Completed projects

This page contains automatically translated content.

Model experiments in operational power system analysis (MEO).

Funding:

Funded by BMWi

Duration:

01.01.2019 - 31.12.2021

Partner:
  • Helmut Schmidt University
  • University of Duisburg-Essen
  • University of Wuppertal
  • Research Center for Energy Economics e.V.
  • Gas and Heat Institute Essen e.V., University of Applied Sciences Offenburg
  • OFFIS e.V.
  • Fraunhofer Institute for Energy Economics and Energy Systems Technology

Description

The MEO project - Model Experiments for Operational Energy System Analysis - is one of six projects in the MODEX program. While many of the other MODEX projects deal with issues of classical energy system analysis, MEO aims to move towards a new part of energy system analysis. Due to the complexity and scale of the systems under study, simplifications need to be made in the modeling, for example with respect to the temporal and spatial resolution of energy generation and consumption or grid infrastructures. This creates a gap in classical energy system analysis with respect to the operational impact of simulation results on the real system. Approaches to fill this gap include, for example, models that can simulate the operation of power grids at high temporal and spatial resolution to determine how particular generation structures affect voltage levels. Clearly, such models can only represent a smaller system scale as compensation for the higher resolution. Therefore, operational power system analysis models focus on specific aspects of the power system, such as modeling control strategies for virtual power plants or the impact of cogeneration plants on (high spatial resolution) heat and power grids. The consortium in MEO is investigating eight scenarios in which various changes within a distribution network are simulated. The scenarios form the basis for a comparison of eight different modeling approaches and include, for example, the expansion of solar power generation plants, the increase in e-mobility and the expansion of heat pumps.

 

Description

The project MEO - Model experiments in operational energy system analysis - is one of six projects of the MODEX program. The approaches needed to model the operational effects of the simulation results on real systems include, for example, models with which the operation of electricity grids can be simulated in high temporal and spatial resolution in order to determine how certain generation structures affect the voltage levels. It is obvious that such models can only represent a smaller system scope as compensation for the higher resolution. The consortium in MEO examines eight scenarios in which different changes within a distribution grid are simulated. The scenarios form the basis for a comparison of eight different modeling approaches and include, for example, the expansion of solar power generation plants, the increase in e-mobility and the expansion of heat pumps.


RPC2

Contact

Dr.-Ing. Nils Bornhorst

Funding:

Funded by BMWi

Duration:

01.08.2017 - 31.10.2020

Description

The objective of the project RPC2 is the development and testing of possible measures for the control of the reactive power budget of electrical distribution networks in the high, medium and low voltage level.  For this purpose  an  active  and  situation-dependent  use  of the reactive power supply potential  from  reactive power-capable  plants  (decentralized generation plants  but  also  (industrial)  compensation plants) as well as  of the  transformer grading in the distribution grid shall be carried out in order to influence the reactive power balance in a targeted manner.
    On the one hand,     innovative  decentralized  processes  in  the  low-voltage level and  on the other hand  innovative  central  and  cross-voltage-level processes  in  the  medium-voltage  and  high-voltage  are to be developed  and  investigated .  The central  procedures  should  also  be designed for  use  across network operators .


Multi-Resilience

Contact

Jonas Haack

Funding:

Funded by DFG

Duration:

01.03.2018 - 31.05.2021

Description

Energy distribution networks are increasingly based on the interconnection of infrastructures (electricity, gas, local/district heating, ICT): smart multimodal energy distribution systems (SMEDSs). One of the keys to transforming the energy system into a highly efficient system based on renewable energy sources is the coupling of energy sectors (electricity, heat, mobility), as well as their monitoring and control through information and communication technology (ICT), i.e., digitalization. The goal of Multi-Resilience, as part of the interdisciplinary priority program "Hybrid and Multimodal Energy Systems: Systems Theoretical Methods for the Transformation and Operation of Complex Grids", is to quantitatively assess and improve the mutual resilience of SMEDSs connected to infrastructure-coupling systems. For this purpose, new methods for modeling and improving resilience in SMEDSs are developed on the one hand. Second, novel resilience-improving concepts for the operation of interconnected infrastructures will be investigated. The goal here is to protect against and mitigate the effects of disruptions that can act within an infrastructure (intra) or between infrastructures (inter).


