Prof. Dr. Arno Müller

Fachgebietsleiter Entwicklungsgenetik

Standort
Universität Kassel
FB 10 / Institut für Biologie
Fachgebiet Entwicklungsgenetik
Heinrich-Plett-Straße 40
34132 Kassel
Raum
IBC, 2403
Sprechstunde

nach Vereinbarung


Publikationen  (Prof. Dr. Arno Müller)

Li, L., Zhang, N., Hamze Beati, S.A., De Las Heras Chanes, J., di Pietro, F., Bellaiche, Y., Müller, H.-A., Großhans, J., 2024. Kinesin-1 patterns Par-1 and Rho signaling at the cortex of syncytial embryos of Drosophila. The Journal of Cell Biology 223, e202206013.
https://forschung.uni-kassel.de/converis/portal/detail/Publication/159319766
Langlands, A., Beati, S.A.H., Müller, H.-A., 2023. SILAC-Based Quantitative Proteomic Analysis of Drosophila Embryos. Methods in Molecular Biology 2603, 187–198. https://doi.org/10.1007/978-1-0716-2863-8_15
https://forschung.uni-kassel.de/converis/portal/detail/Publication/112363863
Chandran, L., Backer, W., Schleutker, R., Kong, D., Beati, S.A.H., Luschnig, S., Müller, H.-A., 2023. Src42A is required for E-cadherin dynamics at cell junctions during Drosophila axis elongation. Development 150, TBD. https://doi.org/10.1242/dev.201119
https://forschung.uni-kassel.de/converis/portal/detail/Publication/112366201
Rumpf, M., Pautz, S., Drebes, B., Herberg, F.W., Müller, H.-A., 2023. Microtubule-Associated Serine/Threonine (MAST) Kinases in Development and Disease. International Journal of Molecular Sciences 24, 11913. https://doi.org/10.3390/ijms241511913
https://forschung.uni-kassel.de/converis/portal/detail/Publication/139389882
Ziegler, H., Gimbel, K., Bothor, J.-M., Ziepprecht, K., Meier, M., Müller, H.-A., 2021. Das Schüler- und Öffentlichkeitslabor Science Bridge als Lehr-Lern-Labor, in: Bosse, D., Wodzinski, R., Griesel, C. (Hrsg.), Lehr-Lern-Labore der Universität Kassel - Forschungsbasierte Verknüpfung von Theorie und Praxis unter dem Aspekt der kognitiven Aktivierung. Kassel university press, Kassel, S. 48–65. https://doi.org/10.17170/kobra-202109274811
https://forschung.uni-kassel.de/converis/portal/detail/Publication/73021071
Aakhte, M., Müller, H.-A., 2021. Multiview tiling light sheet microscopy for 3D high-resolution live imaging. Development 148, dev199725. https://doi.org/10.1242/dev.199725
https://forschung.uni-kassel.de/converis/portal/detail/Publication/104454407
D’Ignazio, L., Shakir, D., Batie, M., Müller, H.-A., Rocha, S., 2020. HIF-1β Positively Regulates NF-κB Activity via Direct Control of TRAF6. International Journal of Molecular Sciences 21, 3000. https://doi.org/10.3390/ijms21083000
https://forschung.uni-kassel.de/converis/portal/detail/Publication/63896069
Gheisari, E., Aakhte, M., Müller, H.-A., 2020. Gastrulation in Drosophila melanogaster: Genetic control, cellular basis and biomechanics. Mechanisms of Development 163, 103629. https://doi.org/10.1016/j.mod.2020.103629
https://forschung.uni-kassel.de/converis/portal/detail/Publication/65135391
Müller, H.-A., Winklbauer, R., 2020. Editorial for special issue “Gastrulation: from transcriptional patterning to morphogenetic movement”. Mechanisms of Development 164, 103643. https://doi.org/10.1016/j.mod.2020.103643
https://forschung.uni-kassel.de/converis/portal/detail/Publication/65135219
Liu, B., Gregor, I., Müller, H.-A., Großhans, J., 2020. Fluorescence fluctuation analysis reveals PpV dependent Cdc25 protein dynamics in living embryos. PLoS Genetics 16, e1008735. https://doi.org/10.1371/journal.pgen.1008735
https://forschung.uni-kassel.de/converis/portal/detail/Publication/63901081
Castillo, U. del, Müller, H.-A., Gelfand, V.I., 2020. Kinetochore protein Spindly controls microtubule polarity in Drosophila axons. Proceedings of the National Academy of Sciences of the United States of America 117, 12155–12163. https://doi.org/10.1101/2020.03.20.000364
https://forschung.uni-kassel.de/converis/portal/detail/Publication/63896371
Beati, S.A.H., Langlands, A., ten Have, S., Müller, H.-A., 2019. SILAC-based quantitative proteomic analysis of Drosophila gastrula stage embryos mutant for fibroblast growth factor signaling. Fly 14, 10–28. https://doi.org/10.1080/19336934.2019.1705118
https://forschung.uni-kassel.de/converis/portal/detail/Publication/60959692
Aakhte, M., Akhlaghi, E.A., Müller, H.-A., 2018. SSPIM: a beam shaping toolbox for structured selective plane illumination microscopy. Scientific Reports 8, 10067. https://doi.org/10.1038/s41598-018-28389-8
