zur
Ebene charakterisiert. Die äquatoriale Einschränkung des gebeugten Strahls bedeutet
also i. d. R. eine Verminderung der Divergenz ∆(2θ).
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(a) Detektortotzeit und norm. Integralintensität

(b) Energielagen-Verteilung korrigierter und unkorrigierter Daten-
punkte

Abbildung 3.15: Auswertung der Fe-110-Interferenz an einer spannungsbe-
hafteten, texturierten Tiefziehprobe aus Stahlblech in [92].



74 Grundlegende Untersuchungen zur energiedispersiven RSA

0 2 0 4 0 6 0 8 0
- 2 5 0

- 2 0 0

- 1 5 0

- 1 0 0

- 5 0

0

5 0

������������
�


σ [
MP

a]

<τ>�����

��������������
�


������������

�����������
��
���
	�

���

���

Abbildung 3.16: Auswertung einer ED sin2ψ-Messung nach der Mehrwel-
lenlängenmethode an einer spannungsarm geglühten Stahlprobe mit mecha-
nisch polierter Oberfläche in [91]. Der Oberflächenwert stammt von einer
konventionellen WD Messung.

der mechanischen Einwirkung bei der Oberflächenbearbeitung zu erklären
ist, wird durch eine konventionelle WD Röntgenmessung bestätigt.

Den Einfluss der Totzeitkorrektur bei Anwendung des Universalplotver-
fahrens zeigt Abb. 3.17 am Beispiel einer vergüteten Stahlprobe 100Cr6, in
die durch Schleifen eine hohe Druckeigenspannung in den oberflächennahen
Bereich eingebracht wurde. Aus Gründen der Übersicht sind die Einzellini-
en 110, 200, 211 220, 310, 222 und 321 nicht einzeln gekennzeichnet. Die
Totzeitkorrektur der Messpunkte führt bei geringen Kippwinkeln ψ und ho-
hen Energien zu einer Verminderung der Druckeigenspannungen von etwa
100 MPa im tieferen Probenbereich. Bei hohen ψ und geringen Energien fällt
die Detektortotzeit von anfänglich ≈ 5% auf unter 1%, was mit einer Korrek-
tur der Eigenspannungen im oberflächennahen Bereich von bis zu 300 MPa
verbunden ist. Der Vergleich mit experimentellen Ergebnissen aus Laborda-
ten in Abb. 3.17 zeigt, dass die komplementäre Untersuchung eines Span-
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Abbildung 3.17: Universalplotauswertung der Eigenspannungsverteilung in
Schleifrichtung einer 100Cr6 Stahlprobe in [91]. Die Kreise stammen von
einer konventionellen WD Messung.

nungszustandes mit sowohl (monochromatischem) Röntgen- als auch (poly-
chromatischem) Synchrotronstrahl zu praktisch identischen Spannungstie-
fenverläufen im Überschneidungsbereich führt.

Zu signifikante Korrekturen kommt es neben den Laplace-Verfahren
auch bei den Strain-Scanning-Experimenten, bei denen die Probe relativ
zu einem ausgeblendeten Volumenelement (VE) translatiert wird. Von be-
sonderem experimentellen Interesse im Rahmen der vorliegenden Arbeit ist
dabei die Anwendung auf oberflächennahe Bereiche, deren Ausdehnung ge-
ringer ist als die des VE, sowie die Untersuchung von Grenzflächen (vergra-
bene Schichten) und inhomogenen Bereichen innerhalb des Werkstoffvolu-
mens. Bei diesen Fällen sind komplexe Korrekturfaktoren anzuwenden, da
das unvollständige Eintauchen des VE in den zu untersuchenden Proben-
bereich zu einer Verschiebung des effektiven Beugungsschwerpunktes führt
(vgl. Abb. 2.11). Gleichzeitig ist das Eintauchen des VE in die Probenbe-
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reiche immer auch mit einer Veränderung des Beugungsbildes verbunden,
die oftmals mit einer Schwankung der Zählrate einhergeht, so dass sich die
detektorbedingte Energielagenverschiebung mit der geometrisch bedingten
Interferenzverschiebung überlagert.

Abb. 3.18 zeigt den Eintauchvorgang des VE in die Oberfläche eines
spannungsarm geglühten Stahls anhand der Energieposition der Fe-110-
Interferenzlinie. Die Ortsauflösung ist durch die Ausdehnung des VE in
Tiefenrichtung bestimmt und beträgt 12 µm, während der gesamte aufge-
tragene Verlauf die ersten 30 µm abdeckt. Beim Eintauchen des VE in die
Oberfläche steigt zunächst die im Detektor wahrgenommene Intensität auf-
grund des zunehmenden Beugungsvolumens. Ist das VE vollständig einge-
taucht, kommt es zur exponentiellen Abnahme der Streuintensität entspre-
chend der Probenabsorption; analog verhält sich die Detektortotzeit. Wie
innerhalb einer spannungsarmen Probe zu erwarten ist, führt die entspre-
chende Korrektur der totzeitbedingten Energielagenverschiebungen zu einer
konstanten Energieposition (innerhalb einiger eV Streuung) sobald das VE
vollständig eingetaucht ist. Der anfängliche Anstieg der Kurve resultiert aus
der Verschiebung des Beugungsschwerpunktes und der damit verbundenen
Verringerung des effektiven Beugungswinkels 2θ.

Besondere Bedeutung erhalten die Strain-Scanning-Methoden für die
Untersuchung von vergrabenen Schichten, da sich aus den mit Laplace-
Verfahren erhaltenen integralen Beugungsinformationen keine zuverlässigen
Ergebnisse für diese Schichten erzielen lassen. Da die Verringerung der VE-
Größe unter 10 µm aus experimenteller Sicht mit Schwierigkeiten verbunden
ist, sind die Schichtdicken oft geringer als die Ausdehnung des VE senk-
recht zur Schicht. Ein entsprechendes Modell ist in Abb. 3.19 mit einer
150 nm dicken Goldschicht gegeben, die gegenüber der VE-Ausdehnung
von 12 µm als vernachlässigbar dünn betrachtet werden darf. Der Ver-
lauf der Integralintensität des Au-111 Reflexes entspricht dem Verlauf der
Totzeit, die aufgrund der ausgeprägten 111 Fasertextur der gesputterten
Schicht Werte bis ca. 30% annimmt. Entsprechend auffällig ist der Ein-
fluss der Totzeitkorrektur, die einen s-förmigen Verlauf in einen scharfen
z-förmigen Verlauf überführt. Der Anstieg innerhalb des VE resultiert da-
bei aus der Probentranslation ∆z relativ zu S3/S4 im Abstand a gemäß
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Abbildung 3.18: Energieposition der 110-Beugungslinie beim Eintauchen des
Volumenelements in die Oberfläche einer spannungsarm geglühten Stahlpro-
be (2θ = 16◦) nach [92]. Kleines Bild: Totzeitverlauf.

−∆E/E = ∆θ/tanθ ≈ ∆z/a. Die Einschränkung des sekundären Strah-
lenganges vor und nach dem Bereich verursacht einen entsprechend stärke-
ren Anstieg von ∆θ und folglich auch der Energiepositionen. Sind die Verläu-
fe in einer Genauigkeit von einigen eV entsprechend Abb. 3.19 bekannt, las-
sen sich Aussagen über die Dehnungen im Bereich von
ε = −∆E/E = 2 · 10−5 treffen. Insbesondere bei der Überlappung von
Schichtinformationen, die auftritt, wenn der Abstand zweier gleichartiger
Schichten geringer als die VE-Ausdehnung ist, ist die Kenntnis der Verläufe
Voraussetzung für eine Spannungsabschätzung, wie sie in [120] vorgenom-
men wird.

Grundsätzlich ist festzuhalten, dass bei einer „abrupten“ Änderung der
Zählrate während der Aufnahme des Signals es zu einer fehlerhaften Tot-
zeitkorrektur kommt. Abb. 3.20 verdeutlicht die Fehlerquelle im Falle des
plötzlichen Shutterschlusses während einer Messung an der Synchrotron-
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Abbildung 3.19: Energieposition und norm. Integralintensität der 111-
Beugungslinie bei Translation einer Au-Folie (150 nm) sowie Verlauf der
Detektortotzeit (2θ = 6◦) nach [92].

beamline, wie er etwa alle acht Stunden bei Injektion auftritt. Beträgt die
Integrationszeit („acquisition time“) tacqu. = 60 s, wird der Shutter aber nach
einer Belichtungsdauer tbelicht. < 60 s geschlossen, gibt der Detektor eine
um den Faktor tbelicht./tacqu. geringere Totzeit aus. Da aber nur während
tbelicht. das Signal gesammelt wurde, entspricht die Energielage während die-
ser Dauer der Totzeit. Das Resultat sind Energielagenverschiebungen von
Einzelpunkten, die in der Regel nicht korrigiert werden können, da tbelicht.
unbekannt ist und die daher grundsätzlich verworfen werden müssen.
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Abbildung 3.20: Korrigierte Energielagen der W-220-Beugungsinterferenz
(2θ = 16◦) nach Gl. 3.7 bei unterschiedlichen Belichtungsdauern der Probe
aber konstanter Integrationszeit von 60 s. Die Angaben an den Punkten
geben die vom System ausgegebene gemittelte Totzeit wieder.

3.3.2 Schlussfolgerungen

Hält man die in Kap. 3.2.3 genannten äußeren Einflussfaktoren, wie elek-
trische Felder, Temperatur, Strahleintritt in den Ge-Kristall und andere,
weitgehend konstant, so lässt sich eine Quantifizierung der Energiestabili-
tät jedes individuellen Detektorsystems vornehmen. Dabei ist zu beachten,
dass bei Austausch von Hardwarekomponenten oder bei Änderungen der
elektronischen und digitalen Einstellungen eine erneute Überprüfung vor-
genommen werden muss. Anhand der Beispiele in Kap. 3.3.1 wird deutlich,
dass die Korrektur erheblich ist und weit über die üblichen Korrekturfakto-
ren in der RSA hinausgehen.

Es muss darauf hingewiesen werden, dass die Energieverschiebung nicht
durch eine vorhergehende Eichmessung ersetzt werden kann, da eine Simu-
lation des Totzeitverlaufs nicht möglich ist. Das ist darin begründet, dass
insbesondere bei Messung in Reflexionsgeometrie die Detektortotzeiten in



80 Grundlegende Untersuchungen zur energiedispersiven RSA

Abhängigkeit der Messorientierung erheblich von der Probenbeschaffenheit
abhängen, was beispielsweise bei Vergleich von Abb. 3.14a mit Abb. 3.15a
deutlich wird. Hinzu kommt, dass durch die kontinuierliche Abnahme der
Ladungsträger im Synchrotronring der Photonenstrahl einer Intensitäts-
schwankung um den Faktor zwei ausgesetzt ist.

Zu der Bestimmung der Energieverschiebungen gibt es zwei Alternati-
ven, die jedoch mit jeweils spezifischen, das Ergebnis beeinflussenden Ne-
beneffekten verbunden sind. Zum einen kann eine radioaktive Probe nahe
des Detektors angebracht werden, so dass die γ-Linien mit aufgenommen
werden. Beim Kernzerfall wird allerdings eine Vielzahl von Photonen unter-
schiedlicher Energie freigesetzt, die zu ungewollten Überlappungen mit den
Beugungslininen führen können. Abgesehen davon ist die Verwendung der
Präparate mit umfangreichen Strahlenschutzvorschriften verbunden. Eine
weitere Möglichkeit zur Untersuchung der Energielagenverschiebungen er-
öffnet das Aufbringen eines (definitionsgemäß makrospannungsfreien) Pul-
vers auf die Probenoberfläche. Die Möglichkeit wird insbesondere bei un-
ebenen Oberflächen genutzt, um geometrische Effekte zu korrigieren. Aller-
dings kommt es bei hoher Probenkippung zu starker Strahlabsorption in
dem Pulver, so dass keine Beugungsinformationen vom oberflächennahen
Bereich der Probe zu erzielen sind.

Zusammenfassend konnte Folgendes gezeigt werden: Unter den üblichen
Messbedingungen führen die Korrekturen zu zuverlässigen Ergebnissen; tre-
ten allerdings Änderungen der äußeren Bedingungen während der Messung
ein oder ändert sich die Energierate erheblich, sollte auf die genannten Al-
ternativen der „in situ“ Eichung zurückgegriffen werden. Die Quantifizierung
der einzelnen Einflüsse, die andernfalls notwendig wäre, ist so umfangreich,
dass sie im Rahmen dieser Arbeit nicht weiter verfolgt werden kann.
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4 Entwicklung des Stress-Scanning-Verfahrens

4.1 EDDI-Beamline am BESSY II

Die Materialforschungsbeamline für energiedispersive Diffraktion (EDDI)
[27, 121] wird neben der monochromatischen Beamline für magnetische
Streuung (MAGS) von einem 7 T Multipolwiggler [122] als Photonenquelle
versorgt. Der Wiggler besteht aus 13 vollen Polen und einem 3/4 bzw. 1/4
Endpol mit einer Periodenlänge von 140 mm, die die Elektronen auf einen
sinusförmigen Pfad zwingen. Jeder Pol stellt einen Umkehrpunkt für die
Elektronen dar, die bei der Richtungsänderung elektromagnetische Strah-
lung emittieren. Der Wiggler kann also als eine Anordnung von Punkt-
quellen betrachtet werden, die sich auf zwei parallelen Linien mit einem
Abstand von 1,22 mm quer zum Elektronenstrahl befinden. Da die EDDI-
Beamline 12 mrad „off-axis“ angeordnet ist, erscheinen die Punkte versetzt,
und die Quelle nimmt eine effektive Ausdehnung von 12 mm in der Horizon-
talen (Axialebene) und 20 µm in der Vertikalen (Äquatorialebene) an. Die
kritische Energie des Wigglers beträgt 13,4 keV bei einer Ringenergie von
1,7 GeV und das Spektrum der Quelle besitzt die Form einer Besselfunkti-
on [123] mit einem Maximum zwischen 10 keV und 20 keV (Abb. 4.2). Die
Strahleigenschaften sind innerhalb einer Querschnittsfläche von 4 × 4 mm2 
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Abbildung 4.1: Schematischer Aufbau der EDDI-Beamline am BESSY II.
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Abbildung 4.2: Energiespektrum des 7 T-Multipolwigglers an einem Pinhole
von 1×1 mm2 30 m hinter der Quelle am Ort des EDDI Experiments bei
einem Ringstrom von 250 mA in [124].

am Ort der Probe homogen. Das konnte mittels eines dünnen Drahtes
(�100 µm) gezeigt werden, dessen Interferenzbild nach schrittweisem Abra-
stern des Strahls in der axialen und äquatorialen Ebene ausgewertet wurde.
Die am Experiment nutzbare Energie liegt zwischen 8 keV und 150 keV, für
Beugungsexperimente werden in der Regel Energien zwischen 20 und 80 keV
genutzt.

