Publications

2022[ to top ]
  • He, Y., Huang, Z., Sick, B.: Design of Explainability Module with Experts in the Loop for Visualization and Dynamic Adjustment of Continual Learning In: Workshop on Interactive Machine Learning Workshop (IMLW), AAAI. bll 1–6 (2022).
  • He, Y.: Adaptive Explainable Continual Learning Framework for Regression Problems with Focus on Power Forecasts In: Tomforde, S. en Krupitzer, C. (reds) Organic Computing -- Doctoral Dissertation Colloquium 2021. bll 125–140. kassel university press (2022).
2021[ to top ]
  • Huang, Z., He, Y., Vogt, S., Sick, B.: Uncertainty and Utility Sampling with Pre-Clustering In: Workshop on Interactive Adaptive Learning (IAL), ECML PKDD (2021).
  • He, Y., Huang, Z., Sick, B.: Toward Application of Continuous Power Forecasts in a Regional Flexibility Market In: International Joint Conference on Neural Networks (IJCNN). bll 1–8. IEEE (2021). https://doi.org/10.1109/ijcnn52387.2021.9533626.
  • He, Y., Sick, B.: CLeaR: An adaptive continual learning framework for regression tasks AI Perspectives. 3, 2 (2020). https://doi.org/10.1186/s42467-021-00009-8.
2020[ to top ]
  • He, Y., Henze, J., Sick, B.: Forecasting Power Grid States for Regional Energy Markets with Deep Neural Networks In: International Joint Conference on Neural Networks (IJCNN). IEEE (2020). https://doi.org/10.1109/ijcnn48605.2020.9207536.
  • He, Y., Henze, J., Sick, B.: Continuous Learning of Deep Neural Networks to Improve Forecasts for Regional Energy Markets In: International Federation of Automatic Control (IFAC) World Congress. bll 12175–12182. Elsevier (2020). https://doi.org/10.1016/j.ifacol.2020.12.1017.
2017[ to top ]
  • Zhou, B., Cheng, J., Mawandia, A., He, Y., Huang, Z., Sundholm, M., Yildrim, M., Cruz, H., Lukowicz, P.: TPM Framework: a Comprehensive Kit for Exploring Applications with Textile Pressure Mapping Matrix In: International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies (UBICOMM). IARIA (2017).