EEpBeton - Development of a data-driven material model for real-time property prediction in concrete production and quality assurance

Brief description

The production of concrete that does not have the properties required by the customer can result in economic losses and legal risks for the producer. For this reason, a prototype assistance system for concrete plant operators is to be developed as part of the project at the Department of Measurement and Control Technology. An important sub-goal is the creation of forecast models using machine learning methods for the 28-day compressive strength of concrete, which is an important parameter.

In order to obtain data, the concrete pilot plant of the cooperation partner will be re-instrumented and corresponding tests will be carried out, including measurements of relevant influencing variables and the recording of test specimen properties.

Processor

M.Sc. Farzad Rezazadeh Pilehdarboni

Period

September 2021 - December 2023

 

Promotion

State of Hesse LOEWE 3

Publications on the project

  1. Felix Wittich; Farzad Rezazadeh; Andreas Kroll: Four Benchmark Datasets for Nonlinear Regression in Engineering Sciences, 35. Workshop Computational Intelligence, 47-63, KIT Scientific Publishing, doi:10.5445/IR/1000186052, https://publikationen.bibliothek.kit.edu/1000186052, 2025
  2. Farzad Rezazadeh; Emad Olfatbakhsh; Andreas Kroll: Sign Diversity: A Method for Measuring Diversity in Base Learner Selection for Ensemble Regression, 2025 IEEE Symposium on Computational Intelligence (SSCI) on Engineering/Cyber Physical Systems (CIES), Trondheim Norway, 1-9, doi:10.1109/CIES64955.2025.11007635, https://ieeexplore.ieee.org/document/11007635, 2025
  3. Farzad Rezazadeh; Axel Dürrbaum; Amin Abrishambaf; Gregor Zimmermann; Andreas Kroll: Mechanical Properties of Normal Concrete, DaKS - University of Kassel's research data repository, doi:10.48662/daks-491, https://daks.uni-kassel.de/handle/123456789/642, 2025
  4. Farzad Rezazadeh; Axel Dürrbaum; Amin Abrishambaf; Gregor Zimmermann; Andreas Kroll: Mechanical Properties of Ultra-High Performance Concrete (UHPC), DaKS - University of Kassel's research data repository, doi:10.48662/daks-56.2, https://daks.uni-kassel.de/handle/123456789/251, 2025
  5. Farzad Rezazadeh; Amin Abrishambaf; Gregor Zimmermann; Andreas Kroll: Dataset on the reproducibility of UHPC mechanical properties under a fixed recipe with controlled production variability, Scientific Data, 2025
  6. Farzad Rezazadeh; Amin Abrishambaf; Gregor Zimmermann; Andreas Kroll: Monitoring of ultra-high performance concrete manufacturing for reproducible quality and waste reduction, Scientific Reports (Sci Rep), 15, Springer Nature, doi:10.1038/s41598-025-32975-y, 10.1038/s41598-025-32975-y, 2025
  7. Farzad Rezazadeh; Amin Abrishambaf; Gregor Zimmermann; Andreas Kroll: Investigating quality inconsistencies in the ultra-high performance concrete manufacturing process using a search-space constrained non-dominated sorting genetic algorithm II, at - Automatisierungstechnik, 73, 10, 791-807, doi:10.1515/auto-2025-0025, https://www.degruyterbrill.com/document/doi/10.1515/auto-2025-0025/html, 2025
  8. Farzad Rezazadeh P; Amin Abrishambaf; Axel Dürrbaum; Gregor Zimmermann; Andreas Kroll: Investigating Reproducibility of Ultra-High Performance Concrete with Consistent Mechanical Properties: A Modeling Pipeline for Sparse Data in Complex Manufacturing, 34. Workshop Computational Intelligence, 143-148, KIT Scientific Publishing, doi:10.5445/KSP/1000174544, 2024
  9. Farzad Rezazadeh; Axel Dürrbaum; Gregor Zimmermann; Andreas Kroll: Holistic Modeling of Ultra-High Performance Concrete Production Process: Synergizing Mix Design Fresh Concrete Properties and Curing Conditions, 33. Workshop Computational Intelligence, 215-237, KIT Scientific Publishing, doi:10.5445/KSP/1000162754, 2023
  10. Farzad Rezazadeh; Axel Dürrbaum; Gregor Zimmermann; Andreas Kroll: Leveraging Ensemble Structures to Elucidate the Impact of Factors that Influence the Quality of Ultra–High Performance Concrete, 2023 IEEE Symposium Series on Computational Intelligence (SSCI), 180-187, doi:10.1109/SSCI52147.2023.10371800, https://ieeexplore.ieee.org/document/10371800, 2023
  11. Farzad Rezazadeh; Axel Dürrbaum; Amin Abrishambaf; Gregor Zimmermann; Andreas Kroll: EEpBeton - Entwicklung eines datengetriebenen Materialmodells für die Echtzeit-Eigenschaftsprädiktion bei der Betonherstellung und Qualitätssicherung, Abschlussbericht, MRT-Nr. TR-035, 2023
  12. Axel Dürrbaum; Farzad Rezazadeh; Andreas Kroll: Automatic Camera-based advanced Slump FlowTesting for Improved Reliability, IEEE Sensors 2023, doi:10.1109/SENSORS56945.2023.10325030, https://ieeexplore.ieee.org/document/10325030, 2023
  13. Farzad Rezazadeh; Andreas Kroll: Predicting the compressive strength of concrete up to 28 days-ahead: Comparison of machine learning algorithms on benchmark datasets, 32. Workshop Computational Intelligence, 53-75, KIT Scientific Publishing, doi:10.5445/KSP/1000151141, 2022