https://forschung.uni-kassel.de/converis/portal/detail/Publication/51819599
Clemente, G.D., Hannaford, M.R., Beati, S.A.H., Kapp, K., Januschke, J., Griffis, E.R., Müller, H.-A., 2018. Requirement of the Dynein-Adaptor Spindly for Mitotic and Post-Mitotic Functions in Drosophila. Journal of Developmental Biology 6, 9. https://doi.org/10.3390/jdb6020009
https://forschung.uni-kassel.de/converis/portal/detail/Publication/51819986
Müller, H.-A., 2018. More diversity in epithelial cell polarity: A fruit flies’ gut feeling. PLOS Biology 16, e3000082. https://doi.org/10.1371/journal.pbio.3000082
https://forschung.uni-kassel.de/converis/portal/detail/Publication/65300177
Mariappa, D., Zheng, X., Schimpl, M., Raimi, O., Ferenbach, A.T., Müller, H.-A., van Aalten, D.M.F., 2015. Dual functionality of O-GlcNAc transferase is required for Drosophila development. Open Biology 5, 150234. https://doi.org/10.1098/rsob.150234
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40759969
Bandarra, D., Biddlestone, J., Mudie, S., Müller, H.-A., Rocha, S., 2015. HIF-1 alpha restricts NF-kappa B-dependent gene expression to control innate immunity signals. Disease Models and Mechanisms 8, 169–181. https://doi.org/10.1242/dmm.017285
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40760225
Bandarra, D., Biddlestone, J., Mudie, S., Müller, H.-A., Rocha, S., 2014. Hypoxia activates IKK-NF-kappa B and the immune response in Drosophila melanogaster. Bioscience Reports 34, e00127429–440. https://doi.org/10.1042/BSR20140095
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40765711
Hain, D., Langlands, A., Sonnenberg, H.C., Bailey, C., Bullock, S.L., Müller, H.-A., 2014. The Drosophila MAST kinase Drop out is required to initiate membrane compartmentalisation during cellularisation and regulates dynein-based transport. Development 141, 2119–2130. https://doi.org/10.1242/dev.104711
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40761385
Radermacher, P.T., Myachina, F., Bosshardt, F., Pandey, R., Mariappa, D., Mueller, H.-A.J., Müller, H.-A., Lehner, C.F., 2014. O-GlcNAc reports ambient temperature and confers heat resistance on ectotherm development. Proceedings of the National Academy of Sciences 111, 5592–5597. https://doi.org/10.1073/pnas.1322396111
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40760807
Muha, V., Müller, H.-A., 2013. Functions and Mechanisms of Fibroblast Growth Factor (FGF) Signalling in Drosophila melanogaster. International Journal of Molecular Sciences 14, 5920–5937. https://doi.org/10.3390/ijms14035920
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40765144
Van Uden, P., Kenneth, N.S., Webster, R., Müller, H.-A., Mudie, S., Rocha, S., 2011. Evolutionary Conserved Regulation of HIF-1 beta by NF-kappa B. PLoS Genetics 7, e1001285. https://doi.org/10.1371/journal.pgen.1001285
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40764732
Winklbauer, R., Müller, H.-A., 2011. Mesoderm layer formation in Xenopus and Drosophila gastrulation. Physical Biology 8, 045001. https://doi.org/10.1088/1478-3975/8/4/045001
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40760455
Clark, I.B.N., Muha, V., Klingseisen, A., Leptin, M., Müller, H.-A., 2011. Fibroblast growth factor signalling controls successive cell behaviours during mesoderm layer formation in Drosophila. Development 138, 2705–2715. https://doi.org/10.1242/dev.060277
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40764907
Mariappa, D., Sauert, K., Marino, K., Turnock, D., Webster, R., van Aalten, D.M.F., Ferguson, M.A.J., Müller, H.-A., 2011. Protein O-GlcNAcylation Is Required for Fibroblast Growth Factor Signaling in Drosophila. Science Signaling 4, ra89. https://doi.org/10.1126/scisignal.2002335
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40761005
Haines, D., Bettencourt, B., Okamura, K., Csorba, T., Meyer, W., Jin, Z., Biggerstaff, J., Siomi, H., Hutvagner, G., Lai, E.C., Welte, M., Müller, H.-A., 2010. Natural Variation of the Amino-Terminal Glutamine-Rich Domain in Drosophila Argonaute2 Is Not Associated with Developmental Defects. PLoS ONE 5, e15264. https://doi.org/10.1371/journal.pone.0015264
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40760607
Müller, H.-A., Kessler, T., 2009. Cleavage of Armadillo/beta-catenin by the caspase DrICE in Drosophila apoptotic epithelial cells. BMC Developmental Biology 9, 15. https://doi.org/10.1186/1471-213X-9-15