SpiN-AI

Contact

Dr. Lars-Peter Lauven

Funding:

Funded by BMWi

Duration:

01.09.2018 - 31.08.2021

Description

The aim of the SpiN-AI project is the development and testing of innovative and practical procedures and (software) modules for peak capping in grid planning, as well as the investigation and evaluation of the expected effects on the need for grid expansion. A special focus is on the consideration and investigation of planning tasks and grid expansion requirements in high voltage (HV) and medium voltage (MV) across voltage levels. On the one hand, an integrated HV/ MV planning of the distribution system operator (DSO) Pfalzwerke Netz AG and, on the other hand, a separate, but sensible (or, if possible, optimally coordinated) planning of the HV and MV in the hands of two DSOs are considered: Energie Netz Mitte GmbH (only MV/ downstream DSO to Avacon Netz GmbH) and Avacon Netz GmbH (upstream DSO to Energie Netz Mitte GmbH with HV grid). In addition, for the effective and efficient execution of the work, various methods or modules, in particular for time series-based network planning and for forecasting procedures, are to be further developed and adapted, and interfaces to the network operation are to be investigated and expanded.

 

Description

The aim of the SpiN-AI project is the development and testing of innovative and practice-oriented procedures and (software) modules for renewable power curtailment, as well as the investigation and evaluation of the expected effects on grid expansion requirements. A special focus is on the consideration and investigation of cross-voltage planning and operation. On the one hand, an integrated HV/MV planning of the distribution grid operator (DSO) Pfalzwerke Netz AG and on the other hand a separate, but compatible planning of the HV or MV of two DSOs is considered: Energie Netz Mitte GmbH and Avacon Netz GmbH.


EU-SysFlex

Ansprechpartner

Dr. Sebastian Wende-von Berg

Förderung:

Gefördert durch EU-H2020

Laufzeit:

01.11.2017 – 31.10.2021

Website:www.eu-sysflex.com

Beschreibung

Das Projekt EU-SysFlex "Pan-European system with an efficient coordinated use of flexibilities for the integration of a large share of RES” beschäftigt sich mit den Herausforderungen an das europäische Stromnetz bei einer hohen Durchdringung an EE-Anlagen hinsichtlich der Erbringung von Systemdienstleistungen und der Bereitstellung und koordinierten Nutzung von Flexibilitäten. Im Rahmen des Projekts wird die Universität Kassel und das Fraunhofer IEE mit MITNETZ STROM als Teil der innogy SE einen Demonstrator aufbauen. Darin werden die in „SysDL 2.0“ erhaltenen Ergebnisse um die koordinierte Bereitstellung von Wirkleistung erweitert. Die Planung zur Ansteuerung der Flexibilitäten basiert auf Einsatzplänen (Day-Ahead, Redispatch) mit einem Zeithorizont von bis zu 48h.


Contact

Dr.-Ing. Nils Bornhorst

Funding:

BMWi

Period:

01.05.2013 – 30.07.2016

Description

The current development in electrical power supply shows a rapid increase of controllable decentral energy resources (PVsystems, combined heat and power plants, biogas plants etc.), consumers (washing machines, air conditioner, heat pumps etc.), stationary accumulators and electrical vehicles. This development leads to significant change in the system behaviour, that has primarily to be understood to be able to propose suitable improvements to the traditional standards and techniques.

Several scenarios for future SmartGrids will be developed considering real distribution system areas of a distribution system operator within the scope of the project „SmartGridModels“. The term “SmartGrid” represents active grid operation as well as strategic grid extension, while particularly the link between the two is investigated. For example, it is investigated how the installation of innovative grid operation systems influences the classical parameters of the grid planning process and if the deployment of intelligent controllers and grid operators can avoid costly grid extension.

An example for such an intelligent control is the so called wide-area-control, that controls the tap changer between the high- and the low voltage grid. This is not done locally, like it is standard procedure today, but with the knowledge about the grid state collected at measurement points in the medium voltage grid. Methods to systematically analyse the grid structure and identify the technical and economic potential of the deployment of such innovative system operators are developed in the project SmartGridModels.


 

Projekt: SysDL 2.0

Contact

Dr.-Ing. Nils Bornhorst

Partners:

11 Partner

(Netzbetreiber, Forschungseinrichtungen, Industrie)

Funding:

BMWi

Period:

01.10.2014 – 30.09.2017

 

Description

For a stable grid operation, the provision of ancillary services for, e.g., frequency stability, voltage stability and grid recovery, is essential. Traditionally, ancillary services have been provided by conventional power plants connected to the transmission grid. In the course of the energy transition, however, these conventional power plants are increasingly replaced by renewable distributed energy resources connected to the distribution grid.Focus of the project SysDL 2.0 is therefore the creation of a technical basis within the electrical system for a coordinated provision of ancillary services by distributed generators in the distribution grid as well as to validate this approach. In order to realize the ambitious goal of developing an innovative operational management optimization for distributed ancillary services, the department e²n contributes with its expertise in testing and simulation environments for electrical networks, decentralized network management and the development of optimization algorithms.