Abb. 4.1 zeigt schematisch den Aufbau der EDDI-Beamline. Da das Ex-
periment ausschließlich für energiedisperisve Diffraktion konzipiert ist, kom-
men nur strahlbegrenzende Optiken und Filter bzw. Absorber zum Einsatz.

Durch die Maske wird zunächst ein 3,9 × 3,9 mm2 großer Teil aus dem
Primärstrahlprofil herausgeschnitten, was einem Raumwinkel von
0,2 × 0,2 mrad2 entspricht. Die weitere Strahlbegrenzung erfolgt durch das
wassergekühlte Blendensystem S1, das aus 10 mm dicken Wolframblenden
besteht, die sich äquatorial und axial schließen lassen. Zur Absorption nied-
rig energetischer Strahlungsanteile können an der Filterbank Al-Plättchen
mit einer Dicke von 1 mm bis 4 mm in den Strahl gebracht werden.
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Der Hochvakuum-Bereich des Strahlrohres in der Optikhütte (Abb. 4.3)
ist durch eine 0,5 mm dicke Al-Folie von den Komponenten in der Experi-
mentierhütte getrennt. In dieser befindet sich vor dem Diffraktometer ein
weiteres Blendensystem, das 29,5 m hinter der Quelle bei üblichen Blen-
denöffnungen von 1 × 1 mm2 unter Berücksichtigung der Quellausdehnung
eine primäre Strahldivergenz von 0,03 mrad (äquatorial) × 0,4 mrad (axial)
zulässt. Vor S2 lassen sich verschiedene Absorbermaterialien (C, Al, Fe, Cu
usw.) zur Strahlschwächung einbringen.

Die Experimentierhütte der EDDI-Beamline ist klimatisiert, um eine
konstante Temperatur während der Messungen zu gewährleisten. In der
Hütte befindet sich ein Diffraktometer von GE Inspection Technologies
(Abb. 4.4). Die Haupteinheit besteht aus einem senkrecht zum Strahl in
axialer (y-) sowie aquatorialer (z-) Richtung translatierbaren Tisch aus
Kunststein. Aufgrund der horizontalen Polarisation des Synchrotronstrahls
wird die Beugungsebene (= Äquatorialebene) in vertikaler Richtung ange-
ordnet. Das θ-θ-Diffraktometer trägt eine Probenpositioniereinheit sowie
den Detektor. Die Probenpositionierung erfolgt über ein 90◦-χ-Wiegen-
segment mit integriertem, in x-, y- und z-Richtung translatierbarem ϕ-
Drehtisch. Diese 5-Achseneinheit erlaubt ein maximales Probengewicht von
3 kg. Der Detektorarm ist mit einer optischen Schiene ausgerüstet, auf der
ein Doppelblendensystem für die sekundärseitige Strahlbegrenzung sorgt.
Aufgrund der Nähe zum MAGS-Strahlrohr, das in einem Abstand von
390 mm zum Diffraktometermittelpunkt verläuft, ist die ψ-Kippung nur
in eine Richtung ausführbar. Zur exakten Probenpositionierung kann ein
Lasersystem mit CCD-Kamera genutzt werden.

Die Beamline und das Experiment werden durch zwei unter Linux betrie-
benen PCs mit der Software SPEC von Certified Scientific Software [125]
gesteuert. Dazu werden als Schnittstellen GPIB und VME Standards ge-
nutzt, die Wigglerdaten (Ringstrom, Wigglerfeld usw.) werden als EPICS-
Variablen ausgelesen. Die Messablaufdateien werden mittels eines MATHE-
MATICA R©-Programms erzeugt.

Das Detektorsystem besteht aus einem Ge-Halbleiterdetektor mit digi-
taler Elektronik zur Datenverarbeitung. Die detaillierte Beschreibung findet
sich in Kap. 3.2.4.
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Abbildung 4.3: EDDI- und MAGS-Beamline am Bessy II in der Perspektive
entgegen der Strahlrichtung. 

ψ

Blende S3
Blende S4 

Blende S2 Detektor 

Probe 

x,y,z
φ

ω 2θ 

Abbildung 4.4: EDDI-Diffraktometer aus seitlicher Sicht.
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4.2 Messprinzip

Die Grundidee des Stress-Scanning-Verfahrens besteht darin, innerhalb des
selben Volumenelements (VE) unter verschiedenen Orientierungen Beugungs-
informationen aufzunehmen. Entsprechend Abb. 4.5 wird dazu ein rauten-
förmiges VE durch ortsfeste Blenden T2/T3 definiert. Die Blende S4 und der
Detektor lassen sich horizontal translatieren, so dass Informationen aus dem
selben VE unter verschiedenen Orientierungen ψ > 0◦, die jeweils anderen
mittleren Beugungswinkeln 2θ entsprechen, aufgenommen werden können.
Dabei wird die sekundäre Strahldivergenz bei ψ= 0◦ maßgeblich durch die
vertikale Blendenöffnung von S4 bestimmt. Für ψ > 0◦ nimmt der Einfluss
der horizontalen Blendenöffnung auf die Divergenz zu. Erfolgt die Transla-
tion des VE von der Probenoberfläche bis in eine Tiefe z, so lassen sich aus
den Informationen gemäß dem sin2ψ-Verfahren Eigenpannungen ermitteln.
Voraussetzung ist, dass die Beugungswinkel 2θ mit ausreichender Genauig-
keit durch eine Standardprobe (z.B. Pulver) bestimmt werden.

Die mathematische Beschreibung erfolgt anhand der Darstellungen in
Abb. 4.6 unter Nutzung von Winkelbeziehungen der sphärischen Trigono-
metrie.

Eine horizontale Verschiebung c von S4 ist mit einer Verkippung des
Streuvektors um ψ, einer Drehung der Beugungsebene ϕ und der Vergrö-
ßerung des Beugungswinkels 2θ verbunden. Der Beugungswinkel lässt sich
durch

cos 2θ = cosϕ∗ cos θ0 sin d− sin θ0 cos d (4.1)

mit

tanϕ∗ =c/a ,

sin d =cos θ0 sin−1 γ und

cos γ =sinϕ∗ sin θ0 (4.2)
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Abbildung 4.5: Skizze zur Veranschaulichung des Messprinzips.
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Abbildung 4.6: Zur Veranschaulichung der Beugungsbedingungen. PS = Pri-
märstrahl, SS = Sekundärstrahl, SV = Streuvektor, a = Abstand Probe - S4,
c = horizontale Verschiebung von S4.
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beschreiben. Die Kippung des Streuvektors gegen die Oberflächennormale
ist dabei durch

cosψ = sin θ0 sin θ + cos θ0 cos θ cosϕ (4.3)

gegeben. Abb. 4.6b zeigt, dass die ψ-Kippung mit einer Veränderung der
Azimutalkomponente ϕ der Messrichtung verbunden ist, die sich aus

cosϕ =
cos θ sinϕ∗∗

sinψ
(4.4)

ergibt, wobei

sinϕ∗∗ =
sinϕ∗

sin 2θ
sin d .

In Abb. 4.7 ist der Beugungswinkel 2θ in Abhängigkeit vom Verhältnis
c/a (vertikale Verschiebung des Detektors aus der Ringebene zu Abstand
Probe - Detektor) dargestellt. Bei 2θ0 = 6◦ kommt es bis c/a = 0,3 zu einer
starken Änderung von ψ von 0◦ bis 70◦, während ϕ nahezu linear auf 8◦

und 2θ auf 17◦ steigt. Folglich ist bei Proben mit nicht rotationssymmetri-
schen oberflächenparallelen Spannungszuständen neben der Pulvermessung
zur präzisen Bestimmung von 2θ eine Drehung der Probe entgegen der Ro-
tation ϕ auszuführen.

Die Dehnung ergibt sich gemäß dem Quotienten aus dem Gitterabstand
einer beliebigen Ebene hkl zu dem einer Referenz nach

ε =
dProbe

x · dRef0

− 1 , (4.5)

wobei

x =
dProbe0

dRef0

=
aProbe0 /hhkl,Probe

aRef0 /hhkl,Ref
(4.6)
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den Normierungsfaktor darstellt. Dabei ist a0 der dehnungsfreie Gitterpara-
meter und hhkl der Faktor des jeweiligen Kristallsystems zur Bestimmung
der Ebenenabstände dhkl, der beispielsweise im kubischen System durch√
h2 + k2 + l2 gegeben ist.

Mit Gl. 2.12 ergibt sich damit für die Dehnung

ε =
hhkl,Probe

hhkl,Ref
· a

Ref
0

aProbe0

· E
hkl,Ref

Ehkl,Probe
− 1 . (4.7)

Als Fehler geht die Summe der Einzelfehler von aProbe0 , aRef0 , Ehkl,Probe

und Ehkl,Ref ein.

4.3 Experimentelle Umsetzung

Zur experimentellen Umsetzung wurden der Detektor und die Blende S4 auf
eine Positioniereinheit montiert, die eine Translation in horizontaler und ver-
tikaler Richtung erlaubt, und die Blendensysteme T2 und T3 auf einer op-
tischen Schiene an der Ω-Achse des Diffraktometers angebracht (Abb. 4.8).
Die Blenden sind jeweils mittels zwei Mikrometerschrauben in der Vornei-
gung (≈ θ0) und Verkippung (ψ∆) einstellbar (vgl. Abb. 4.9). Die Feinjusta-

 

ψ 

ϕ

2θ

Abbildung 4.7: Veränderung des Kippwinkels ψ, des Rotationswinkels ϕ und
des Beugungswinkels 2θ mit zunehmendem Verhältnis c/a bei 2θ0 = 6◦.
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Abbildung 4.8: Seitenansicht der Messanordnung. Die gestrichelte Linie gibt
den Strahlengang des totalreflektierten Strahls wieder.

ge zur Ausfluchtung von T2 erfolgt mittels Ω-Achse des Diffraktometers. Das
„Durchfädeln“ des gebeugten Strahls wird mit Hilfe der genauen Positionie-
rung von S4 realisiert. Die Probe lässt sich unabhängig vom Blendensystem
in ψ und ϕ bewegen. So ist einerseits die Ausrichtung der Probenoberfläche
parallel zu dem in x-Richtung langgestreckten VE möglich. Andererseits
wird die Bedingung für die Nachführung der Probe in ϕ bei ψ > 0◦ er-
füllt. Die Translation des VE durch die Probe erfolgt durch die x-, y- und
z-Translationstische.

Das Blendenpaar T2/T3 besteht aus der Wolframlegierung Densimet.
Die Oberflächen wurden bis zu einer Rauhigkeit von < 0,1 µm poliert und
weisen eine Welligkeit innerhalb der Querschnittsfläche (18 × 30 mm2) von
< 1 µm auf. Der Blendenabstand wird durch Streifen von Kaptonfolie einge-
stellt, die an die seitlichen Ränder der Blendenseiten gelegt werden. Mittels
zweier Schrauben werden die Blendenpaare aufeinander gepresst, so dass
der Blendenabstand der Foliendicke entspricht. Zur Verhinderung von To-
talreflexion an den Blendenoberflächen, die zur Aufweitung des VE führt,
werden die Blenden so angewinkelt, dass die Öffnung jeweils zur Probe hin
zeigt (vgl. Abb. 4.8). Der Anstellwinkel von ≈ 0,04◦ lässt sich einstellen,
indem ein zusätzlicher Streifen der 13 µm dicken Kaptonfolie auf der jewei-
ligen Seite eingebracht wird.
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Abbildung 4.9: Experimentelle Umsetzung der Ortsraumblenden, die an der
Ω-Achse des Diffraktometers befestigt werden.