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40759490
Müller, H.-A., Klingseisen, A., Clark, I.B.N., Gryzik, T., 2009. Differential and overlapping functions of two closely related Drosophila FGF8-like growth factors in mesoderm development. Development 136, 2393–2402. https://doi.org/10.1242/dev.035451
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40759711
Van Impel, A., Schumacher, S., Draga, M., Herz, H.-M., Grosshans, J., Müller, H.-A., 2009. Regulation of the Rac GTPase pathway by the multifunctional Rho GEF Pebble is essential for mesoderm migration in the Drosophila gastrula. Development 136, 813–822. https://doi.org/10.1242/dev.026203
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40761168
Müller, H.-A., 2008. Immunolabeling of Embryos, in: Dahmann, C. (Hrsg.), Drosophila. Humana Press, Totowa, NJ, S. 207–218. https://doi.org/10.1007/978-1-59745-583-1_12
https://forschung.uni-kassel.de/converis/portal/detail/Publication/65300028
Schäfer, G., Weber, S., Holz, A., Bogdan, S., Schumacher, S., Müller, H.-A., Renkawitz-Pohl, R., Onel, S.-F., 2007. The Wiskott-Aldrich syndrome protein (WASP) is essential for myoblast fusion in Drosophila. Developmental Biology 304, 664–674. https://doi.org/10.1016/j.ydbio.2007.01.015
https://forschung.uni-kassel.de/converis/portal/detail/Publication/124242827
Meyer, W.J., Schreiber, S., Guo, Y., Volkmann, T., Welte, M.A., Müller, H.-A., 2006. Overlapping functions of argonaute proteins in patterning and morphogenesis of Drosophila embryos. PLoS Genetics 2, e1341224–1239. https://doi.org/10.1371/journal.pgen.0020134
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40762162
Grosshans, J., Wenzl, C., Herz, H., Bartoszewski, S., Schnorrer, F., Schwarz, H., Müller, H.-A., 2005. RhoGEF2 and the formin dia control the formation of the furrow canal by directed actin assembly during Drosphila cellularisation. Development 132, 1009–1020. https://doi.org/10.1242/dev.01669
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40767221
Schuhmacher, S., Gryzik, T., Tannebaum, S., Müller, H.-A., 2004. The RhoGEF Pebble is required for cell shape changes during cell migration triggered by the Drosophila FGF receptor Heartless. Development 131, 2631–2640. https://doi.org/10.1242/dev.01149
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40767884
Gryzik, T., Müller, H.-A., 2004. FGF8-like1 and FGF8-like2 Encode Putative Ligands of the FGF Receptor Htl and Are Required for Mesoderm Migration in the Drosophila Gastrula. Current Biology 14, 659–667. https://doi.org/10.1016/j.cub.2004.03.058
https://forschung.uni-kassel.de/converis/portal/detail/Publication/65299736
Müller, H.-A., Yoshida, S., Wodarz, A., Ephrussi, A., 2004. PKA-R1 spatially restricts Oskar expression for Drosophila embryonic patterning. Development 131, 1401–1410. https://doi.org/10.1242/dev.01034
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40766790
Grosshans, J., Müller, H.-A., Wieschaus, E., 2003. Control of cleavage cycles in Drosophila embryos by fruhstart. Developmental Cell 5, 285–294. https://doi.org/10.1016/S1534-5807(03)00208-9
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40763790
Müller, H.-A., Bossinger, O., 2003. Molecular networks controlling epithelial cell polarity in development. Mechanisms of Development 120, 1231–1256. https://doi.org/10.1016/j.mod.2003.06.001
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40766176
Müller, H.-A., 2003. Epithelial polarity in flies: More than just crumbs. Developmental Cell 4, 1–3. https://doi.org/10.1016/S1534-5807(02)00408-2
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40764582
Müller, H.-A., 2002. Germ cell migration: As slow as molasses. Current Biology 12, R612–R614. https://doi.org/10.1016/S0960-9822(02)01131-4
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40765343
Yoo, S., Huh, J., Muro, I., Yu, H., Wang, L., Wang, S., Feldman, R., Clem, R., Müller, H.-A., Hay, B., 2002. Apoptosis inducers Hid, Rpr and Grim negatively regulate levels of the caspase inhibitor DIAP1 by distinct mechanisms. Nature Cell Biology 4, 416–424. https://doi.org/10.1038/ncb793
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40765520
Tang, A., Neufeld, T., Rubin, G., Müller, H.-A., 2001. Transcriptional regulation of cytoskeletal functions and segmentation by a novel maternal pair-rule gene, lilliputian. Development 128, 801–813.