 

Project: Netz:Kraft

Contact

Tina Paschedag

Partners:

20 Partner (Netzbetreiber,

Forschungseinrichtungen, Industrie)

Funding:

Gefördert im Rahmen der Initiative „Zukunftsfähige Stromnetze“

(Gemeinsame Förderbekanntmachung BMWi/ BMU/ BMBF vom 17.12.2012)

Period:

01.01.2015 – 30.06.2018

 

Description

Der Netzwiederaufbau (NWA) stellt eine seltene Extremsituation im elektrischen Versor-gungssystem dar. Er ist eine Systemdienstleistung, die von den systemverantwortlichen Übertragungsnetzbetreibern (ÜNB) erbracht bzw. von diesen koordiniert wird. Die ÜNB sind in diesem Zusammenhang insbesondere auf die (Netz-)Inselbetriebsfähigkeit von Erzeugungseinheiten (>= 100 MW am Übertragungsnetz) und die Systemdienstleistung "Schwarzstartfähigkeit" angewiesen, die heute ausschließlich von thermischen oder hydraulischen Kraftwerken erbracht wird. Die Anzahl der verfügbaren Kraftwerksleistung ist jedoch rückläufig. Im Projekt Netz:Kraft werden Konzepte, Verfahren und Technologien entwickelt, mit denen Erneuerbarer-Energie-Anlagen (EEA) und intelligente Netzkomponenten zu aktiven Funktionsträgern beim NWA werden können.

Im Netz:Kraft-Konsortium sind Netzbetreiber, Hersteller und Forschung sind vertreten. Die Netzbetreiber werden Ergebnisse in laufenden Planungen berücksichtigen und bei der Überarbeitung von Konzepten anwenden. Die Hersteller und Dienstleister werden die Anforderungen an Komponenten und Verfahren bei der Produktentwicklung berücksichtigen. Die Forschungseinrichtungen werden ihre Erkenntnisse in der Beratung und Weiterführung langfristiger Forschung verwerten.

Die Universität Kassel betrachtet im Projekt Netz:Kraft zwei Schwerpunkte: zum einen die Entwicklung und Optimierung von innovativen NWA-Strategien, welche die Verteilnetze in einen zukünftigen NWA auf Grund ihrer immer größeren Erzeugungsleistungen miteinbeziehen; zum anderen die simulative Betrachtung der zu untersuchenden Netzgebiete und –ebenen, mit derer die oben genannte Optimierung vorangetrieben sowie validiert werden können.


 

Project: DREAM

Contacts

Elisabeth Drayer

Partners:

12 Partners from 7 eurpean Countries (Distribution System Operators, Research Institutions, Industry)

Funding:

Funded by the European Commission under FP7 (Grant Agreement 609359)

Period:

01.09.2013 – 31.12.2016

Website:

www.dream-smartgrid.eu

 

Description

The DREAM project will lay the foundations for a novel heterarchical management approach of complex electrical power grids, providing new mechanisms for stable and cost effective integration of distributed renewable energy sources, as well as for enhanced consumer involvement in economic and ecological electricity use. 

Applying the principles of autonomous agent-based systems to the control and management of the electric distribution grid will allow the system to constantly adjust to current operational conditions and make it robust to exogenous disturbances. In turn, this will allow for greater penetration of intermittent resources and will make the distribution grid more resilient to failures. DREAM will include several layers of controls for normal, congested and post-contingency situations that will use different coordination strategies ranging from market-based transactions to emergency demand response and create ad-hoc federations of agents that will flexibly adjust their hierarchy to current needs.

DREAM will demonstrate the economic and technical feasibility of these novel control mechanisms thanks to several real-world small-scale pilots dedicated to different use-cases, and computer simulations will be used to study further scalability.

Funded by the European Commission under the FP 7 program (Grant Agreement 609359)


 

Project: OpSim

Contact

Jan-Hendrik Menke

Partners:

Fraunhofer IWES

Funding:

BMWi

Period:

01.08.2013 – 31.03.2017

Website:www.opsim.net

Description

The project OpSim aims at developing an environment for testing and simulating power system operation strategies as well as aggregators in a smart grid with a high penetration of renewable energy resources. This includes virtual power plants, distribution and transmission grid operation strategies, energy management systems as well as loads, electric vehicles and storage devices on all voltage levels.