Zur Demonstration des Einflusses der Totalreflexion im sekundären Strah-
lengang wurde unter 2θ = 0◦ T2 entfernt und T3 in den Strahlengang ge-
bracht. Mit geringer vertikaler Blendenweite S4 von ca. 0,15 mm wurde der
durchgehende Strahl in der Höhe abgefahren und die Intensität aufgezeich-
net. Abb. 4.10 zeigt, dass neben dem direkten Strahl weitere Intensitäts-
maxima aufgrund von Totalreflexion an den Blendenoberflächen auftreten.
Deren Abstand vom direkten Strahl hängt von der Verkippung ∆ω von T3
ab, die im Bereich von einigen hundertstel Grad variiert wurde. Da die Pro-
be für den weißen Strahl wie ein sogenannter „4π-Strahler“ wirkt, der den
gesamten Raum mit gebeugter Strahlung belegt, treffen Photonen in unter-
schiedlichen Winkeln auf die Blendenoberflächen von T3. Das Anwinkeln
der Blenden führt dazu, dass die Intensitätsmaxima aufgrund der Totalre-
flexion ausreichend weit vom direkt passierenden Strahl entfernt sind, so
dass eine „sichere“ Ausblendung der totalreflektierten Photonen durch S4
erfolgen kann.

Bedingt durch die kleinen Streuvolumina können sehr geringe Intensitä-
ten im sekundären Strahlengang auftreten. Daher wurde das Peak-Untergrund-
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Abbildung 4.10: Nachweis der Totalreflexion durch Bestimmung der Inten-
sitätsverteilung ca. 500 mm hinter T3 bei 2θ=0◦ mit T3 = 13 µm und
S4 = 0.15 mm (vert.) × 2 mm (hor.).

Verhältnis des Detektors insbesondere bei geringen Zählzeiten durch geeig-
nete Abschirmung optimiert, indem Rückstreuung in der Detektorumge-
bung (vgl. Abb. 3.6) unterdrückt wurde. Von entscheidender Bedeutung ist
dabei eine möglichst vollständige Abschirmung des Detektorkristalls, die
nur einen schmalen Schlitz dicht vor dem Kristall aufweist. Abb. 4.11 de-
monstriert den Einfluss der Schlitzkappe am vorderen Ende des Detektors.
Wird diese entfernt, ist der Untergrund so hoch, dass die Interferenzlinien
nicht auswertbar sind.

Weitere Studien wurden bezüglich des Absorbermaterials im primären
Strahlengang durchgeführt. Abb. 4.12 zeigt die Temperatur eines Thermo-
elements, das am Ort der Probe dem Einfluss des Primärstrahls ausgesetzt
ist. Wird kein Absorbermaterial eingesetzt, lässt sich ein Temperaturanstieg
auf ca. 85◦C beobachten. Da die Gitterdehnung aufgrund des Temperatur-
gradienten in ihrer Wirkung nicht von oberflächennahen Eigenspannungs-
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Abbildung 4.11: Beugungsbild eines geringen Streuvolumens in einer Stahl-
probe aufgenommen mit und ohne zusätzlicher Pb-Abschirmung, Zählzeit
jeweils 60 s.

gradienten zu unterscheiden ist, müssen bei der RSA geeignete Absorber
verwendet werden. Dabei sind Materialien geringer Ordnungszahl zu bevor-
zugen, um die Photonen niedriger Energie im Verhältnis stärker zu elimi-
nieren, so dass die hohe Eindringtiefe des Weißstrahls erhalten bleibt. Der
Vergleich der Wirkung von Kohlenstoff und Aluminium in Abb. 4.12 zeigt,
dass Al eine etwa zehnmal höhere Absorption aufweist als C.

Im Sinne der angestrebten hohen Ortsauflösung ist allerdings eine mög-
lichst geringe Absorberdicke und homogenes Material vorzuziehen, um eine
Strahlaufweitung des Primärstrahls aufgrund von diffuser Streuung im Ab-
sorbermaterial zu minimieren. Abb. 4.13 zeigt den Strahlquerschnitt des Pri-
märstrahls nach Passieren verschiedener Absorbermaterialien und -dicken.
Dazu wurde bei einer vertikalen Blendenöffnung S2 = 0,05 mm der Primär-
strahl mittels S4 (ebenfalls vertikale Blendenöffnung 0,05 mm) abgefahren.
Es wird deutlich, dass die Ränder des Strahls mit zunehmender Absorber-
dicke „verwaschen“.
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Abbildung 4.12: Einfluss des Absorbermaterials und -dicke auf die Tempe-
ratur der bestrahlten Fläche in [92].

Abbildung 4.13: Einfluss von Absorbermaterial und -dicke auf die Aufwei-
tung des Primärstrahls in [92].
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4.4 Simulation des Eintauchvorgangs der Probe in das
Volumenelement

4.4.1 Einleitung

Bei den Ortsraumverfahren trägt nur das Probenvolumen, das durch die
Ausdehnung des VE definiert ist, zur Beugung bei. Die Tiefenauflösung der
Verfahren wird durch die Höhe h des Volumenelements bestimmt, die im
Rahmen dieser Arbeit im Bereich von 10 - 15 µm liegt (Abb. 4.14). Die
Breite des VE ist durch die Beugungsbedingungen gemäß b = h · tan−1θ

festgelegt. Die einzige Möglichkeit zur Erhöhung der oftmals sehr geringen
Intensität ist die Verlängerung l des VE in x-Richtung.

Eine Verlängerung des VE führt allerdings zu einer stärkeren Ausprä-
gung der Eintaucheffekte und zu einer erhöhten Sensibilität gegenüber De-
justageeinflüssen, insbesondere bei ψ > 0. Daher sollen die nachfolgenden
Betrachtungen mögliche Dejustageeffekte infolge einer Probenverkippung
mit einschließen und deren Auswirkungen auf die Messergebnisse aufzeigen.

Die Simulationsrechnungen beruhen auf der Bestimmung der Informati-
onsschwerpunkte innerhalb des VE beim Eintauchen in a) eine (unendlich)
dünne Schicht und b) eine (unendlich) dicke Probe (Abb. 4.14a und b). Aus
der Verschiebung des Schwerpunktes ergibt sich eine Verschiebung des Beu-
gungswinkels ∆θeff , die wiederum zu einer Linienlagenverschiebung ∆E
führt.

Bezüglich der Beugungsbedingungen werden folgende Annahmen getrof-
fen:

• die Probenoberfläche ist eben,

• die Probe ist bzgl. der Absorption homogen,

• die Divergenz im sekundären Strahlengang ist vernachlässigbar (kein
Schattenvolumenelement) und

• das VE weist eine ideale rautenförmige Form auf.
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Abbildung 4.14: Schematische Darstellung des Eintauchvorganges einer un-
endlich dünnen Folie (a) und einer massiven Probe (b) in das VE. Die Punk-
te weisen auf den geometrischen Schwerpunkt der beleuchteten Oberflächen
als Funktion der Probenposition z’ hin (a) bzw. stellen die Schwerpunkte
des eingetauchten Teils des VE als Funktion der Eintauchtiefe dar (b).
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4.4.2 Mathematische Beschreibung

Das VE im Koordinatensystem (x,y,z) lässt sich bezüglich z durch die geo-
metrische Gewichtsfunktion

g(z) = b ·
(

1 +
|z|
h/2

)
(4.8)

beschreiben (Abb. 4.14). Dabei ist b die Ausdehnung in x- und h die Aus-
dehnung in z-Richtung. Das Koordinatensystem der eintauchenden Probe
(x’,y’,z’) sei entlang der Achse in der Beugungsebene entgegen dem Uhrzei-
gersinn um den Betrag ψ∆ verkippt, so dass die Überführung der Koordi-
natensysteme X = R·X’ bzw. X’ = RT ·X durch die Drehmatrix

R =


cosψ∆ 0 − sinψ∆

0 1 0

sinψ∆ 0 cosψ∆

 bzw. RT =


cosψ∆ 0 sinψ∆

0 1 0

− sinψ∆ 0 cosψ∆


(4.9)

vorgenommen werden kann. Entsprechend lässt sich g(z) als

g′u/o (x′, z′, ψ∆) = b ·
(

1± x′ sinψ∆ + z′ cosψ∆

h/2

)
(4.10)

beschreiben, wobei u/o die Unterteilung in einen unteren und oberen Ab-
schnitt des VE bezeichnet.

Beim Eintauchen der Oberfläche werden die einzelnen Abschnitte n nach
Abb. 4.15 durch die diskreten Grenzen des VE (x,z) in horizontaler Richung
((+ l

2 , x), (0, x) und (- l2 , x)) und in vertikaler Richtung ((z, + b
2 ), (z, 0) und

(z, - b2 )) durch die Integrationsgrenzen

x′m = f (z′, ψ∆) bzw. z′p = f (ψ∆) (4.11)
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Abbildung 4.15: Schnitt senkrecht zur Oberfläche und Beugungsebene zur
Veranschaulichung der Integrationsgrenzen bzgl. x’ und z’ bei der ab-
schnittsweisen Beschreibung (n = 1 - 6) des Eintauchvorgangs der Ober-
fläche in das VE.

abschnittsweise in den Grenzen z’p beschrieben.17 Entsprechend lässt sich
die (normierte) Intensität einer (unendlich) dünnen Folie, die proportional
zur beleuchteten Fläche ist, durch

In (z′, ψ∆) =
∫
x′m

g′u/o (x′, z′, ψ∆) dx′ (4.12)

abschnittsweise wiedergegeben.
Die Schwerpunkte SPx

′

n (z′,ψ∆) der Folie bzgl. x’ ergeben sich dann in-
nerhalb der Abschnitte n entsprechend

SP x
′

n (z′, ψ∆) =

∫
x′m

x′ · g′u/o (x′, z′, ψ∆) dx′∫
x′m

g′u/o (x′, z′, ψ∆) dx′
, (4.13)

während der Schwerpunkt SP z
′

bzgl. z’ durch die Folienposition selbst ge-
geben ist.

17Die Abhängigkeit der Integrationsgrenzen von z’ und ψ bzw. nur von ψ wird im
Folgenden der Übersicht wegen nicht mit angegeben. Obwohl die Abhängigkeit bei kleinen
ψ von vergleichsweise geringer Bedeutung ist, findet sie in den Simulationen dennoch
Berücksichtigung.
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Im Falle der Überschneidung von Abschnitten gilt der Teilschwerpunkt-
satz

Spkt =
∑
n Spn ·Gn∑

nGn
=
Sp1 ·G1 + Sp2 ·G2 + Sp3 ·G3...

G1 +G2 +G3...
, (4.14)

wobei SPn die Teilschwerpunkte und Gn die zugehörigen Gewichtsfunktio-
nen sind.

Im Falle von dicken Proben18 muss die Integration der Intensität zur Er-
mittlung der Schwerpunkte entlang z’ durch Berücksichtigung eines Schwä-
chungsfaktors entsprechend

A(s′, z′, µ) = e−µk(s
′−z′) (4.15)

erfolgen (k = Geometriefaktor, µ = Absorptionskoeffizient, s’ = Eintauch-
tiefe). Dann wird die Intensität innerhalb des ersten Abschnitts

Int1 (s′, ψ∆, µ) =
∫ s′

z′1

I1 (z′, ψ∆) ·A(s′, z′, µ)dz′ (4.16)

und innerhalb eines jeden weiteren Abschnitts mit s’ > z′2

Intn (s′, ψ∆, µ) =

Intn−1 (z′n, ψ∆, µ) ·A(s′, z′n, µ) +
∫ s′

z′n

Intn (z′, ψ∆) ·A(s′, z′, µ)dz′ (4.17)

Für den Schwerpunkt der eintauchenden Probe ergibt sich innerhalb des
ersten Abschnitts

Spktx
′

1 (s′, ψ∆) =

∫ s′
z′1
SP x

′

1 (z′, ψ∆) · I1(z′, ψ∆) ·A(s′, z′, µ)dz′∫ s′
z′1
I1(z′, ψ∆) ·A(s′, z′, µ)dz′

(4.18)

18Unter einer “dicken” Probe ist eine Probe zu verstehen, die eine deutlich größere
Ausdehnung bezüglich z aufweist als das VE, so dass nur das Eintauchen der Probe in
das VE von Bedeutung ist, nicht aber das “Austauchen”.
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bzw.

Spktz
′

1 (s′, ψ∆) =

∫ s′
z′1
z′ · I1(z′, ψ∆) ·A(s′, z′, µ)dz′∫ s′
z′1
I1(z′, ψ∆) ·A(s′, z′, µ)dz′

(4.19)

und innerhalb eines jeden weiteren Abschnitts unter Anwendung des Teil-
schwerpunktsatzes

Spktx
′

n (s′, ψ∆) =

[
n−1∑
k=1

[
Spktx

′

k (zk+1, ψ∆) ·Gk(s′, ψ∆, µ)
]

+
∫ s′

z′n

SP x
′

n (s′, ψ∆) · In(s′, ψ∆) ·A(s′, z′, µ)dz′]
×

[
n−1∑
k=1

[Gk(s′, ψ∆, µ)] +
∫ s′

z′n

In(s′, ψ∆) ·A(s′, z′, µ)dz′
]−1

(4.20)

bzw.
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Spktz
′

n (s′, ψ∆) =

[
n−1∑
k=1

[
Spktz

′

k (zk+1, ψ∆) ·Gk(s′, ψ∆, µ)
]

+
∫ s′

z′n

SP z
′

n (s′, ψ∆) · In(s′, ψ∆) ·A(s′, z′, µ)dz′]
×

[
n−1∑
k=1

[Gk(s′, ψ∆, µ)] +
∫ s′

z′n

In(s′, ψ∆) ·A(s′, z′, µ)dz′
]−1

. (4.21)

Dabei finden die bereits eingetauchten Abschnitte durch Gewichtung mit

Gk(s′, ψ∆, µ) = A(s′, z′k+1, µ) ·
∫ k+1

k

Ik(s′, ψ∆, µ)dz′ (4.22)

entsprechend ihrer Größe und der Eintauchtiefe Berücksichtigung.