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40768164
Müller, H.-A., 2001. Of mice, frogs and flies: Generation of membrane asymmetries in early development. Development, Growth & Differentiation 43, 327–342. https://doi.org/10.1046/j.1440-169x.2001.00587.x
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40766565
Tang, A., Neufeld, T., Rubin, G., Müller, H.-A., 2000. Lilliputian is required for cellularization and cell size regulation during Drosophila development, Molecular Biology of the Cell. AMER SOC CELL BIOLOGY.
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40761664
Müller, H.-A., 2000. Genetic control of epithelial cell polarity: Lessons from Drosophila. Development Dynamics 218, 52–67. https://doi.org/10.1002/(SICI)1097-0177(200005)218:1<52::AID-DVDY5>3.0.CO;2-L
https://forschung.uni-kassel.de/converis/portal/detail/Publication/131605429
Wang, S., Hawkins, C., Yoo, S., Müller, H.-A., Hay, B., 1999. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98, 453–463. https://doi.org/10.1016/S0092-8674(00)81974-1
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40767710
Knust, E., Müller, H.-A., 1998. Drosophila morphogenesis: Orchestrating cell rearrangements. Current Biology 8, R853–R855. https://doi.org/10.1016/S0960-9822(07)00530-1
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40764167
Müller, H.-A., Wieschaus, E., 1996. armadillo, bazooka, and stardust are critical for early stages in formation of the zonula adherens and maintenance of the polarized blastoderm epithelium in Drosophila. The Journal of Cell Biology 134, 149–163. https://doi.org/10.1083/jcb.134.1.149
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40763612
Müller, H.-A., Hausen, P., 1995. Epithelial cell polarity in early Xenopus development. Developmental Dynamics 202, 420405. https://doi.org/10.1002/aja.1002020410
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40764389
Redies, C., Müller, H.-A., 1994. Similarities in structure and expression between mouse P-cadherin, chicken B-cadherin and frog XB/U-cadherin. Cell Communication & Adhesion 2, 511–520. https://doi.org/10.3109/15419069409014215
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40767508
Müller, H.-A., Kuhl, M., Finnemann, S., Schneider, S., Vanderpoel, S., Wedlich, D., Hausen, P., 1994. Xenopus cadherins: the maternal pool comprises distinguishable members of the family. Mechanisms of Development 47, 213–223. https://doi.org/10.1016/0925-4773(94)90040-X
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40768396
Müller, H.-A., Gawantka, V., Ding, X., Hausen, P., 1993. Maturation induced internalization of Beta(1)-Integrin by xenopus-occyties and formation of the maternal integrin pool. Mechanisms of Development 42, 77–88. https://doi.org/10.1016/0925-4773(93)90100-C
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40765958
Müller, H.-A., 1992. Zur Regulation materneller Membranproteine in der Oogenese und der Oocytenreifung von Xenopus laevis in Hinblick auf die Enstehung apikobasolateraler Zellpolarität im frühen Embryo. Verlag Shaker, Aachen.
https://forschung.uni-kassel.de/converis/portal/detail/Publication/65299888
Angres, B., Müller, H.-A., Kellermann, J., Hausen, P., 1991. Differential expression of two cadherins in Xenopus laevis. Development 111, 829–844.
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40763975
Dircksen, H., Müller, H.-A., Keller, R., 1991. Crustacean cardioactive peptide in the nervous system of the locust, Locusta migratoria: an immunocytochemical study on the ventral nerve cord and peripheral innervation. Cell and Tissue Research 263, 439–457. https://doi.org/10.1007/BF00327278
https://forschung.uni-kassel.de/converis/portal/detail/Publication/65299584