Biography of Prof. Dr. J.P. Reithmaier

Prof. Reithmaier studied physics at TU Munich and made his PhD at Siemens and Walter-Schottky-Institute in 1990. Until 1992, he worked as Postdoc at IBM in Rüschlikon, Switzerland on III/V epitaxy. In 1992, he joined University of Würzburg where he built-up a research group working on nanostructured semiconductors and their applications in optoelectronic devices. In 2005 he became a full professor of physics and director of the Institute of Nanostructure Technologies and Analytics at the University of Kassel.

He is author or co-author of more than 750 journal and conference papers (about 340 in refereed journals, 2 books, 10 book articles, 8 patent applications and more than 140 invited talks, more than 14 000 citations, h-index = 50 (Google Scholar)). He was coordinator of several European projects and contributed to many national and international projects covering a wide range of research topics from material research to semiconductor devices, e.g., single photon sources, high power lasers and high-speed telecom lasers. He is a member of the Deutsche Physikalische Gesellschaft (DPG) and Fellow of IEEE. Since 2014, he is co-editor of OPTICA. He is/was a member of the advisory board of different national centers (from 2010 to 2016: National Centre of III-V Materials in UK, since 2016: Centre of Nanophotonics for Terabit Communications (NATEC) in Denmark, since 2021: Technical Advisory Board of EPSRC research consortium "QUantum Dot On Silicon systems for communications, information processing and sensing" (QUDOS), UK).Since 2016, he is speaker of the Center of Interdisciplinary Nanostructure Science and Technology (CINSaT) of the University of Kassel and Coordinator of the LOEWE priority project SMolBits (Scalable Molecular Quantum Bits).

Major expertise and interests

Prof. Reithmaier has more than 35 years of experience in laser physics and optoelectronic devices, more than 30 years in molecular beam epitaxy and more than 25 years in nanostructuring of semiconductor materials. His research group participated in 13 European projects (three of them coordinated by him) and more than 17 national projects (BMBF, DFG, VW foundation, LOEWE). He is reviewer for numereous journals (PRL, PRB, APL, JAP, IEEE journals, OSA journals, ...) and for national (BMBF, DFG) and international funding agencies (EU, ISF, GIF, SRC, EPSRC, SNF, FWF, NSERC, DOE, ...).

The main interest is focused on III-V nanostructured materials and optoelectronic or nanophotonic devices dedicated for applications in classical and quantum optical communication systems. This includes material research for new epitaxial materials (e.g. III-V nanostructures on GaAs, InP and Si substrates as well as nano crystalline diamond), development of new nano fabrication technologies and novel optoelectronic devices (e.g., high-speed quantum dot lasers, single photon emitters, all-optical nano photonic devices, quantum memories based on diamond related color centers, etc.) as well as new quantum optics and quantum communication platforms (e.g., hybrid quantum systems based on molecular QuBits on semiconductor nanophotonic chips or quantum dot based optoelectronics integrated on Si photonic/microelectronic platforms).

Important Achievements

  • Realization of photonic counterparts of atoms, molecules and chains based on high-Q cavities
  • First realization and proof of strong-coupling on a single particle level (Exciton-Photon Polariton)
  • Realization of QD gain materials for high power application (920, 980, 1060 nm) with record values in laser performance
  • Realization of InP-based 1.55 µm single photon emitters and nanophotonic elements for quantum communication
  • Realization of high performance InP-based QD materials for telecom applications (1.55 µm) with record values in temperature stability, modulation speed and emission linewidth 