Die Übertragung der Schwerpunktlage der Beugungsinformation inner-
halb des VE bzgl. (x’, z’) auf den effektiven Beugungswinkel bzw. die Ener-
gielage ergibt sich durch

∆E = −E ∆θ
tan θ

≈ −E∆z∗/(2a)
tan θ

, (4.23)

wobei a den Abstand von der Probe zu S4 und ∆z* die Verschiebung des
Schwerpunktes entlang des Streuvektors beschreibt. Definiert die Position
des Detektors eine Verkippung ψDet, so erhält man

∆z∗ = −x′Sp sin(ψDet + ψ∆) + z′Sp cos(ψDet + ψ∆) . (4.24)
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4.4.3 Ergebnisse

In der Simulation werden die in Tab. 4.1 aufgeführten Parameter verwendet,
die weitgehend den Bedingungen späterer Messungen entsprechen. Es wer-
den zwei Fälle unterschieden. Einerseits wird das Eintauchen einer unendlich
dünnen Schicht in das VE betrachtet, um so Rückschlüsse auf die Untersu-
chungen von Schichten ziehen zu können, die gegenüber der VE-Ausdehnung
sehr dünn sind. Andererseits wird das Eintauchen dicker Proben betrach-
tet. Dabei sollen zwei Einflussparameter näher untersucht werden, die durch
„einfache“ geometrische Betrachtungen nicht zu erschließen sind. Das ist
zum einen der Winkel ψ∆, der die Verkippung der Probenoberfläche zum
VE beschreibt und im Experiment üblicherweise mit einer Genauigkeit von
0,1◦ einzustellen ist. Zum anderen soll der Einfluss der Probenabsorption
betrachtet werden, da bei Messungen in verschiedenen Orientierungen die
Energielage (und somit die Absorption) der Interferenzen variiert.

Die Simulationsergebnisse in Abb. 4.16a zeigen, dass beim Eintauchen
einer dünnen Schicht in das VE unter verschiedenen Verkippungen ψ∆ der
Intensitätsverlauf von einer Dreiecksfunktion in eine glockenförmige Vertei-
lung übergeht. Dabei kommt es zu einer Verbreiterung des VE, d.h. einer
Verminderung der Ortsauflösung als Funktion von ψ∆, die etwa 3 µm/0,1◦

beträgt. Gleichzeitig bedingt das schräge Eintauchen der Schicht nach
Abb. 4.16b eine Verschiebung des Schwerpunktes SP x

′
bzgl. x’ (vgl.

Tabelle 4.1: Verwendete Simulationsparameter.

h × b × l 0,013 × 0,248 × 2,0 mm3

a 2000 mm

2θ0 6◦

µFe(30keV) 0,6 mm−1

µFe(50keV) 1,5 mm−1

µFe(70keV) 6,4 mm−1

Energieposition 50,4 keV
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Abb. 4.14a). Die Lage von Spx
′

ist bei ψ∆ = 0◦ unabhängig von z’,
nimmt aber schon bei geringen Verkippungen Verläufe an, die bezüglich des
Koordinatenmittelpunktes symmetrisch sind. Mit zunehmender Verkippung
kommt es zu einer Linearisierung der Verläufe, die etwa bei ψ∆ = ±0, 2◦

die Form einer Geraden annehmen. Eine Verkippung -ψ∆ der Schicht zum
VE entspricht einer Spiegelung der Verläufe an der Abszisse, was anhand
von Abb. 4.15 deutlich wird.

Abb. 4.16c zeigt die aus SP x
′

und SP z
′

resultierenden Energielagen-
verschiebungen bei ψDet = 57◦ gemäß Gleichungen 4.23 und 4.24. Es wird
deutlich, dass die Energielagenverschiebungen wegen l >> h maßgeblich auf
die Verläufe von SP x

′
(z’) zurückzuführen sind. Die Verschiebungen liegen

unter den gegebenen Bedingungen im Bereich von bis zu ±100 eV und sind
daher bei der RSA unbedingt zu berücksichtigen. Der Vergleich der Ener-
gielagenverschiebungen mit den Intensitätsverläufen zeigt, dass die Energie-
lagen in der Mitte des VE (bei z’ = 0 mm) unabhängig von der Verkippung
ψ∆ sind. Eine zuverlässige Energielagenbestimmung innerhalb des VE lässt
sich daher durch die Anpassung einer symmetrischen Funktion bzgl. des
Mittelpunktes erhalten.

Abb. 4.17 zeigt die Gegenüberstellung der Simulationsergebnisse mit
dem gemessenen Verlauf der 311-Interferenz an einer Au-Schicht mit 3 µm
Schichtdicke. Die experimentell ermittelten Verläufe kreuzen sich in den
Intensitätsmaxima, so dass sich im Mittelpunkt des VE eine mittlere Ener-
gielage von 50,421 durch lineare Regression der drei Verläufe ermitteln lässt.
Der Fehler beträgt ±6 eV und liegt somit innerhalb des für die RSA üb-
licherweise tolerierten Fehlerbereichs. Es ist zu beachten, dass wegen der
geringen Intensitäten die äußeren Ränder des VE nicht mit experimentellen
Datenpunkten belegt werden konnten. Der abgerundete Verlauf der Integral-
intensität bei ψ∆ =0◦ lässt sich darauf zurückführen, dass die Translation
einer Schicht mit der Dicke > 0 mm zu einer Glättung des Intensitätsver-
laufes führt.

Beim Eintauchen einer dicken Probe in das VE lässt sich ein charakteri-
stischer Intensitätsverlauf beobachten, der aus einem anfänglichen Anstieg
besteht, ein Maximum erreicht und im weiteren Verlauf exponentiell ab-
fällt (Abb. 4.18a). Der Verlauf hängt dabei von der Verkippung ψ∆ ab, so
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Abbildung 4.16: Intensitätsverlauf,Verlauf des Schwerpunktes bzgl. x’ und
Verlauf der Energielage beim Durchscannen einer dünnen Schicht durch das
VE bei unterschiedlichen Probenkippungen ψ∆.
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Abbildung 4.17: Gegenüberstellung der simulierten und gemessenen Verläu-
fe der Intensitäten (a) und der Energielagen (b) der Au-311-Interferenz bei
ψDet = 57◦.

dass er als ein Indikator für die Lage der Oberfläche relativ zum VE gelten
kann. Die genaue Analyse des Verlaufes ist wichtig, da die Lage des Schwer-
punktes innerhalb des VE beim Eintauchvorgang, aber auch nach Abschluss
des Eintauchvorganges, von der Lage der Probenoberfläche beeinflusst wird
(Abb. 4.18b und 4.18c). Dabei ist bei ψ∆ > 0◦ die Verschiebung entlang x’
deutlich stärker ausgeprägt als bzgl. z’. In dem Bereich, in dem die Intensi-
tät das Maximum erreicht, schneiden sich die Schwerpunkte Spktx

′
. Ist das

VE vollständig eingetaucht, unterscheiden sich die Schwerpunkte Spktx
′
im

betrachteten Bereich um etwa 50 µm/0,1◦.
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Abbildung 4.18: Verläufe der Intensitäten und der Schwerpunktlagen beim
Eintauchen des VE in eine dicke Probe unter verschiedenen ψ∆ bei
µFe(50 keV).
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Abbildung 4.19: Energielagenverschiebung einer Fe-Interferenz bei 50 keV
als Funktion der Eintauchtiefe bei verschiedenen Probenverkippungen ψ∆

und ψDet = 57◦.

Der Schwerpunkt Spktz
′

bzgl. z’ ist nur geringfügig von der Proben-
verkippung beeinflusst. Für das eingetauchte VE beträgt der Unterschied
zwischen den Verkippungen weniger als 0,5 µm/1◦. Entsprechend geht die
Verschiebung der Energiepositionen insbesondere bei ψDet > 0◦ in Abb. 4.19
maßgeblich auf Spktx

′
zurück. Dabei beträgt die maximale Abweichung

∆E ≈ 0.1 keV. Ist das VE vollständig eingetaucht, ist die Verschiebung
0,005 keV/0,1◦ (∆E/E = 1 × 10−4). Abb. 4.20b zeigt die experimen-
tell ermittelten Energielagen der Fe-110 Interferenzen im Eintauchversuch
bei ψ =40◦ nahe der dehnungsfreien Richtung. Dabei lassen sich die in
Abb. 4.19 simulierten Verläufe bei unterschiedlichen Probenverkippungen
ψ∆ experimentell wiedergegeben. Anhand der zugehörigen Intensitätsver-
läufe in Abb. 4.20a zeigt sich, dass bei der vorliegenden Streuung der Da-
tenpunkte eine Probenverkippung im Bereich von ±0,1◦ leicht erkennbar
ist, so dass bei allen experimentellen Ergebnissen ein Fehler < ±0,1◦ ange-
nommen werden kann.

Aus den Ergebnissen lässt sich ableiten, dass es notwendig ist, das VE
möglichst parallel zur Oberfläche auszurichten, wobei die Intensitätsverläufe
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als Kriterium verwendet werden können. Die Unsicherheiten in den Energi-
epositionen liegen für ψ∆ < ±0, 1◦ im Bereich von ∆ E/E < ±1× 10−4.

In Abb. 4.21 ist der Eintauchvorgang unter ψ∆ = 0,1◦ für verschiedene
Absorptionsverhältnisse, die Ferrit-Interferenzlagen bei 30 keV, 50 keV und
70 keV entsprechen, dargestellt. Anhand der Intensitätsverläufe in 4.21a
wird deutlich, dass die Lage des Maximums von der Absorption abhängt
und somit kein allgemeingültiges Kriterium für die Lage des VE innerhalb
der Probe sein kann. Die Messergebnisse in Abb. 4.22 zeigen die Über-
einstimmung mit den Berechnungen. Die Abweichungen in dem Abfall der
Intensitäten sind auf Unsicherheiten bei der Bestimmung der Absorption in
der Probe zurückzuführen, für die im angegebenen Beispiel die Werte für
reinen Ferrit angenommen wurden.

Aus Abb. 4.21b und c geht hervor, dass auch die Schwerpunktlagen von
der Absorption beeinflusst werden. Dabei ist der Einfluss auf Spktx

′
gemäß

der größeren Ausdehnung des VE in x deutlich größer als auf Spktz
′
. Al-

lerdings kann bei geringen VE-Ausdehnungen und steilen Gradienten eine
Korrektur der Tiefenlage z’ notwendig werden, die im betrachteten Bereich
zwischen 30 keV und 70 keV ca. 2 µm beträgt (Abb. 4.21c). Aus der Ver-
schiebung von Spktx

′
ergeben sich nach Abb. 4.23 bei ψDet = 57◦ Energie-

lagenverschiebungen von < 20 eV unter den angenommenen Bedingungen.
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Abbildung 4.20: Experimentell ermittelte Verläufe der Fe-110 Integralinten-
sitäten und Interferenzlagen beim Eintauchen des VE in eine dicke Probe
bei verschiedenen ψ∆ unter ψDet = 40◦.
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Abbildung 4.21: Verläufe der Intensitäten und der Schwerpunktlagen beim
Eintauchen des VE in eine dicke Probe unter verschiedenen µFe bei
ψ∆ = 0,1◦.
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Abbildung 4.22: Gerechnete (durchgezogene Linie) und gemessene Verläufe
(Punkte) der Intensitäten verschiedener Interferenzen beim Eintauchen des
VE in eine Stahlprobe 100Cr6 bei 2θ ≈ 8◦.
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Abbildung 4.23: Energielagenverschiebung verschiedener Fe-Interferenzen
als Funktion der Eintauchtiefe bei ψ∆ = 0,1◦ und ψDet = 57◦.
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5 Experimentelle Ergebnisse und Diskussion

5.1 Messbedingungen der angewendeten Verfahren

5.1.1 Stress-Scanning-Verfahren

Die Messbedingungen des Stress-Scanning-Verfahrens sind in Tab. 5.1 für
die Stahlprobe (Fe) und die Multilagenschichtsysteme (MLS) zusammenge-
fasst. Bei allen Messungen wurde ein VE mit den Abmessungen 0,013 ×
0,25 × 2,0 mm3 (h × b × l) genutzt. Primärseitig erfolgte die Absorption
der niedrigen Energien bis etwa 10 keV durch einen 2 mm dicken Al-Filter
um die Erwärmung der Probe zu unterbinden. Sekundärseitig diente die
Blende T4 mit einer Blendenweite von 0.1 × 10 mm zur Strahlbegrenzung,
die sich in einem Abstand von ca. 1650 mm von der Probe befand. Mit
der horizontalen Verschiebung der Blende von 145 mm und 271 mm wur-
den neben ψ =0◦ (sin2ψ = 0) weitere Kippungen von 40◦ (sin2ψ ≈ 0,4)
und 57◦ (sin2ψ ≈ 0,7) eingestellt. Die Ermittlung der Beugungswinkel als
auch die Charakterisierung des Volumenelements (VE) in Bezug auf Aus-
dehnung und Beugungsbedingungen erfolgte mittels einer 3 µm dicken, auf
einem Si-Träger galvanisch abgeschiedenen Au-Schicht. Licht- und elektro-
nenmikroskopische Aufnahmen zeigten, dass die Schicht keine signifikanten
Unebenheiten aufweist und die Abweichung in der Dicke weniger als 10%
beträgt. Durch Energie- und winkeldispersiven Eigenspannungsanalysen an
der Schicht konnte darüber hinaus nachgewiesen werden, dass der Betrag
der Eigenspannungen vernachlässigbar ist.

