H. Ding, G. Reißig, K. Wijaya, D. Bortot, K. Bengler, and O. Stursberg, “Human Arm Motion Modeling and Long-Term Prediction for Safe and Efficient Human-Robot-Interaction,” in IEEE International Conference on Robotics and Automation (ICRA), 2011, IEEE, Ed. Shanghai, China: IEEE, 2011, pp. 5875–5880.



Modeling and predicting human behavior is indispensable when industrial robots interacting with human operators are to be manipulated safely and efficiently. One challenge is that human operators tend to follow different motion patterns, depending on their intention and the structure of the environment. This precludes the use of classical estimation techniques based on kinematic or dynamic models, especially for the purpose of long-term prediction. In this paper, we propose a method based on Hidden Markov Models to predict the region of the workspace that is possibly occupied by the human within a prediction horizon. In contrast to predictions in the form of single points such as most likely human positions as obtained from previous approaches, the regions obtained here may serve as safety constraints when the robot motion is planned or optimized. This way one avoids collisions with a probability not less than a predefined threshold. The practicability of our method is demonstrated by successfully and accurately predicting the motion of a human arm in two scenarios involving multiple motion patterns.



  author = {H. Ding and G. Reissig and K. Wijaya and D. Bortot and K. Bengler and O. Stursberg},
  title = {{Human Arm Motion Modeling and Long-Term Prediction for Safe and Efficient Human-Robot-Interaction}},
  booktitle = {2011 IEEE Conf. on Robotics and Automation},
  year = {2011},
  pages = {5875-5880},
  comment = {noch nicht gemeldet, ISBN: ?, ? Normseiten}