c/sells

Project description

 
The Federal Ministry of Economics and Technology (BMWi) is promoting innovative technologies and processes as well as the digitization of the energy industry with the support program "Schaufenster intelligent Energie - Digital Agenda for the Energiewende" (SINTEG) in order to improve the intelligent interaction of wind energy and PV Generation, networks, consumption and storage. The aim is to demonstrate the feasibility of a climate-friendly, safe and efficient power supply in five large model regions in Germany.
 
C/sells, one of the projects, focuses on the sun and includes demonstration modules from Baden-Württemberg, Bavaria and Hesse. In the C/sells consortium, around 50 partners from the fields of energy services, network operators, component manufacturers, science and knowledge transfer have come together to install and demonstrate decentralized energy systems in these three federal states in the years 2017-2020.
 
In order to do justice to the name of the project, on the one hand technical solutions with cellular structures ("cells") are to be developed, on the other hand, new energy market participation in the energy transition is planned.
 
 
Tasks and Goals

In Hessen, project partners work primarily on the conception and model implementation of a regional flexibility market. This should be developed as a prototype and ensure the system integration of the high-performance and fluctuating supply of regenerative energies at a decentralized level. On the supply side, network and system-relevant potentials of household, commercial and industrial customers are to be identified and then prepared for use in stabilizing the grids and the electricity system. Sector coupling plays an important role here. On the demand side, in the
 
The role of IES in the project:


The Intelligent Embedded Systems division is responsible for predicting the condition of the grid. The power supply state gives a statement as to whether a power grid is able to fulfill the task of power distribution. This is done according to a traffic light system, the individual traffic signal phases indicate the power supply state. Green means that everything is alright, Orange indicates a need for action and red indicates that the power grid is overloaded.
Typically, the determination of the network condition is made by means of load flow calculations, a procedure which uses all components in a power grid and calculates the utilization of these components. The IES department uses deep learning methods to predict the state of the network. In the process, methods are evaluated which directly predict the network status or else only predict the input variables for the load flow calculation.
 
 
[1] www.bdew.de/media/documents/20170210_Konkretisierung-Ampelkonzept-Smart-Grids.pdf
 
Project partners
 
The following Hessian companies and research institutions are involved in the project:
 
EAM GmbH & Co. KG (mit Tochterunternehmen)
Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik IEE (vier Abteilungen: Strom-Wärme-Systeme, Energiemanagement und Energieeffizienz, Energiewirtschaft und Systemdesign, Betrieb Verteilungsnetze)
Limón GmbH
Ramboll CUBE GmbH
Städtische Werke Netz + Service GmbH
Universität Kassel (drei Fachgebiete: Volkswirtschaftslehre mit Schwerpunkt dezentrale Energiewirtschaft, Intelligente eingebettete Systeme und Kommunikationstechnik)
Projektförderung
Durch das Bundesministerium für Wirtschaft und Energie