Abb. 5.1 zeigt die Ergebnisse der vertikalen Translation der Au-Schicht
in Schrittweiten ∆z von 0,5 µm durch das VE am Beispiel der Au-111 In-
terferenz bei ψ = 0◦ (Abb. 5.1a) und der Au-311 Interferenz bei ψ = 57◦

(Abb. 5.1b). Der Verlauf der Integralintensität als Funktion der Tiefe z
zeigt, dass die eingestellte Ausdehnung des VE der Dicke der Kaptonfolie,
die als Abstandshalter dient, von ca. 13 µm entspricht. Es ist zu beachten,
dass in der Abb. 5.1 keine Entfaltung des Schichtprofils und des VE vorge-
nommen wurde, so dass die Verteilung nicht einer exakten Dreiecksfunktion
entspricht, sondern geringfügige „Verwaschungen“ an den Kanten auftreten.
Die Energiepositionen sind innerhalb des VE entsprechend dem simulierten
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Tabelle 5.1: Messbedingungen und Auswerteparameter für die Stress-
Scanning-Spannungsanalyse am Synchrotronmessplatz für energiedispersive
Diffraktion (EDDI) am BESSY.

Detektor Spezifikationen und Einstellungen siehe Tab. 3.2

Strahlung Weißstrahl (vgl. Abb.4.2)

Optische Elemente Ortsraumblenden, Details siehe Kap. 4.3

Sekundärseitige Optik Spaltsystem 1650 mm von der Probe entfernt,

0,1 × 10 mm2 (äquatorial × axial)

Volumenelement 0,013 × 0,25 × 2,0 mm3

Absorber 2 mm Al

Schrittweite ∆z 5 µm (Fe)

0,5 µm (MLS)

Zählzeit pro Spektrum 600 - 1800 s

Kippwinkel ψ 0◦ / 40◦ / 57◦

Beugungswinkel 2θ 6.2◦ / 8.0◦ / 11.5◦

Verfahrweg c 0 mm / 145 mm / 271 mm

Ausgewertete Ferrit: 110, 211, 220

Beugungslinien Al2O3: 012, 024

Gitterparameter aFerrit0 = 0.28665 nm, aAu0 = 0.4078 nm

Kalibrierprobe Au-Schicht, Dicke = 3 µm

linearer Schwächungs-
koeffizient

NIST Datenbank, siehe Fußnote 19

DEK s1 = -1,268 × 10−6 MPa−1,
1
2 s2 = 5,804 × 10−6 MPa−1 (Fe-110, -211, -220)

s1 = -0,544 × 10−6 MPa−1,
1
2 s2 = 2,96 × 10−6 MPa−1 (Al2O3-012, -024)
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(a)

(b)

Abbildung 5.1: Charakterisierung des Volumenelements bei ψ = 0◦ (a)
und ψ = 57◦ (b) bezüglich Ausdehnung und Beugungsbedingungen anhand
von Integralintensität, Energielage und -breite verschiedener Reflexe nach
Durchfahren einer 3 µm dicken Au-Folie durch das VE.
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Verlauf in Abb. 4.16 nahezu konstant. Der Betrag der Integralbreiten ist für
ψ = 57◦ gegenüber ψ = 0◦ gestiegen, da die horizontale Blendenöffnung T4
von 10 mm bei zunehmender Verkippung eine immer größere Divergenz zu-
lässt (vgl. Abb. 4.5). Bezüglich Integralintensitäten und Energielagen lassen
sich keine signifikanten Unterschiede feststellen, so dass die Ortsauflösung -
unabhängig vom Kippwinkel ψ - der eingestellten Blendenweite entspricht.

Zur Bestimmung der Dehnungen nach Gl. 4.7 wurden unterschiedliche
Interferenzen hkl genutzt und für aRef0 der Gitterparameter von 0,4078 nm
verwendet. Die Berechnung der Eigenspannungen erfolgte mittels der in
Tab. 5.1 aufgeführten Interferenzen mit den angegebenen diffraktionselasti-
schen Konstanten (DEK). Die DEK wurden aus den Einkristallkonstanten
nach dem Eshelby/Kröner-Modell bestimmt. Zur Bestimmung der Tiefen-
verläufe wurden die energieabhängigen linearen Absorptionskoeffizienten
Tabellenwerken entnommen19.

5.1.2 Komplementäre Verfahren der RSA zur Verifizierung der
Ergebnisse

Den Ergebnissen des Stress-Scanning-Verfahrens werden zur Verifizierung
Ergebnisse komplementärer röntgenographischer Verfahren gegenübergestellt.
Das sind zum einen zerstörungsfreie Messungen im Labor, bei denen win-
keldispersiv in Reflexion die ersten Mikrometer unter der Oberfläche erfasst
werden. Darüberhinaus wurden Abtragsmessungen vorgenommen, bei de-
nen nach schrittweisem Oberflächenabtrag von ca. 10 µm erneut Messungen
nach der sin2ψ-Methode vorgenommen werden. Zum anderen ermöglichten
energiedispersive Analysen in Reflexion die zerstörungsfreie Bestimmung
der Eigenspannungskomponenten im Bereich der ersten 100 µm.

Die oberflächennahen Messungen wurden auf einem für die Analyse von
Eigenspannungs-, Textur- und Mikrostrukturgradienten optimierten Rönt-
gendiffraktometer am Hahn-Meitner-Institut (Berlin) durchgeführt. Bei dem
Gerät handelt es sich um ein 5-Kreis-Diffraktometer (ETA-Diffraktometer)

19Die Daten werden vom National Institute of Standards and Technology in der Daten-
bank „X-Ray Attenuation and Absorption for Materials of Dosimetric Interest (XAAMDI)
database“ im Internet unter http://physics.nist.gov/PhysRefData/XrayNoteB.html zur
Verfügung gestellt. Sie gleichen weitgehend den in [123] angegebenen Werten.
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mit der Möglichkeit der direkten Probendrehung um den Streuvektor. Die
Spezifikationen sind in Tab. 5.2 zu finden. Zur Festlegung der Messposition
auf der Probenoberfläche ist das ETA-Diffraktometer mit CCD-Kamera so-
wie einem Laser-Abtastsystem ausgerüstet, das eine berührungslose Ermitt-
lung der Probendicke gestattet. Die Messungen wurden mit CoKα Strahlung
(λ = 0.178897 nm) ohne kβ-Filter unter den Betriebsbedingungen 32 kV /
50mA im symmetrischen Ψ-Modus der RSA (Probenkippung um Achse in
der Beugungsebene) durchgeführt. Durch die Verwendung einer Polykapil-
larsemilinse der Firma IFG im primären sowie einer Sollerblende und einem
Sekundärmonochromator im sekundären Strahlengang wurde eine Quasi-
Parallelstrahlanordnung realisiert, die neben der Möglichkeit sehr streifen-
der Beugungsbedingungen den weiteren Vorteil bietet, dass der Einfluss von
Kanteneffekten (in Form einer falschen Probendicke) auf das Messergebnis
minimiert werden kann. Die Messbedingungen und Auswertparameter sind
ebenfalls in Tab. 5.2 zusammengefasst. Zur Kalibrierung des Gerätes wur-
de Au-Pulver verwendet. Messungen an ausgewählten Interferenzen bis hin
zu hohen ψ-Kippwinkeln von 89◦ ergaben maximale Linienverschiebungen
von ±0,01◦, systematische ψ-Aufspaltungen traten nicht auf. Die Datener-
fassung erfolgte vollautomatisch mit dem Messprogramm-Paket RayfleX R©

der Firma SEIFERT, zur Auswertung wurde ein unter MATHEMATICA R©

4.0 erstelltes Programmpaket verwendet. Die dem Programm zu Grunde
liegenden Algorithmen basieren auf den in Kap. 2.2.3 eingeführten Zusam-
menhängen.

Untersuchungen der weitreichenden Spannungsgradienten mit semizer-
störendem Abtragsverfahren wurden an der Universität Kassel im Institut
für Werkstofftechnik durchgeführt. Dazu wurde die Oberfläche schrittweise
abgetragen und jeweils anschließend oberflächennahe diffraktometrische Ei-
genspannungsanalysen mit CrKα-Strahlung (λ = 0,22898 nm) durchgeführt
(Tab. 5.3). Der Oberflächenabtrag wurde mit einem Gerät zur elektrolyti-
schen Präparation von metallischen Proben vorgenommen. Dabei wurde
darauf geachtet, dass es zu keiner signifikanten Erwärmung der Probe kam.
Der Abtrag wurde mittels einer mechanischen Messuhr auf einer polierten
keramischen Grundplatte mit einer Genauigkeit von< 0,5 µm bestimmt. Bei
der Auftragung des Eigenspannungstiefenverlaufs wurde sowohl die mittlere
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Tabelle 5.2: Messbedingungen und Auswerteparameter für die oberflächen-
nahen röntgenographischen Analysen am ETA-Röntgendiffraktometer im
HMI (Berlin).

Diffraktometer 5-Kreis-Diffraktometer von GE Inspections (frü-
her Seifert), CCD-Kamera u. Laser zur Proben-
justage

Strahlung CoKα (ohne Kβ-Filter), 32 kV / 50 mA, Lang-
feinfokus

Optische Elemente Polykapillar-Semilinse primärseitig, 0,4◦ Soller-
blende + (001) LiF-Monochromator

Messbereich 2θ = [95,5◦ ... 104,0◦] (Reflex: Ferrit 211)

2θ = [65.5 ... 71.0] (Reflex: Al2O3 024)

Schrittweite ∆2θ = 0,05◦

Zählzeit / Schritt 8 - 20 s

ψ-Schrittweite ∆ sin2 ψ = 0,1 bis ψ = 80◦,

∆ψ = 1◦ bis ψ = 89◦ (Fe)

∆ sin2 ψ = 0,1 bis ψ = 80◦,

∆ψ = 0,5◦ bis ψ = 89◦ (MLS)

Azimutwinkel φ 0◦, 90◦, 180◦, 270◦ (Fe)

0◦ (MLS)

Kalibrierung Au-Pulver, Korngröße 1,5 - 4 µm

linearer µCoKα = 421 cm−1 (Fe)

Schwächungskoeffizient µCoKα = 195 cm−1 (Al2O3)

DEK siehe Tab. 5.1
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Tabelle 5.3: Messbedingungen und Auswerteparameter der röntgenographi-
schen Analysen mit schrittweisem Oberflächenabtrag an der Universiät Kas-
sel.

Diffraktometer 4-Kreis-Diffraktometer D 5000 von Siemens

Strahlung CrKα (mit Kβ-Filter), 40 kV / 35 mA, Feinfokus

Optische Elemente Kollimator � 1 mm primärseitig, 1/3◦ Schlitz-
blende sekundärseitig

Abtragsmedium Struers Elektrolyt A2

Abtragsschritte ca. 10 µm

Messbereich 2θ = [64...73] (Reflex: 110)

2θ = [145...166 ] (Reflex: 211)

Schrittweite ∆2θ = 0,1◦

Zählzeit / Schritt 4 s

ψ-Schrittweite ∆ sin2 ψ = 0,09 bis ψ = 70◦

Azimutwinkel φ 0◦, 90◦, 180◦, 270◦

Kalibrierung Fe-Pulver, Korngröße ca. 1 - 5 µm

linearer Schwächungs-
koeffizient

µCrKα = 860 cm−1

DEK siehe Tab. 5.1

Eindringtiefe der Strahlung 〈τ〉 als auch die Auslösung von Eigenspannun-
gen I. Art durch das Abtragen [126] berücksichtigt.

Die energiedispersiven sin2ψ Spannungsanalysen wurden bei 2θ-Winkeln
zwischen 6◦ und 16◦ durchgeführt, die Mess- und Auswerteparameter sind in
Tab. 5.4 zusammengestellt. Der primärseitige Strahlquerschnitt für die Mes-
sungen betrug 0,5 × 0,5 mm2, sekundärseitig wurde die Äquatorialdivergenz
des gebeugten Strahles durch ein Doppelspaltsystem mit Blendenöffnungen
von jeweils 0.03 × 5 mm2 auf Werte ∆2θ < 0,01◦ begrenzt. Die Spezifika-
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tionen und Einstellungen des eingesetzten Germanium-Festkörperdetektors
lassen sich Tab. 3.2 entnehmen. Bei der Auswertung der Diffraktogram-
me wurden die Probenabsorption, das Wigglerspektrum, der Ringstrom
und die totzeitbedingten Verschiebungen in Form von Korrekturfaktoren
berücksichtigt. Die DEK wurden nach dem Eshelby/Kröner-Modell unter
Nutzung der Einkristallkonstanten berechnet. Die Bestimmung der Span-
nungen erfolgte analog zu den winkeldispersiven Messungen unter Nutzung
der Formalismen in Kap. 2.2.3.
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Tabelle 5.4: Messbedingungen und Auswerteparameter für die sin2ψ Span-
nungsanalyse am Synchrotronmessplatz für energiedispersive Diffraktion
(EDDI) am BESSY.