Selection of publications

  1. J.P. Reithmaier, R. Höger, H. Riechert, A. Heberle, G. Abstreiter, G. Weimann, "Band offset in elastically strained InGaAs/GaAs multiple quantum wells determined by optical absorption and electronic Raman scattering", Appl. Phys. Lett. 56, 536 (1990).
  2. J.P. Reithmaier, R. Höger, H. Riechert, "Experimental evidence for the transition from two- to three-dimensional behaviour of excitons in quantum-well structures", Phys. Rev. B 43, 4933 (1991).
  3. J. Dreybrodt, A. Forchel, J.P. Reithmaier, "Optical properties of GaInAs/GaAs surface quantum wells", Phys. Rev. B 48, 14741 (1993).
  4. J.P. Reithmaier, M. Röhner, H. Zull, F. Schäfer, A. Forchel, "Size Dependence of Confined Optical Modes in Photonic Quantum Dots", Phys. Rev. Lett. 78, 378 (1997).
  5. M. Bayer, T. Gutbrod, A. Forchel, J.P. Reithmaier, T.L. Reinecke, P.A. Knipp, A.A. Dremin, V.D. Kulakovskii, "Optical modes in photonic molecules", Phys. Rev. Lett. 81, 2582 (1998).
  6. M. Bayer, A. Kuther, A. Forchel, A. Gorbunov, V.B. Timofeev, F. Schäfer, J.P. Reithmaier, T.L. Reinecke, S.N. Walck "Electron and hole g-factors and exchange interaction energies from studies of the fine structure in In0.6Ga0.4As quantum dots", Phys. Rev. Lett. 82, 1748 (1999).
  7. M. Kamp, J. Hofmann, A. Forchel, F. Schäfer, J.P. Reithmaier, "Low threshold high quantum efficiency laterally gain coupled InGaAs/AlGaAs distributed feedback lasers", Appl. Phys. Lett. 74, 483 (1999).
  8. S. Rennon, F. Klopf, J.P. Reithmaier, and A. Forchel, "12 µm-long edge-emitting quantum-dot laser", Electron. Lett. 37 (11), pp. 690-691 (2001).
  9. R. Schwertberger, D. Gold, J.P. Reithmaier, and A. Forchel, "Long wavelength InP based quantum dot lasers", IEEE Phot. Technol. Lett. 14 (6), pp. 735-737 (2002).
  10. Ch. Schuller, F. Klopf, J.P. Reithmaier, A. Forchel, "Tunable photonic crystals fabricated in III- V semiconductor slab waveguides using infiltrated liquid crystals", Appl. Phys. Lett. 82 (17), pp. 2767-2769 (2003).
  11. J.P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V.Kulakovskii, T.L. Reinecke and A. Forchel, " Strong coupling in a quantum dot micropillar cavity system", Nature 432, pp. 197 - 200 (2004).
  12. H. Dery, E. Benisty, A. Epstein, R. Alizon, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, D. Gold, J.P. Reithmaier, A. Forchel, "On the nature of quantum dash structures", J. Appl. Phys. 95 (11), pp. 6103 - 6111 (2004).
  13. J.P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T.W Berg, M. van der Poel, J. Mørk, B. Tromborg, "InP based lasers and optical amplifiers with wire-/dot-like active regions" (invited review paper), J. Phys. D 38, pp. 2088-2102 (2005).
  14. J.P. Reithmaier, G. Eisenstein, A. Forchel, "InAs/InP Quantum Dash Lasers and Amplifiers", Proceedings of the IEEE 95 (9), pp. 1779-1790 (2007, invited).
  15. J.P. Reithmaier, "Strong exciton-photon coupling in semicondcutor quantum dot systems", Semiconductor Science & Technology 23 (12), Art. No 123001 (2008, invited paper).
