Activities

Selected Conferences and Talks

Canadian Discrete and Algorithmic Mathematics Conference (CanaDAM)23.05.2025. Online.Listing spanning trees of outerplanar graphs by pivot-exchangesTorsten Mütze
Symposium on Theoretical Aspects of Computer Science (STACS)04.03. - 07.03.2025. Jena, Germany.Listing spanning trees of outerplanar graphs by pivot-exchangesTorsten Mütze
KOLKOM 202411. - 12.10.2024. Heidelberg, Germany.Plenary talk: On Hamilton cycles in highly symmetric graphsTorsten Mütze
CG Seminar Carlton University27.09.2024. Online.Flips in Colorful TriangulationsFrancesco Verciani
Graph Drawing (GD)18.09. - 20.09.2024. Vienna, Austria.Flips in Colorful TriangulationsTorsten Mütze
JCDCGGG 202410.09. - 12.09.2024. Tokyo, Japan.Graphs that admit a Hamilton Path are Cup-StackableFrancesco Verciani

Guests and Research Visitors

Christoph HertrichUniversity of Technology Nuremberg, Germany07.07. - 10.07.2025
Martin WinterTU Berlin, Germany10.06. - 11.06.2025
Jean CardinalUniversité libre de Bruxelles, Belgium26.05. - 30.05.2025
Johannes CarmesinTU Freiberg, Germany06.05. - 09.05.2025
Linda KleistUniversity of Potsdam, Germany10.03. - 12.03.2025
Felix JoosHeidelberg University, Germany10.02. - 11.02.2025
Hung HoangUniversity of Vienna, Austria13.01. - 17.01.2025
Pascal SchweitzerTechnical University of Darmstadt, Germany02.12.2024
Torsten UeckerdtKarlsruhe Institute of Technology, Germany12.11.2024
Petr GregorCharles University Prague, Czech Republic10.06. - 14.06.2024
Arturo MerinoUniversidad de O'Higgins, Chile27.05. - 07.06.2024
Nastaran BehroozniaUniversity of Warwick, United Kingdom27.05. - 31.05.2024

Third Party Funding

Heisenberg project "Principles of combinatorial algorithms" (DFG project 522790373) 2023-2028

In this project, we tackle several long-standing and fundamental problems at the interface of mathematics and computer science. Specifically, the project centers around the following topics:

  • Efficient algorithms for generating combinatorial objects
  • Reconfiguration problems, Gray codes
  • Lovász’ conjecture on Hamilton paths in vertex-transitive graphs
  • Partially ordered sets (symmetric chain decompositions)
  • Discrete and combinatorial geometry (rectangulations, non-crossing matchings, Venn diagrams)
  • Algebraic combinatorics (lattice congruences, polytopes, quotientopes)
  • Connections to combinatorial optimization on 0/1-polytopes