Diffraktometer θ-θ-Diffraktometer Typ MZ VI mit 5-Achsen-
Positioniereinheit von GE Inspections, CCD-
Kamera u. Laser zur Probenjustage

Detektor Spezifikationen und Einstellungen siehe Tab. 3.2

Strahlung Weißstrahl (vgl. Abb.4.2)

Optische Elemente Filterbank und Doppelspaltsystem primär- und
sekundärseitig (Details siehe Kap. 4.1)

Strahlquerschnitt 0,5 × 0,5 mm2

Absorber 2 mm Al

Sekundärseitige Optik Doppelspaltsystem (äquatorial × axial) 0,03 ×
5 mm2

Beugungswinkel 16◦ (Fe), 6◦ (MLS)

Zählzeit pro Spektrum 200 - 600 s

Ausgewertete Beu-
gungslinien

Ferrit: 111, 200, 211, 220, 310, 222, 321, 411,
420, 431

Al2O3: 012

ψ-Schrittweite ∆ sin2 ψ = 0,1 bis ψ = 80◦,

∆ψ = 1◦ bis ψ = 89◦ (Fe)

∆ sin2 ψ = 0,1 bis ψ = 80◦,

∆ψ = 0,5◦ bis ψ = 89◦ (MLS)

Azimutwinkel φ 0◦, 90◦, 180◦, 270◦ (Fe)

0◦ (MLS)

Kalibrierung W-Pulver, < 1 µm

lin. Schwächungsk. NIST Datenbank

DEK berechnet aus den Einkristallkonstanten nach
dem Eshelby/Kröner-Modell
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5.2 Anwendung des Stress-Scanning-Verfahrens auf ei-
ne Stahlprobe mit langreichweitigem Spannungs-
gradienten

5.2.1 Probenbeschreibung

Das Stress-Scanning-Verfahren wurde auf eine kugelgestrahlte Stahlprobe
100Cr6 angewendet, die ein vergütetes Gefüge aufweist, das aus einer mar-
tensitischen Matrix mit feinverteilten Mischkarbiden M23C6 besteht, deren
Phasenanteil ca. 7% beträgt (Abb. 5.2a und Tab. 5.5).

 

15 µm 

(a) Gefüges des Grundwerkstoffs

  50 µm σ11 

σ22 

(b) Oberfläche

Abbildung 5.2: Mikroskopische Aufnahmen der kugelgestrahlten Stahlprobe
100Cr6 [4].

Die scheibenförmige Probe (� 24 mm, Höhe = 4 mm) wurde zunächst
plangeschliffen und anschließend mit einer Almintensität von 0,15 - 0,17 mmA
und einem Deckungsgrad von 200% senkrecht zur Oberfläche gestrahlt (Ta-
belle 5.6). Wie aus Abb. 5.2b ersichtlich wird, weist die ebene Oberflä-
che nach dem Strahlprozess noch Spuren vom vorangegangenen Schleifen
auf. Entsprechend wurden die Messrichtungen definiert und eingezeichnet.
Die interferometrische Rauhigkeitsprüfung ergab eine mittlere Rauheit von
0,52 µm, die Oberflächenhärte beträgt 850 HV. Mittels röntgenographischer
Texturanalyse konnte gezeigt werden, dass keine ausgeprägte Vorzugsorien-
tierung vorliegt.



5.2 Anwendung des Stress-Scanning-Verfahrens auf eine
Stahlprobe mit langreichweitigem Spannungsgradienten 121

5.2.2 Ergebnisse und Diskussion

Abb. 5.3a zeigt die Verteilung der Gitterdehnungen ε22(z) in den Orientie-
rungen ψ = 0◦, 40◦ und 57◦. Dabei wurden die Interferenzen 110 (ψ = 0◦)
und 211(ψ = 40◦ und ψ = 57◦) genutzt und gemäß Gl. 4.7 jeweils mit den
Au-Interferenzen 111, 200 und 311 normiert. Es wurde der Tiefenbereich als
Fehler angegeben, aus dem 68% der Informationen innerhalb des 13 µm ho-
hen VE (vgl. Abb. 5.1) stammen.20 Der Anstieg der Fehler in der Dehnung
mit zunehmender Tiefe ergibt sich aus der geringeren gebeugten Intensität
der Einzelmessungen in der Tiefe.

Da die Interferenzen Fe-110 und 211 die gleichen DEK aufweisen, lässt
sich aus den Dehnungswerten in jeder Tiefe durch Auftragung über sin2ψ

ein Spannungswert ermitteln. Der resultierende Spannungstiefenverlauf σ(z)
ist in Abb. 5.3b dargestellt.

Bei der Auswertung wurde von einem zweiachsigen Eigenspannungszu-
stand im untersuchten Tiefenbereich ausgegangen. Dies ist zum einen durch
den geringen Phasenanteil der Karbide begründet, der einen signifikanten
Spannungsaufbau in der Matrix nicht zulässt. Zum anderen sind gemäß dem
konstanten Verlauf der Dehnungskurve nahe der dehnungsfreien Richtung
bei 40◦ in Abb. 5.3a keine Hinweise auf einen Gradienten von σ33 erkenn-

20Es wurden nur die geometrischen Bedingungen berücksichtigt, also der Einfluss der
Absoroption innerhalb des VE auf das Ergebnis als vernachlässigbar angenommen.

Tabelle 5.5: Zusammensetzung des vergüteten Stahls 100Cr6 nach der Emis-
sionsfunkenspektralanalyse in Masse-%.

C Si Mn P S Cr Ni

0,967 0,225 0,281 0,014 0,011 1,43 0,13

Mo Cu Al Ti Nb V W

0,029 0,148 0,027 0,001 < 0,001 0,002 < 0,001

Co B Sn

0,019 0,0003 0,007
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Abbildung 5.3: Dehnungstiefenverlauf für ψ=0◦, 40◦ und 57◦ (a) und be-
rechneter Spannungstiefenverlauf (b) ermittelt mit dem Stress-Scanning-
Verfahren an der kugelgestrahlten Probe 100Cr6. (b) enthält darüber hinaus
zum Vergleich die Ergebnisse des Abtragverfahrens [4].
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Tabelle 5.6: Strahlparameter der Stahlprobe 100Cr6.

Strahlmittel Stahl S 110H

Intensität 0,15 - 0,17mmA

Deckungsgrad 200%

bar. Die Annahme ist für den Vergleich mit den komplementären Verfah-
ren von Bedeutung, da diejenigen Verfahren, deren Auswertung auf dem
sin2ψ-Verfahren basieren, ebenfalls σ22-σ33 liefern (Mehrwellenlängenme-
thode) und das Abtragverfahren sowie Universalplotverfahren von σ33 = 0
ausgehen (vgl. Kap. 2.2.3).

In Abb. 5.3b sind neben den Ergebnissen des Stress-Scanning-Verfahrens
die Ergebnisse des Abtragverfahrens [4] dargestellt, die an einer unter iden-
tischen Bedingungen hergestellten Probe durchgeführt wurden. Die Unsi-
cherheiten in der Tiefe ergeben sich dabei aus der mittleren Eindringtiefe
der einzelnen Interferenzen und der Messungenauigkeit in den Abtragsbe-
trägen. Innerhalb der Fehlergrenzen lässt sich eine hohe Übereinstimmung
der Messergebnisse beider Verfahren feststellen.

Den Ortsraumergebnissen σ(z) sind in Abb. 5.4 die Ergebnisse σ(〈τ〉)
bzw. σ(τ) verschiedener, in Kap. 2.2.3 beschriebener Laplace-Methoden
gegenübergestellt, die sowohl im Labor unter Nutzung von Röntgenstrah-
lung (CrKα und CoKα) als auch am Synchrotronmessplatz erzielt wurden.

Bei der Mehrwellenlängenmethode (Abb. 5.4a) werden die d - sin2ψ-
Verläufe für jede Interferenz durch Geraden angepasst, aus deren Steigung
sich σ22 bestimmen lässt. Durch den integralen Charakter des Verfahrens,
bei dem jeder Interferenz eine mittlere Eindringtiefe 〈τ〉 zugeordnet wird,
gibt der Verlauf σ(〈τ〉) eine „gedämpfte“ Form des Ortsraumverlaufs σ(z)
wieder. So lässt sich der steile Gradient an der Oberfläche recht gut abbilden,
eine Aussage über Betrag und Tiefe des Druckmaximums (im Ortsraum)
jedoch kann nicht getroffen werden.

Eine deutlich detailliertere Aussage gewinnt man bei Anwendung des
Universalplotverfahrens. Dazu sind die Ergebnisse der winkel- und der ener-
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giedispersiven Messungen in Abb. 5.4b zusammengefasst. Der aus den ex-
perimentell bestimmten Datenpunkten σ(τ) durch inverse Laplace-Trans-
formation berechnete Ortsraumverlauf σ(z) wird durch ein exponentiell ge-
dämpftes Polynom 2ten Grades (P2) beschrieben (vgl. Tab. 2.2). Der Ver-
gleich mit den Ergebnissen aus Abb. 5.3b zeigt eine Übereinstimmung mit
dem berechneten Verlauf bezüglich des Gradienten an der Oberfläche und
des Druckmaximums. Signifikante Abweichungen in σ(z) treten erst mit
zunehmender Tiefe auf. So erfolgt der Wechsel von Druck- in Zugeigen-
spannung in Abb. 5.3b bei ca. 90 µm, während der berechnete Verlauf in
Abb. 5.4b innerhalb des betrachteten Tiefenbereichs bis 130 µm ausschließ-
lich Druckeigenspannungen aufweist.

Die Berechnung der Ortsraumverläufe σ(z) aus den experimentell be-
stimmten Verläufen σ(τ) ist aufgrund der Datenstreuung mit Unsicherhei-
ten behaftet, die anhand von Abb. 5.5 näher betrachtet werden sollen. So
kann σ(τ) mit der gewählten Funktion P2 gut beschrieben werden, während
Polynome höheren Grades (P3-P7) nur noch für eine geringfügig bessere
Approximation (Abb. 5.5a) sorgen. Die in den Ortsraum überführten Ver-
läufe σ(z) in Abb. 5.5b zeigen für P1 bis P4 einen ähnlichen Verlauf, ab
P5 kommt es zu „Überschwingungen“, die einen unrealistischen Eigenspan-
nungsverlauf beschreiben, obwohl σ(τ) formal immer besser angepasst wird.
Die Problematik bei der Berechnung von σ(z) besteht also darin, ein Krite-
rium zu finden, anhand dessen die optimale Anpassungsfunktion gefunden
werden kann. In Anlehnung an das in [51] vorgeschlagene Kriterium lässt
sich die Anzahl der Parameter n so weit erhöhen, bis die Ortsraumverläu-
fe anfangen „Überschwingungen“ aufzuweisen. Der Abschnitt σ(z), in dem
sich die Funktionen Pn gleichen, könnte dann als “sicher” gelten. In dem
gewählten Beispiel trifft das für die Funktionen P1 - P4 in dem Bereich von
der unmittelbaren Oberfläche bis ca. 30 µm zu.

Eine Bewertung der Vorgehensweise lässt sich anhand der Ergebnisse des
Stress-Scanning-Verfahrens und des Abtragverfahrens in Abb. 5.6 vorneh-
men. Dort zeigt sich, dass der experimentell bestimmte Verlauf σ(z) durch
die Funktionen ab P2 bis 150 µm und ab P5 bis 300 µm gut wiedergege-
ben werden kann, so dass die gewählten Funktionen prinzipiell als geeignet
betrachtet werden können. Bei der Berechnung von σ(τ) ist entscheidend,
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(b) Auswertung nach dem Universalplotverfahren. Die Datenpunkte na-
he der Dehnungsfreien Richtung wurden aus Übersichtsgründen nicht
mit angegeben.

Abbildung 5.4: Eigenspannungstiefenverteilung ermittelt nach den La-
place-Verfahren in energie- und winkeldispersiven Messungen an der ku-
gelgestrahlten Probe 100Cr6.
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dass die gewählte Funktion die oberflächennächsten Punkte “richtig” bewer-
tet (gemäß der Messung mit CoKα in Abb. 5.4b). Das heißt, dass diejeni-
gen Funktionen, die sich einem Oberflächenwert von < 500 MPa annähern
(P1 und P4), zu einem Verlauf σ(τ) führen, der dem gemessenen Verlauf in
Abb. 5.5a entspricht. Geschieht das nicht, weist das berechnete σ(τ) größere
Abweichungen auf.

Die Streuung der Datenpunkte σ(τ) könnte auf das unterschiedliche Ver-
halten der Gitterebenen hkl auf die vorangegangenen plastischen Verfor-
mung zurückzuführen sein. Stellt man die experimentell bestimmten Git-
terabstände d und die Anpassungsfunktionen über sin2ψ dar, lässt sich in
Anlehnung an das Polynomverfahren (Kap. 2.2.4) eine Beurteilung der An-
passungsfunktion P2 in Abb. 5.4b für die Datenpunkte jeder individuellen
Interferenz hkl vornehmen. Am Beispiel der 211-Interferenz in Abb. 5.7a
lässt sich erkennen, dass die Anpassung insbesondere bei geringen Kippun-
gen ψ signifikante Abweichungen aufweist. Nimmt man eine Anpassung an
dem allein aus der 211-Interferenz erhaltenen Verlauf σ(τ) vor, lässt sich,
wie Abb. 5.7b zeigt, ein besseres Ergebnis erzielen. Bei individueller An-
passung aller Reflexe mit den Funktionen P1, P2 und P3 ergibt sich das in
Abb. 5.8 dargestellte Bild, in dem jede Interferenz hkl zu einem individuel-
len Eigenspannungsverlauf führt. Hier zeigt sich, dass die Berechnung von
σ(z) aus den Datenpunkten σ(τ) aller Interferenzen zu einer „Mittelung“
σ(z) führt. Der Vergleich mit dem experimentell bestimmten Verlauf σ(z)
weist allerdings eine über die Fehlergrenzen hinausgehende Abweichung auf
(vgl. dazu Abb. 5.3b), die auf die Schwierigkeiten der inversen Laplace-
Transformation bei streuenden Daten zurückzuführen ist.