  16. J.P. Reithmaier, "Nanostructured Semiconductor Materials for Optoelectronic Applications" in Nanostructured Materials for Advanced Technological Applications, edited by J.P. Reithmaier, Plamen Petkov, Wilhelm Kulisch, Cyril Popov, Nato ASI Series B, pp. 447-476, Springer (2009).
  17. E.-M. Pavelescu, C. Gilfert, J. P. Reithmaier, A. Martín-Mínguez, I. Esquivias, “ High-power tunnel-injection 1060-nm InGaAs-(Al)GaAs quantum-dot lasers”, Photonics Technology Letters 21 (14), 999 (2009).
  18. C. Gilfert, E.M. Pavelescu; J.P. Reithmaier, "Influence of the As2/As4growth modes on the formation of quantum dot like InAs islands grown on InAlGaAs/InP (100)", Appl. Phys. Lett. 96 (19), 191903, (2010).
  19. S. Afzal, F. Schnabel, W. Scholz, J.P. Reithmaier, D. Gready, G. Eisenstein, P. Melanen, V. Vilokkinen, I. Montrosset, M. Vallone, "1.3 µm two-section DBR lasers based on surface defined gratings for high speed telecommunication", IEEE Phot. Technol. Lett. 23, pp. 411-413 (2011)
  20. C. Gilfert, E.-M. Pavelescu, J.P. Reithmaier, T. Westphalen, M. Traub, N. Michel, M. Krakowski, "15 W Fiber Coupled Quantum Dot Pump Module", IEEE Photon. Technol. Lett. 24 (12), pp.1030-1032 (2012).
  21. D. Gready, G. Eisenstein, C. Gilfert, V. Ivanov, J.P. Reithmaier, "High Speed Low Noise InAs/InAlGaAs/InP 1.55 µm Quantum Dot Lasers", Phot. Technol. Lett. 24 (10), pp. 809-811 (2012). 
  22. M. Benyoucef, M. Usman, J.P. Reithmaier, "Bright light emissions with narrow spectral linewidths from single InAs/ GaAs quantum dots directly grown on silicon substrates", Appl. Phys. Lett. 102, Art. No. 132101 (2013).
  23. M. Benyoucef, M. Yacob, J.P. Reithmaier, J. Kettler, P. Michler, "Telecom Wavelength (1.5 µm) single photon emission from InP based quantum dots", Appl. Phys. Lett. 103, 181120 (2013).
  24. V.I. Sichkovskyi, M. Waniczek, J.P. Reithmaier, "High-gain wavelength-stabilized 1.55 µm InAs/InP(100) based lasers with reduced number of quantum dot active layers", Appl. Phys. Lett. 102, Art. No. 221117 (2013).
  25. V.I. Sichkovskyi, M. Waniczek, J.P. Reithmaier, "High-gain wavelength-stabilized 1.55 µm InAs/InP(100) based lasers with reduced number of quantum dot active layers", Appl. Phys. Lett. 102, Art. No. 221117 (2013).
  26. D. Gready, G. Eisenstein, V. Ivanov, C. Gilfert, F. Schnabel, A. Rippien, J.P. Reithmaier, "High-speed 1.55 µm InAs/InGaAlAs/InP quantum dot lasers", IEEE Phot. Technol. Lett. 26 (1), pp. 11-13 (2014).
  27. M. Benyoucef , T. AlZoubi, J. P. Reithmaier, M. Wu, A. Trampert, "Nanostructured hybrid material based on highly mismatched III-V nanocrystals fully embedded in silicon", phys. stat. sol. a 211(4), 817-822 (2014).
  28. A. Capua, O. Karni, G. Eisenstein, V. Sichkovskyi, V. Ivanov, and J.P. Reithmaier, "Coherent control in a semiconductor optical amplifier operating at room temperature", Nature Communications 5, 5025 (2014).
  29. M. Wu, A. Trampert, T. Al-Zoubi, M. Benyoucef, J.P. Reithmaier, "Interface structure and strain state of InAs nano-clusters embedded in silicon", Acta Materialia 90,  pp. 133 – 139 (2015).
  30. G. Eisenstein, O. Karni, A. K Mishra, A. Capua, D. Gready, V. V. Sichkovskyi, V. Ivanov, J.P. Reithmaier, "Breakthroughs in Photonics 2014: Time scale dependent nonlinear dynamics in InAs/InP quantum dot gain media: from high-speed modulation to coherent light- matter interactions", IEEE Photonics Journal 7 (3), 0700407 (invited paper, 2015).