The OpSim simulation environment will be a unique facility for the development and testing of power system operation concepts under realistic conditions. A distinct highlight is the possibility to analyze and optimize different power system operation concepts and their interaction with power systems that are characterized by a high penetration of renewable energy resources.

OpSim is being developed as part of a strategic partnership between e²n and Fraunhofer IWES. The main focus of the e²n will be the implementation of a real-time network simulation platform as well as the development of real-time capable interfaces to the network simulation.


 

OpSimEval

Contact

Dr.-Ing. Nils Bornhorst

Partners:

Fraunhofer IEE

Funding:

Aided by the BMWi

Period:

01.02.2015 – 31.01.2018

Website:http://www.opsim.net

Description

In "OpSimEval" substantial development and implementation work will be performed on the test and simulation framework "OpSim" in order to make simulation capable of covering a time frame of a year and to make novel network planning approaches possible. The year-long simulation of "OpSimEval" examines the network and operational management for long time periods. This allows a realistic modeling of seasonal fluctuations of renewable producers and consumers. Thus, management strategies can be evaluated realistically.

Planning of distribution networks becomes perpetually more difficult.

Not only are more and different resources added, but this may also change the optimal management strategy. This necessitates a link between tools for automatic network planning and operational management simulation over long periods of time, and thus is a point of considerable innovation. For the first time, an adaptation of operational management (and the associated costs) can be taken into account during a network planning process (spanning over several years). This then allows a first integrated investigation on novel, automated network planning which can use operating management strategies as a variable.


ENSURE

Contact

Dr. Lars-Peter Lauven

Funding:

Funded by BMWi

Duration:

01.09.2016 - 31.08.2019

  

Description

The goal of the Kopernikus project ENSURE is to research and provide new energy grid structures for the energy transition in order to enable the energy policy aspirations and climate protection goals of the German government by the year 2050. The new framework conditions require profound adjustments of the electrical energy supply and a coupling of different energy sources and sectors (electricity, gas, heat and transport).
To this end, a comprehensive energy system optimization will be carried out, taking into account all relevant energy sources and the associated infrastructure. One of the main objectives is to research the design of centralized and decentralized energy supply elements in the overall system in order to be able to guarantee a reliable and secure energy supply from a technical and socio-economic point of view as well as apsects of acceptability. The focus is on research into novel stable system management concepts based on innovative information and communication technologies as well as the establishment of new technologies for power transmission, production, procurement, distribution and processing of data and information.


SimBench

Contact person

Steffen Meinecke

Partners:

TU Dortmund, RWTH Aachen, Fraunhofer IEE

Funding:

BMWi

Duration:

01.11.2015 - 31.10.2018

Website:www.simbench.de

Description

The aim of the "SimBench" project is to develop a benchmark data set for solutions in the field of network analysis, network planning and network operation management. This should make the development of such solutions possible independently of network operators and/or individual network datasets and at the same time ensure comparability of different developments in this field.

In terms of content, the main tasks are the definition of use cases, the selection of criteria and methods for the evaluation of a suitable benchmark data set, the development of a comprehensive methodology for the generation and the generation of the benchmark data set.

Finally, the benchmark dataset will be evaluated based on various developments, possibilities and limitations will be analyzed and the promotion of the benchmark dataset in the professional community will be promoted.

The University of Kassel is responsible for the overall project management as project coordinator.


 

Project: PrIME

Contact

Marcel Ernst

Partners:

Fraunhofer IEE

Funding:

Gefördert im Rahmen der Initiative „Zukunftsfähige Stromnetze“

(Gemeinsame Förderbekanntmachung BMWi/ BMU/ BMBF vom 17.12.2012)

Period:

01.01.2015 – 31.12.2017

 

Description

Die in Deutschland angestrebte Reduktion der Treibhausgasemissionen durch starken Ausbau der erneuerbaren Energien und die damit einhergehende Zunahme der Komplexität stellt die Stromnetze in der Zukunft vor große Aufgaben.