Den Schwierigkeiten bei der Berechnung von σ(z) steht die hohe Sensiti-
vität des Universalplotverfahrens gegenüber des oberflächennächsten Eigen-
spannungszustandes entgegen. Das zeigt sich beispielsweise in der auf die
Scherspannungskomponente σ23 zurückgehende, nur sehr gering ausgepräg-
te Aufspaltung der “ψ-Äste”, die in Abb. 5.7 erkennbar ist. Eine Auswertung
aller Interferenzen führt zu dem Verlauf in Abb. 5.9. Die Absolutwerte von
σ23 sind so gering, dass sie bei dem Stress-Scanning-Verfahren nicht sichtbar
werden.
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(a) Anpassung verschiedener Funktionen an die experimentellen Datenpunk-
te σ(τ)
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P5 / P6 

P8 

 

(b) Berechnung σ(z) aus σ(τ)

Abbildung 5.5: Übertragung der Ergebnisse aus dem Universalpltoverfahren
von σ(τ) nach σ(z).
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(a) Anpassung verschiedener Funktionen an die mittels Stress-Scanning-
und Abtragsverfahren [4] ermittelten experimentellen Datenpunkte σ(z)

P2
P3
P5
P4
P1

(b) Berechnung von σ(τ) aus σ(z)

Abbildung 5.6: Übertragung der Ergebnisse des Abtragverfahrens von σ(z)
nach σ(τ).
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(a) sin2ψ-Verteilung mit Anpassungsfunk-
tion P2 aus Abb. 5.4b.

 

(b) sin2ψ-Verteilung mit individueller An-
passung der Funktion P2.

Abbildung 5.7: sin2ψ-Verteilung der 211-Interferenz aus Abb. 5.4b ein-
schließlich Anpassungsfunktionen.
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Abbildung 5.8: σ(z)-Verteilungen nach individueller Anpassung der Einzel-
reflexe in Abb. 5.4b und experimentell bestimmten Verlauf σ(z).
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Abbildung 5.9: Verlauf der Scherspannungskomponente ermittelt aus dem
Universalplotverfahren an der Stahlprobe 100Cr6.
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5.3 Anwendung des Stress-Scanning-Verfahrens auf Mul-
tilagenschichtsysteme

5.3.1 Probenbeschreibung

Untersucht wurde eine ungestrahlte und eine gestrahlte Wendeschneidplatte
aus Hartmetall, auf denen jeweils ein Multilagenschichtsystem aufgebracht
wurde. Die Wendeschneidplatten haben auf der Oberseite eine quadratische
Querschnittsfläche von 16 ×16 mm2, auf der Unterseite von 14 ×14 mm2.
Die Höhe beträgt 5 mm.

Das Schichtpaket der Proben besteht aus einer Abfolge von Schichten
wie sie in Abb. 5.10 und Tab. 5.7 wiedergegeben ist. Die Schichten wur-
den mittels chemischer Abscheidung aus der Gasphase (CVD) hergestellt.
Dabei erfolgte die Abscheidung in einem Zyklus bei einer Temperaturfüh-
rung zwischen 850◦C und 1050◦C bei unterschiedlichen Prozessgasen und
Prozessgasdrücken. Die als MT bezeichneten Schichten bestehen aus einer
Abfolge von mehreren Schichten mit unterschiedlicher Zusammensetzung
TiCxN1−x. Die Schichtdicken wurden mittels Kalottenschliffverfahren an
einer Probe der Charge bestimmt.

Gegenstand der Untersuchungen sind die Al2O3-Schichten, die im Wei-
teren von der Oberfläche ausgehend mit 1., 2. und 3. Schicht bezeichnet
werden.

Die Schichtabfolge ist typisch für moderne Hochleistungsschneidplatten,
die hoher mechanischer und thermischer Beanspruchung ausgesetzt sind. Die
Abfolge der Einzelschichten mit ihren charakteristischen Eigenschaften wie
thermische Ausdehnung und Leitfähigkeit, Oxidationsbeständigkeit, Diffu-
sionsneigung, Haftung, Verschleißfestigkeit, Härte usw., hat zum Ziel, im
Verbund ideale Eigenschaften in Hinblick auf die Standzeiten der Werk-
zeugs zu erreichen.

Neben der Schichtauswahl und -abfolge, sowie der Einstellung der Schich-
teigenschaften durch die Prozessparameter lassen sich die Eigenschaften des
Schichtverbundes nach der Herstellung durch Oberflächenbearbeitung ein-
stellen [127]. Mit dem Ziel, Druckeigenspannungen in die 1. Schicht einzu-
bringen, wurde die untersuchte Probe mit dem Strahlmittel Edelkorund rosa
280-320 mesh bei einem Druck von 2 bar für 3 s senkrecht zur Oberfläche
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Abbildung 5.10: Multilagenschichtsystem mit eingeblendetem Volumenele-
ment. Die Dimensionen in der Vertikalen sind maßstabsgetreu.

Tabelle 5.7: Schichtaufbau des Multilagenschichtsystems der ungestrahlten
Oberfläche nach Angaben des Herstellers.

Schicht Dicke [µm]

1.Schicht Al2O3 1,63

Zwischenschichten MT1 10,65

2.Schicht Al2O3 1,63

Zwischenschichten MT2 6,98

3.Schicht Al2O3 1,38

Zwischenschichten MT3 6,11

Substrat WC ∞
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Abbildung 5.11: Lichtmikroskopische Aufnahme der Oberflächen des unge-
strahlten Multilagenschichtsystems (a) und des für 3 s bei 2 bar gestrahlten
Multilagenschichtsystems (b).

gestrahlt.
Die lichtmikroskopischen Aufnahmen in Abb. 5.11 zeigen, dass sich durch

den Strahlprozess in der anfänglich geschlossenen Oberflächenschicht eine
Rissstruktur ausbildet (Abb. 5.11b). Da bei längeren Strahlzeiten ein voll-
ständiger Abtrag der ersten Al2O3-Schicht erfolgt, ist bei der vorliegenden
Probe mit einem teilweisen Abtrag zu rechnen.

5.3.2 Ergebnisse und Diskussion

Abb. 5.12 und Abb. 5.13 zeigen die Energielagen und Integralintensitäten
der 012- und 024-Al2O3 Interferenzlinien beim Translatieren des Volumen-
elements (VE) durch die Probe unter ψ = 0◦ und ψ = 57◦. Die exakten
Energielagen wurden entsprechend der Simulationsergebnisse in Kap. 4.4.3
an den Orten der Intensitätsmaxima, die durch Pfeile gekennzeichnet sind,
durch Anpassung einer Geraden bestimmt. Dabei sind nur die Bereiche be-
rücksichtigt worden, in denen es nicht zu einer Überlagerung der Schichtin-
formationen kommt, was in den Abbildungen durch die Rechtecke angedeu-
tet ist. Beispielhaft ist dazu in Abb. 5.10 mit den Positionen 1 und 2 des VE
der Bereich charakterisiert, in dem die Beugungsinformationen ausschließ-
lich der Schicht 2 zuzuordnen sind. Die Position 3 markiert den Beginn der
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überlagerungsfreien Schichtinformationen aus Schicht 3.
Nach Normierung der Beugungswinkel sind die Dehnungen aller Schich-

ten nach Gl. 4.7 über sin2ψ aufgetragen und aus den Steigungen die in
Abb. 5.14 angegebenen Eigenspannungswerte bestimmt worden. Die Fehler
ergeben sich aus der Summe der Einzelfehler der Energielagen in Gl. 4.5.
Dabei wurde eine Maximalfehlerabschätzung vorgenommen, der je nach Da-
tenqualität einen Fehler von 10 eV oder 20 eV bei der Bestimmung der
Energielage zugrunde liegt.

Die Ergebnisse zeigen, dass die 1. und 3. Al2O3-Schicht der ungestrahlten
Probe geringe Zugeigenspannungen von wenigen hundert MPa aufweisen,
während die mittlere Schicht leichte Druckeigenspannungen zeigt. Durch
Strahlen der Oberfläche wird in die 1. Schicht eine Druckeigenspannung von
ca. 4,7 GPa eingebracht. Die Eigenspannungen in der 2. Schicht wechseln
das Vorzeichen und weisen geringe, kompensierende Zugeigenspannungen
auf, die 3. Schicht bleibt innerhalb der Fehlergrenzen unbeeinflusst.

Die Methode erlaubt (unter der Voraussetzung, dass die Schichten eine
geringe Dicke bzw. geringe Absorption aufweisen), die Schichtabstände an-
hand der Intensitätsmaxima abzuschätzen. Für die Schichten in Abb. 5.12
und Abb. 5.13 lassen sich so 12,0 ± 0,5 µm und 8,5 ± 0,5 µm als mitt-
lere Schichtabstände bei der ungestrahlten Probe und 13,0 ± 0,5 µm und
8,5 ± 0,5 µm bei der gestrahlten Probe abschätzen. Der Vergleich der Inten-
sitätsverläufe von gestrahlter und ungestrahlter Probe zeigt deutlich, dass
der Schichtabstand von 1. zur 3. Schicht in der gestrahlten Probe ca. 1 µm
größer ist, obwohl die geringeren Intensitätsverhältnisse der 1. Schicht der
gestrahlten Probe den vermuteten Schichtabtrag bestätigen. Eine plausible
Erklärung lässt sich in einem schuppenartigen „Aufbuckeln“ der Oberfläche
(vgl. Abb. 5.11b) finden. Ein Unterschied in der Schichtdicke der Proben
aufgrund der Herstellung ist bei dem angewendeten CVD-Verfahren un-
wahrscheinlich.

Der Vergleich mit den komplementären Laplace-Verfahren ist nur ein-
geschränkt möglich, da es bislang keinen Ansatz gibt, die Laplace-Verläufe
unter Berücksichtigung der alternierenden Schichtung in den Ortsraum zu
überführen. Laufende Forschungsarbeiten dazu [128] zeigen, dass der Mög-
lichkeit einer Überführung erheblich von der genauen Kenntnis des Schicht-
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Abbildung 5.12: Energiepositionen und Integralintensitäten der Al2O3-012
Interferenzen unter ψ = 0◦ der ungestrahlten und gestrahlten Probe.
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Abbildung 5.13: Energiepositionen und Integralintensitäten der Al2O3-024
Interferenzen unter ψ = 57◦ der ungestrahlten und gestrahlten Probe.
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Abbildung 5.14: Mittlere oberflächenparallele Eigenspannungen σII in den
Al2O3-Schichten des ungestrahlten und gestrahlten Multilagenschichtsy-
stems bestimmt nach dem Stress-Scanning-Verfahren.

aufbaus (Schichtdicken, Absorptionsbedingungen usw.) abhängt und selbst
bei sehr hoher Datenqualität problematisch ist.

Abb. 5.15 zeigt das Ergebnis der Labormessung. Trägt man hier die
Spannungswerte über τ gemäß dem Universalplotverfahren unter Nutzung
des Absorptionskoeffizienten von TiCN und der Annahme einer unendlichen
Schichtausdehnung auf, lässt sich erkennen, dass der Informationsgehalt auf
die oberen 2,5 µm und damit ausschließlich auf die erste Schicht beschränkt
ist. Damit ergibt sich für die erste Al2O3-Schicht eine oberflächenparallele
Eigenspannung von 150 - 200 MPa, nach dem Strahlprozess weist sie hin-
gegen eine hohe Druckeigenspannung von ca. -4500 MPa auf. Der Vergleich
mit den im Stress-Scanning-Verfahren in Abb. 5.14 bestimmten Werten zeigt
innerhalb der Fehlergrenzen eine sehr gute Übereinstimmung.

Abb. 5.16 zeigt die Ergebnisse der energiedispersiven Messung in der
Universalplotauftragung ebenfalls unter der Verwendung des Absorptions-
koeffizienten von TiCN. Entsprechend der höheren Eindringtiefe des Verfah-
rens sind in den Verläufen Informationen von allen drei Schichten enthalten,
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so dass sich qualitative Hinweise auf den Oberflächenwert (1. Schicht) und
auf eine relative Tendenz in der Tiefe (2. und 3. Schicht) ergeben. Bei der
ungestrahlten Probe beträgt der Oberflächenwert ca. 150 MPa und es sind
keine wesentlichen Veränderungen des Eigenspannungswertes innerhalb der
Eindringtiefe ersichtlich. Anders verhält es sich mit der gestrahlten Probe,
bei der der Oberflächenwert etwa -4600 MPa beträgt und eine Tendenz zu
geringeren Druckeigenspannungen in den tiefergelegenen Schichten deutlich
wird.
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(a) Eigenspannungsverteilung in der ungestrahlten Probe
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(b) Eigenspannungsverteilung in der gestrahlten Probe

Abbildung 5.15: Anwendung des Universalplotverfahrens auf die Ergebnisse
der winkeldispersiven Messung unter Nutzung der Absorption von TiCN
und Anpassung einer Geraden.
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(b) Eigenspannungsverteilung in der gestrahlten Probe

Abbildung 5.16: Anwendung des Universalplotverfahren auf die Ergebnisse
der energiedispersiven Messung unter Nutzung der Absorption von TiCN
und Anpassung der Funktion P2 in Tab 2.2 (2θ = 6◦).
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6 Zusammenfassung und Ausblick

In der vorliegenden Arbeit wurden ein Messverfahren und eine Auswerte-
strategie zur Erfassung randschichtnaher Eigenspannungsverteilungen σ(z)
in polykristallinen Werkstoffen mittels energiedispersiver Diffraktion ent-
wickelt. Das so genannte Stress-Scanning-Verfahren unterscheidet sich von
den bekannten Strain-Scanning-Verfahren durch die hohe Ortsauflösung im
Bereich einiger Mikrometer und insbesondere darin, dass keine einschrän-
kenden Grundannahmen bezüglich d0 und des vorliegenden Spannungszu-
standes σij(z) getroffen werden müssen. Im Gegensatz zu den üblicherwei-
se zur Ermittlung oberflächennaher Spannungszustände eingesetzten La-
place-Verfahren wird der Ortsraumverlauf σ(z) direkt bestimmt, und es
entsteht somit bei der Überführung der Verläufe σ(τ) nicht die Problematik
der inversen Laplace-Transformation (ILT). Anhand der Ergebnisse konn-
te gezeigt werden, dass bei Stahlproben innerhalb der Strahleindringtiefe
von ca. 100 µm eine Messgenauigkeit erreicht werden kann, die der vom
semizerstörenden Abtragsverfahren entspricht.