  31. N. Felgen, B. Naydenov, S. Turner, F. Jelezko, J. P. Reithmaier, C. Popov, "Incorporation and study of SiV centers in diamond nanopillars", Diamond & Rel. Mat. 64, pp. 64-69 (2016)
  32. S. Banyoudeh, A. Abdollahinia, V. Sichkovskyi, O. Eyal, G. Eisenstein, J.P. Reithmaier, "Temperature-Insensitive High-Speed Directly Modulated 1.5 µm Quantum Dot Laser", IEEE Photon. Technol. Lett. 28 (21), pp. 2451-2455 (2016).
  33. J.P. Reithmaier and M. Benyoucef, "III-V / Si Integration for Photonics", ECS Trans. 72(4): 171-179 (invited, May 2016).
  34. A. Kors, K. Fuchs, M. Yacob, J.P. Reithmaier, M. Benyoucef, "Telecom wavelength emitting single quantum dots coupled to InP-based photonic crystal microcavities", Appl. Phys. Lett. 110, 031101 (2017).
  35. G. Moille, S. Combrié, K. Fuchs, M. Yacob, J.P. Reithmaier, and A. De Rossi, "Acceleration of the Nonlinear Dynamics in P-Doped Indium Phosphide Nanoscale Resonators", Optics Letters 42 (4), pp. 795-798 (2017).
  36. A. Becker, V. Sichkovskyi, M. Bjelica, A. Rippien, F. Schnabel, M. Kaiser, O. Eyal  , B. Witzigmann, G. Eisenstein, and J.P. Reithmaier, "Widely Tunable Narrow-Linewidth 1.5 µm Light Source Based on a Monolithically Integrated Quantum Dot Laser Array", Appl. Phys. Lett. 110, 181103 (2017).
  37. O. Eyal, A. Willinger, S. Banyoudeh, F. Schnabel, V. Sichkovskyi, V. Mikhelashvili, J.P. Reithmaier, and G. Eisenstein, "Static and dynamic characteristics of an InAs/InP quantum-dot optical amplifier operating at high temperatures", Optics Express 25 (22), pp. 27262-27269 (2017).
  38. A. Abdollahinia, S. Banyoudeh, A. Rippien, F. Schnabel, O. Eyal, I. Cestier, I. Kalifa, E. Mentowich, G. Eisenstein, J.P. Reithmaier, "Temperature Stability of Static and Dynamic Properties of 1.55 µm Quantum Dot Lasers", Optics Express 26 (5), pp. 6056-6066 (2018).
  39. A. Kors, J.P. Reithmaier, and M. Benyoucef, "Telecom wavelength single quantum dots with very small excitonic fine-structure splitting", Appl. Phys. Lett. 112, 172102 (2018).
  40. T. Jaffe, N. Felgen, L. Gal, L. Kornblum, J.P. Reithmaier, C. Popov, M. Orenstein, "Deterministic Arrays of Epitaxially Grown Diamond Nanopyramids with Embedded Silicon‐Vacancy Centers", Adv. Opt. Mat. 7 (2), 1800715 (2019).

  41. T. Septon, A. Becker, S. Gosh, G. Shtendel, V. Sichkovskyi, F. Schnabel, A. Sengül, M. Bjelica, B. Witzigmann, J.P. Reithmaier, G. Eisenstein, "Large Linewidth Reduction in Semiconductor Lasers Based Atom-Like Gain Material", Optica 6 (8), pp. 1071-1077 (2019).

  42. I. Koehne, A. Lik, M. Gerstel, C. Bruhn, J. P. Reithmaier, M. Benyoucef, and R. Pietschnig, "Functionalised phosphonate ester supported lanthanide (Ln = La, Nd, Dy, Er) complexes", Dalton Trans. 49, 16683 (2020).

  43. S. Bauer, V. Sichkovskyi, O. Eyal, T. Septon, A. Becker, I. Khanonkin, G. Eisenstein, J.P. Reithmaier, "1.5-μm Indium Phosphide-Based Quantum Dot Lasers and Optical Amplifiers", IEEE Nanotechnology Magazine, 23 (April 2021, invited paper).