Viele der Aufgabenstellungen beruhen dabei auf im Kern probabilistische Problemstellungen. Diese können häufig vereinfachend durch deterministische Betrachtungen - Mittelwert und ggf. Worst-Case - angenähert gelöst werden. In wichtigen Aufgabenstellungen muss für belastbare Aussagen aber der probabilistische Problemraum insgesamt untersucht werden. Eine solche Untersuchung des gesamten Problemraums geschieht typischerweise durch eine Monte-Carlo-Simulation. Dieses Verfahren ist aber sehr rechenzeit- und ressourcenaufwändig und bereits bei heutigen Aufgabenstellungen müssen vielfach Vereinfachungen getroffen werden, die die Belastbarkeit der Ergebnisse und insbesondere die Extrapolierbarkeit der Ergebnisse einschränken.

Ein typischer Anwendungsfall für solche probabilistische Aufgabenstellungen in der Energiesystemtechnik ist beispielsweise die Netzausbauplanung. Der weitere Umbau der Verteilnetze zu Smart Grids mit mehr volatilen Erzeugern, dezentralen Speichern und intelligenten aktiven Betriebsmitteln im elektrischen Versorgungsnetz führt zu einer zunehmenden Unsicherheit sowohl in der räumlichen Planung (Wo entstehen neue Anlagen?), der Menge (Wie viel neue Anlagen wird es geben?) als auch der zeitlichen Planung (Wie wird die Einspeise- und Nachfrage-Charakteristik der Anlagen im Hinblick auf zeitliche Gradienten, sowie Maximal- und Minimalwerte zukünftig aussehen?). Diese und ähnliche Unsicherheiten müssen jeweils durch Wahrscheinlichkeitsverteilungen modelliert werden, wodurch alle potentiell vorkommenden Szenarien für den Ausbau erneuerbarer Energie entstehen.

In der Regel werden dabei aber viele dieser Berechnungen aufgrund gleicher oder doch sehr ähnlicher Eingangsdaten redundant sein. Daher sind neue, effiziente probabilistische Methoden notwendig, um den gesamten Lösungsraum für die Netzausbauplanung abbilden zu können. Daher sollen im Projekt PrIME Methoden für probabilistische Aufgabenstellungen in der Energiesystemtechnik betrachtet und grundlagenorientiert entwickelt werden. Die Methodenentwicklung soll sich exemplarisch an typischen probabilistischen Anwendungsfällen aus der Energiesystemtechnik orientieren, um eine hohe Praxisrelevanz für die Ergebnisse der grundlagenorientierten Forschung sicherzustellen. Solche Methoden bieten dann ein großes Anwendungspotenzial, sowohl in der Netzplanung als auch in der Netzbetriebsführung (bspw. Day-Ahead-Congestion-Forecast, DACF).

Als Teil eines Konsortiums bestehend aus Fraunhofer IWES, verschiedenen Arbeitsgruppen der Universität Kassel sowie einigen assozierten Netzbetreibern stellt das Fachgebiet e²n die Anwendbarkeit sowie Weiterentwicklung der möglichen Methoden sicher. Die entwickelten Methoden werden mit verschiedenen Netzberechnungsarten, wie z. B. Lastflussberechnungen und dynamische Echtzeitsimulationen (RMS, EMT), validiert, bewertet und optimiert. In diesem Zusammenhang können weitere Fragestellungen in der Netzplanung bzw. in der Netzbetriebsführung, wie beispielsweise die Bewertung der Investitionskosten oder die Bewertung der Betriebskosten, betrachtet und analysiert werden.


ANaPlan

Funding:

BMWi as part of the energy research program "Research for an environmentally friendly, reliable and affordable energy supply".

Duration:

01.01.2016 - 31.12.2018

Description

Due to the expansion of decentralized power generation plants, the low and medium voltage grid levels, which in the past were only designed to distribute electricity to end customers, are in some cases already performing significant feed-in tasks. In connection with new possibilities in network expansion, which result from innovative equipment such as controllable local network transformers or smart meters, the planning task for distribution network operators is becoming increasingly complex. The goal of the ANaPlan project is the simulation of a holistic network expansion planning, which, in addition to the investment and operating costs (CAPEX & OPEX), also takes into account the age structure of the network in the form of asset data. Due to the automated approach, the network development can be simulated and analyzed automatically in different variants. As a result, a forward-looking network planning is created, which minimizes the total costs for network expansion and operation. Based on this, the investment incentives set by the regulatory framework are checked using real network data by comparing the results of the technical-economic optimization with the incentive regulation. In this way, possible distortions in the investment incentives, such as a preference for capital-intensive measures over intelligent solutions, will be investigated.