Bei der Entwicklung des Verfahrens wurde die spezifische Eigenschaft
der energiedispersiven Beugung ausgenutzt, dass unter einem konstanten
Beugungswinkel eine Vielzahl von Beugungslinien gleichzeitig zu erhalten
sind. Vorausgehend verlangte die Methode der energiedispersiven Detektion
grundlegende Untersuchungen, mit Hilfe derer erst die notwendige Genauig-
keit bei der RSA ermöglicht wurde (Kap. 3). So konnte gezeigt werden, dass
neben der energie- und zählratenabhängigen Auflösung des Detektorsystems
eine Verschiebung des Beugungsspektrums als Funktion der Photonenrate
auftritt, die bei üblichen Detektoreinstellungen bis zu 60 eV beträgt, und so
erhebliche Scheinspannungen von bis zu einigen hundert MPa verursachen
kann. Da eine Korrektur mithilfe einer vorhergehenden Kalibriermessung
in vielen Fällen Unsicherheiten birgt, erfolgte die Einführung einer Kor-
rekturfunktion, die prinzipiell für jedes individuelle Detektorsystem erneut
ermittelt werden muss. Vergleichende winkeldispersive Untersuchungen an
spannungsfreien und spannungsbehafteten Proben bestätigen durch eine ho-
he Übereinstimmung der erzielten Ergebnisse die gewählte Vorgehensweise
bei der Untersuchung des Detektorsystems. Andere mögliche Einflussfak-
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toren, wie beispielsweise Temperatur- und Energieratenschwankungen oder
Änderungen in äußeren Wechselfelder, haben keinen nachweisbaren Effekt
auf die hier ausgeführten Messungen ausgeübt. Allerdings verdienen sie in
einer weiterführenden Arbeit nähere Betrachtung.

Die zur Umsetzung des Stress-Scanning-Verfahrens gewählte Strategie
basiert auf der Idee einer unabhängig von der zu untersuchenden Probe ju-
stierbaren Blendeneinheit zur Erzeugung des Volumenelements. Die Haupt-
einheit des experimentellen Aufbaus besteht aus zwei Blendenpaaren, die
den primären und den gebeugten Strahl auf eine Höhe von 13 µm parallel
zur Probenoberfläche begrenzen (Kap. 4). Dabei wurden die Blendenpaa-
re keilförmig jeweils so angekippt, dass es nicht zu störender Totalreflexion
auf den Blendenoberflächen kommt. Durch Bestimmung der Probentem-
peratur in Abhängigkeit von Filterdicke und -material sowie der sorgfälti-
gen Abschirmung des Detektors konnten weitere Verbesserungen hinsichtlich
der Qualität der erzielten Ergebnisse bei der ED Beugung erzielt werden.
Das Prinzip des Stress-Scanning-Verfahrens besteht darin, sekundärseitig
unter verschiedenen Orientierungen ψ des Streuvektors relativ zum Pro-
bensystems Beugungsinformationen innerhalb des identischen, parallel zur
Probenoberfläche ausgerichteten VE zu gewinnen und die Probe schritt-
weise durch das VE zu translatieren. Nach Bestimmung der exakten Beu-
gungswinkel 2θ durch eine Kalibrierprobe lassen sich aus den Energielagen
Dehnungen als Funktion von sin2ψ angeben und mit den sin2ψ-Verfahren
auswerten.

Die im Rahmen der vorliegenden Arbeit durchgeführten Simulations-
rechnungen haben dazu beigetragen, die gewählten experimentellen Bedin-
gungen und Vorgehensweisen im Sinne von “Machbarkeitsstudien” festzule-
gen und die erzielten Ergebnisse hinsichtlich ihrer Zuverlässigkeit bewerten
zu können.

Zunächst wurden homogene, oberflächenparallele Eigenspannungen in-
nerhalb von dünnen Schichten betrachtet, deren Dicke deutlich geringer ist
als die Ausdehnung des VE in der Tiefe. Es zeigte sich, dass die Schicht
mindestens zur Hälfte durch das VE translatiert und die Lage und Integral-
intensität der Beugungslinie als Funktion der VE-Position bestimmt werden
muss. Aus der Lage der Beugungslinie im Intensitätsmaximum lässt sich
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dann zuverlässig ein Wert für die Dehnung innerhalb der Schicht angeben,
aus der sich die Eigenspannung berechnen lässt. Die Simulation von Massiv-
proben verdeutlichte, dass sich die Bedingung der ebenen und innerhalb des
Untersuchungsbereichs homogen streuenden Probenbeschaffenheit ableiten
lässt. Die Verkippung ψ∆ der ebenen Probenoberfläche bzw. Grenzfläche
innerhalb der Probe relativ zum langgestreckten VE muss innerhalb eines
definierten Bereichs liegen, der mittels der Intensitätsverläufe beim Eintau-
chen in das VE bestimmt werden kann.

Bei der Anwendung des Verfahrens auf ausgewählte Proben mit definier-
ten Eigenspannungszuständen in Kap. 5 zeigen sich die Möglichkeiten des
Verfahrens. So kann der Spannungstiefenverlauf der oberflächenparallelen
Spannungskomponente einer kugelgestrahlten Probe 100Cr6 mit einer dem
Abtragsverfahren vergleichbaren Genauigkeit innerhalb der ersten 100 µm
wiedergegeben werden. Dabei ist der Zeitaufwand der Gesamtmessung mit
etwa 24 Stunden vergleichsweise gering. Durch den zerstörungsfreien Cha-
rakter des Stress-Scanning-Verfahrens kann allerdings die identische Probe
beliebig oft untersucht werden, was beispielsweise im Zusammenhang mit
der Bestimmung von Materialermüdung von großer Bedeutung ist.

Die Ergebnisse erlaubten die Gegenüberstellung der experimentell be-
stimmten Spannungstiefenverläufe σ(z) mit den durch die ILT berechne-
ten Verläufen σ(z), die aus den mittels Laplace-Verfahren bestimmten
Verteilungen σ(τ) hervorgehen. Dabei zeigen sich die prinzipiellen Vor-
und Nachteile der unterschiedlichen Verfahren: Aus dem Stress-Scanning-
Verfahren wird der Ortsraumverlauf bestimmt, eine geringfügige oberflä-
chennahe Scherspannung kann hingegen nicht wahrgenommen werden. Die
Laplace-Verfahren liefern zwar die Scherspannungskomponenten, die zu-
verlässige Bestimmung der Eigenspannungen im Ortsraum ist allerdings
nicht möglich. Daraus ergeben sich unterschiedliche Anwendungsgebiete.
Während das Stess-Scanning-Verfahren immer dann von Interesse ist, wenn
Ortsraumeigenschaften, wie beispielsweise Schichten, Grenzflächen und Riss-
spitzen, von Bedeutung sind, bieten die Laplace-Verfahren eine höhere
Sensitivität bei vergleichenden Untersuchungen komplexer Eigenspannungs-
verhältnisse “ähnlicher” Werkstoffzustände.

Das zweite Anwendungsbeispiel besteht aus einem Modellsystem für Lei-
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stungsschichten von Schneidwerkzeugen, das drei identische Al2O3-Schichten
von ca. 1,5 µm Dicke in einem Abstand von 12,3 µm und 8,5 µm aufweist.
Die Anwendung des Stress-Scanning-Verfahrens erlaubte die Bestimmung
der Eigenspannungen innerhalb der Einzelschichten vor und nach einem
Strahlprozess. Die Ergebnisse demonstrieren die Vorzüge des Verfahrens,
da auf der einen Seite die Anwendung des Abtragverfahrens wegen der che-
mischen Beständigkeit der keramischen Schichten problematisch, auf der an-
deren Seite aber mittels der Laplace-Verfahren eine Trennung der Schich-
ten aufgrund des integralen Charakters der Verfahren nicht möglich ist. So
konnte mit den Laplace-Methoden lediglich der Eigenspannungszustand
der obersten Schicht bestimmt werden, der eine sehr gute Übereinstimmung
mit den mittels Stress-Scanning-Verfahren erzielten Ergebnis aufweist.

Ein weiteres interessantes Gebiet, das sich den Möglichkeiten der Strain-
Scanning- und Laplace-Verfahren entzieht, stellt die Anwendung auf Pro-
ben mit Zusammensetzungstiefenverläufen dar, wie sie beispielsweise bei
einsatzgehärteten [129] und nitrierten Stählen auftreten können. In diesen
Fällen gestattet das Stress-Scanning-Verfahren unter gewissen Annahmen
(Zweiachsigkeit des randschichtnahen Eigenspannungszustandes) eine Tren-
nung von Spannungs- und Konzentrationsgradienten und erlaubt aufgrund
der Zerstörungsfreiheit die weitere Untersuchung der identischen Proben
beispielsweise nach anschließenden Wärmebehandlungszyklen.

Eine Erweiterung des Verfahrens könnte mit der gleichzeitigen Detekti-
on der Beugungssignale in verschiedenen Orientierungen unter Hinzunahme
weiterer Detektoren vorgenommen werden. So wäre neben der entsprechen-
den Verkürzung der Messdauer die in-situ-Beobachtung von Veränderungen
im Eigenspannungszustand während eines Prozesses denkbar.

Eine weitere Zukunftsaussicht stellt die Bestimmung von Texturtiefen-
verläufen auf Basis des Verfahrens dar. Wegen der Vielzahl von Messpunk-
ten, die bei der Bestimmung vollständiger Polfiguren notwendig werden, ist
allerdings die Nutzung von höheren Photonenflüssen bei höherer Energien
ratsam.
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Verzeichnis der wichtigsten Symbole und
Abkürzungen

σ Spannung

σI , σII , σIII Eigenspannungen I., II. und III. Art

σij Komponenten des Spannungstensors

εij(z) Komponenten des Dehnungstensors

〈σ〉α mittlere Phasenspannungen

σij(τ) Tiefenprofil der Spannungskomponente σij im
Laplace-Raum, Laplace-Spannungen

σij(z) Tiefenprofil der Spannungskomponente σij im
Ortsraum

dφψ(τ, hkl) Laplace-Tiefenprofil des Netzebenenabstan-
des d der Gitterebenenschar hkl

d0(hkl) spannungsfreier Netzebenenabstand der Git-
terebenenschar hkl

hkl Millersche Indizes

s1(hkl), 1/2s2(hkl) diffraktionselastische Konstanten (DEK)

{P}, {L}, {A} Proben-, Labor- und Kristallachsensystem

E, ν Elastizitätsmodul, Querkontraktionszahl des
quasi-isotropen Vielkristalls

ϕ,ψ Azimut- und Neigungswinkel der Messrich-
tung bzgl. des Probensystems

η Drehwinkel um den Streuvektor

N Normalenvektor der beugenden Netzebenen-
schar hkl

τ Eindringtiefe der Röntgenstrahlung

D Schichtdicke
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µ linearer Massenschwächungskoeffizient

θ Bragg-Winkel

α, β Winkel zwischen dem einfallenden bzw. ge-
beugten Strahl und der Probenoberfläche

λ Wellenlänge

h Planck’sches Wirkungsquantum,

h = 6,62607·10−34 Js = 4,13567·10−15 eVs

c Lichtgeschwindigkeit, c = 2,99792·108 m/s

E0(hkl) Energieposition der Interferenzenlinie hkl des
spannungsfreien Zustands

Eϕψ(hkl) Energieposition der Interferenzenlinie hkl in
Messrichtung

I0, I Intensität des einfallenden und gebeugten
Strahls

t Gesamtstrahlweg in der Probe

ψ∗ dehnungsfreie Richtung des zweiachsigen
Spannungszustandes

δ Strahldivergenz

DT Totzeit des Detektorsystems

DSP Digitaler Signalprozessor

HWB Halbwertsbreite

LEGe-Detektor „Low Energy Germanium“-Detektor

PS, SS Primärstrahl, Sekundärstrahl

VE Volumenelement

RSA röntgenographische Spannungsanalyse (resi-
dual stress analysis)
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DEK diffraktionselastische Konstanten

I(N)LT inverse (numerische) Laplace-
Transformation

WD winkeldispersiv

ED energiedispersiv

EDDI Weißstrahlbeamline für energiedispersive Beu-
gung am BESSY

BESSY Berliner Elektronenspeicherring-Gesellschaft
für Synchrotronstrahlung

ESRF European Synchrotron Radiation Facility in
Grenoble, Frankreich

HASYLAB Hamburger Synchrotron Labor

MLS Multilagenschichtsystem
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